//! A hash set implemented using [`IndexMap`] mod iter; mod mutable; mod slice; #[cfg(test)] mod tests; pub use self::iter::{ Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union, }; pub use self::mutable::MutableValues; pub use self::slice::Slice; #[cfg(feature = "rayon")] pub use crate::rayon::set as rayon; use crate::TryReserveError; #[cfg(feature = "std")] use std::collections::hash_map::RandomState; use crate::util::try_simplify_range; use alloc::boxed::Box; use alloc::vec::Vec; use core::cmp::Ordering; use core::fmt; use core::hash::{BuildHasher, Hash}; use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; use super::{Entries, Equivalent, IndexMap}; type Bucket = super::Bucket; /// A hash set where the iteration order of the values is independent of their /// hash values. /// /// The interface is closely compatible with the standard /// [`HashSet`][std::collections::HashSet], /// but also has additional features. /// /// # Order /// /// The values have a consistent order that is determined by the sequence of /// insertion and removal calls on the set. The order does not depend on the /// values or the hash function at all. Note that insertion order and value /// are not affected if a re-insertion is attempted once an element is /// already present. /// /// All iterators traverse the set *in order*. Set operation iterators like /// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise" /// operators. See their documentation for specifics. /// /// The insertion order is preserved, with **notable exceptions** like the /// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. /// Methods such as [`.sort_by()`][Self::sort_by] of /// course result in a new order, depending on the sorting order. /// /// # Indices /// /// The values are indexed in a compact range without holes in the range /// `0..self.len()`. For example, the method `.get_full` looks up the index for /// a value, and the method `.get_index` looks up the value by index. /// /// # Complexity /// /// Internally, `IndexSet` just holds an [`IndexMap`](IndexMap). Thus the complexity /// of the two are the same for most methods. /// /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// // Collects which letters appear in a sentence. /// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); /// /// assert!(letters.contains(&'s')); /// assert!(letters.contains(&'t')); /// assert!(letters.contains(&'u')); /// assert!(!letters.contains(&'y')); /// ``` #[cfg(feature = "std")] pub struct IndexSet { pub(crate) map: IndexMap, } #[cfg(not(feature = "std"))] pub struct IndexSet { pub(crate) map: IndexMap, } impl Clone for IndexSet where T: Clone, S: Clone, { fn clone(&self) -> Self { IndexSet { map: self.map.clone(), } } fn clone_from(&mut self, other: &Self) { self.map.clone_from(&other.map); } } impl Entries for IndexSet { type Entry = Bucket; #[inline] fn into_entries(self) -> Vec { self.map.into_entries() } #[inline] fn as_entries(&self) -> &[Self::Entry] { self.map.as_entries() } #[inline] fn as_entries_mut(&mut self) -> &mut [Self::Entry] { self.map.as_entries_mut() } fn with_entries(&mut self, f: F) where F: FnOnce(&mut [Self::Entry]), { self.map.with_entries(f); } } impl fmt::Debug for IndexSet where T: fmt::Debug, { #[cfg(not(feature = "test_debug"))] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_set().entries(self.iter()).finish() } #[cfg(feature = "test_debug")] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Let the inner `IndexMap` print all of its details f.debug_struct("IndexSet").field("map", &self.map).finish() } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl IndexSet { /// Create a new set. (Does not allocate.) pub fn new() -> Self { IndexSet { map: IndexMap::new(), } } /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity(n: usize) -> Self { IndexSet { map: IndexMap::with_capacity(n), } } } impl IndexSet { /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { IndexSet { map: IndexMap::with_capacity_and_hasher(n, hash_builder), } } /// Create a new set with `hash_builder`. /// /// This function is `const`, so it /// can be called in `static` contexts. pub const fn with_hasher(hash_builder: S) -> Self { IndexSet { map: IndexMap::with_hasher(hash_builder), } } /// Return the number of elements the set can hold without reallocating. /// /// This number is a lower bound; the set might be able to hold more, /// but is guaranteed to be able to hold at least this many. /// /// Computes in **O(1)** time. pub fn capacity(&self) -> usize { self.map.capacity() } /// Return a reference to the set's `BuildHasher`. pub fn hasher(&self) -> &S { self.map.hasher() } /// Return the number of elements in the set. /// /// Computes in **O(1)** time. pub fn len(&self) -> usize { self.map.len() } /// Returns true if the set contains no elements. /// /// Computes in **O(1)** time. pub fn is_empty(&self) -> bool { self.map.is_empty() } /// Return an iterator over the values of the set, in their order pub fn iter(&self) -> Iter<'_, T> { Iter::new(self.as_entries()) } /// Remove all elements in the set, while preserving its capacity. /// /// Computes in **O(n)** time. pub fn clear(&mut self) { self.map.clear(); } /// Shortens the set, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than the set's current length, this has no effect. pub fn truncate(&mut self, len: usize) { self.map.truncate(len); } /// Clears the `IndexSet` in the given index range, returning those values /// as a drain iterator. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To drain the set entirely, use `RangeFull` /// like `set.drain(..)`. /// /// This shifts down all entries following the drained range to fill the /// gap, and keeps the allocated memory for reuse. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. pub fn drain(&mut self, range: R) -> Drain<'_, T> where R: RangeBounds, { Drain::new(self.map.core.drain(range)) } /// Splits the collection into two at the given index. /// /// Returns a newly allocated set containing the elements in the range /// `[at, len)`. After the call, the original set will be left containing /// the elements `[0, at)` with its previous capacity unchanged. /// /// ***Panics*** if `at > len`. pub fn split_off(&mut self, at: usize) -> Self where S: Clone, { Self { map: self.map.split_off(at), } } /// Reserve capacity for `additional` more values. /// /// Computes in **O(n)** time. pub fn reserve(&mut self, additional: usize) { self.map.reserve(additional); } /// Reserve capacity for `additional` more values, without over-allocating. /// /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn reserve_exact(&mut self, additional: usize) { self.map.reserve_exact(additional); } /// Try to reserve capacity for `additional` more values. /// /// Computes in **O(n)** time. pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.map.try_reserve(additional) } /// Try to reserve capacity for `additional` more values, without over-allocating. /// /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { self.map.try_reserve_exact(additional) } /// Shrink the capacity of the set as much as possible. /// /// Computes in **O(n)** time. pub fn shrink_to_fit(&mut self) { self.map.shrink_to_fit(); } /// Shrink the capacity of the set with a lower limit. /// /// Computes in **O(n)** time. pub fn shrink_to(&mut self, min_capacity: usize) { self.map.shrink_to(min_capacity); } } impl IndexSet where T: Hash + Eq, S: BuildHasher, { /// Insert the value into the set. /// /// If an equivalent item already exists in the set, it returns /// `false` leaving the original value in the set and without /// altering its insertion order. Otherwise, it inserts the new /// item and returns `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()).is_none() } /// Insert the value into the set, and get its index. /// /// If an equivalent item already exists in the set, it returns /// the index of the existing item and `false`, leaving the /// original value in the set and without altering its insertion /// order. Otherwise, it inserts the new item and returns the index /// of the inserted item and `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert_full(&mut self, value: T) -> (usize, bool) { let (index, existing) = self.map.insert_full(value, ()); (index, existing.is_none()) } /// Insert the value into the set at its ordered position among sorted values. /// /// This is equivalent to finding the position with /// [`binary_search`][Self::binary_search], and if needed calling /// [`shift_insert`][Self::shift_insert] for a new value. /// /// If the sorted item is found in the set, it returns the index of that /// existing item and `false`, without any change. Otherwise, it inserts the /// new item and returns its sorted index and `true`. /// /// If the existing items are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the value /// is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). Instead of repeating calls to /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or /// [`sort_unstable`][Self::sort_unstable] once. pub fn insert_sorted(&mut self, value: T) -> (usize, bool) where T: Ord, { let (index, existing) = self.map.insert_sorted(value, ()); (index, existing.is_none()) } /// Insert the value into the set at the given index. /// /// If an equivalent item already exists in the set, it returns /// `false` leaving the original value in the set, but moving it to /// the new position in the set. Otherwise, it inserts the new /// item at the given index and returns `true`. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(n)** time (average). pub fn shift_insert(&mut self, index: usize, value: T) -> bool { self.map.shift_insert(index, value, ()).is_none() } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the replaced value. /// /// Computes in **O(1)** time (average). pub fn replace(&mut self, value: T) -> Option { self.replace_full(value).1 } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the index of the item and its replaced value. /// /// Computes in **O(1)** time (average). pub fn replace_full(&mut self, value: T) -> (usize, Option) { let hash = self.map.hash(&value); match self.map.core.replace_full(hash, value, ()) { (i, Some((replaced, ()))) => (i, Some(replaced)), (i, None) => (i, None), } } /// Return an iterator over the values that are in `self` but not `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn difference<'a, S2>(&'a self, other: &'a IndexSet) -> Difference<'a, T, S2> where S2: BuildHasher, { Difference::new(self, other) } /// Return an iterator over the values that are in `self` or `other`, /// but not in both. /// /// Values from `self` are produced in their original order, followed by /// values from `other` in their original order. pub fn symmetric_difference<'a, S2>( &'a self, other: &'a IndexSet, ) -> SymmetricDifference<'a, T, S, S2> where S2: BuildHasher, { SymmetricDifference::new(self, other) } /// Return an iterator over the values that are in both `self` and `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet) -> Intersection<'a, T, S2> where S2: BuildHasher, { Intersection::new(self, other) } /// Return an iterator over all values that are in `self` or `other`. /// /// Values from `self` are produced in their original order, followed by /// values that are unique to `other` in their original order. pub fn union<'a, S2>(&'a self, other: &'a IndexSet) -> Union<'a, T, S> where S2: BuildHasher, { Union::new(self, other) } /// Creates a splicing iterator that replaces the specified range in the set /// with the given `replace_with` iterator and yields the removed items. /// `replace_with` does not need to be the same length as `range`. /// /// The `range` is removed even if the iterator is not consumed until the /// end. It is unspecified how many elements are removed from the set if the /// `Splice` value is leaked. /// /// The input iterator `replace_with` is only consumed when the `Splice` /// value is dropped. If a value from the iterator matches an existing entry /// in the set (outside of `range`), then the original will be unchanged. /// Otherwise, the new value will be inserted in the replaced `range`. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. /// /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// let mut set = IndexSet::from([0, 1, 2, 3, 4]); /// let new = [5, 4, 3, 2, 1]; /// let removed: Vec<_> = set.splice(2..4, new).collect(); /// /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted. /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4])); /// assert_eq!(removed, &[2, 3]); /// ``` pub fn splice(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S> where R: RangeBounds, I: IntoIterator, { Splice::new(self, range, replace_with.into_iter()) } } impl IndexSet where S: BuildHasher, { /// Return `true` if an equivalent to `value` exists in the set. /// /// Computes in **O(1)** time (average). pub fn contains(&self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.map.contains_key(value) } /// Return a reference to the value stored in the set, if it is present, /// else `None`. /// /// Computes in **O(1)** time (average). pub fn get(&self, value: &Q) -> Option<&T> where Q: ?Sized + Hash + Equivalent, { self.map.get_key_value(value).map(|(x, &())| x) } /// Return item index and value pub fn get_full(&self, value: &Q) -> Option<(usize, &T)> where Q: ?Sized + Hash + Equivalent, { self.map.get_full(value).map(|(i, x, &())| (i, x)) } /// Return item index, if it exists in the set /// /// Computes in **O(1)** time (average). pub fn get_index_of(&self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.map.get_index_of(value) } /// Remove the value from the set, and return `true` if it was present. /// /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this /// value's position with the last element, and it is deprecated in favor of calling that /// explicitly. If you need to preserve the relative order of the values in the set, use /// [`.shift_remove(value)`][Self::shift_remove] instead. #[deprecated(note = "`remove` disrupts the set order -- \ use `swap_remove` or `shift_remove` for explicit behavior.")] pub fn remove(&mut self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.swap_remove(value) } /// Remove the value from the set, and return `true` if it was present. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.map.swap_remove(value).is_some() } /// Remove the value from the set, and return `true` if it was present. /// /// Like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn shift_remove(&mut self, value: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.map.shift_remove(value).is_some() } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this /// value's position with the last element, and it is deprecated in favor of calling that /// explicitly. If you need to preserve the relative order of the values in the set, use /// [`.shift_take(value)`][Self::shift_take] instead. #[deprecated(note = "`take` disrupts the set order -- \ use `swap_take` or `shift_take` for explicit behavior.")] pub fn take(&mut self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.swap_take(value) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_take(&mut self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.map.swap_remove_entry(value).map(|(x, ())| x) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// Like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn shift_take(&mut self, value: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.map.shift_remove_entry(value).map(|(x, ())| x) } /// Remove the value from the set return it and the index it had. /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. pub fn swap_remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: ?Sized + Hash + Equivalent, { self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) } /// Remove the value from the set return it and the index it had. /// /// Like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. pub fn shift_remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: ?Sized + Hash + Equivalent, { self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) } } impl IndexSet { /// Remove the last value /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). pub fn pop(&mut self) -> Option { self.map.pop().map(|(x, ())| x) } /// Scan through each value in the set and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). pub fn retain(&mut self, mut keep: F) where F: FnMut(&T) -> bool, { self.map.retain(move |x, &mut ()| keep(x)) } /// Sort the set’s values by their default ordering. /// /// This is a stable sort -- but equivalent values should not normally coexist in /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred /// because it is generally faster and doesn't allocate auxiliary memory. /// /// See [`sort_by`](Self::sort_by) for details. pub fn sort(&mut self) where T: Ord, { self.map.sort_keys() } /// Sort the set’s values in place using the comparison function `cmp`. /// /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. pub fn sort_by(&mut self, mut cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.map.sort_by(move |a, _, b, _| cmp(a, b)); } /// Sort the values of the set and return a by-value iterator of /// the values with the result. /// /// The sort is stable. pub fn sorted_by(self, mut cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { let mut entries = self.into_entries(); entries.sort_by(move |a, b| cmp(&a.key, &b.key)); IntoIter::new(entries) } /// Sort the set's values by their default ordering. /// /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. pub fn sort_unstable(&mut self) where T: Ord, { self.map.sort_unstable_keys() } /// Sort the set's values in place using the comparison function `cmp`. /// /// Computes in **O(n log n)** time. The sort is unstable. pub fn sort_unstable_by(&mut self, mut cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b)) } /// Sort the values of the set and return a by-value iterator of /// the values with the result. pub fn sorted_unstable_by(self, mut cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { let mut entries = self.into_entries(); entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key)); IntoIter::new(entries) } /// Sort the set’s values in place using a key extraction function. /// /// During sorting, the function is called at most once per entry, by using temporary storage /// to remember the results of its evaluation. The order of calls to the function is /// unspecified and may change between versions of `indexmap` or the standard library. /// /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. pub fn sort_by_cached_key(&mut self, mut sort_key: F) where K: Ord, F: FnMut(&T) -> K, { self.with_entries(move |entries| { entries.sort_by_cached_key(move |a| sort_key(&a.key)); }); } /// Search over a sorted set for a value. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search`] for more details. /// /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values. pub fn binary_search(&self, x: &T) -> Result where T: Ord, { self.as_slice().binary_search(x) } /// Search over a sorted set with a comparator function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result where F: FnMut(&'a T) -> Ordering, { self.as_slice().binary_search_by(f) } /// Search over a sorted set with an extraction function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result where F: FnMut(&'a T) -> B, B: Ord, { self.as_slice().binary_search_by_key(b, f) } /// Returns the index of the partition point of a sorted set according to the given predicate /// (the index of the first element of the second partition). /// /// See [`slice::partition_point`] for more details. /// /// Computes in **O(log(n))** time. #[must_use] pub fn partition_point

(&self, pred: P) -> usize where P: FnMut(&T) -> bool, { self.as_slice().partition_point(pred) } /// Reverses the order of the set’s values in place. /// /// Computes in **O(n)** time and **O(1)** space. pub fn reverse(&mut self) { self.map.reverse() } /// Returns a slice of all the values in the set. /// /// Computes in **O(1)** time. pub fn as_slice(&self) -> &Slice { Slice::from_slice(self.as_entries()) } /// Converts into a boxed slice of all the values in the set. /// /// Note that this will drop the inner hash table and any excess capacity. pub fn into_boxed_slice(self) -> Box> { Slice::from_boxed(self.into_entries().into_boxed_slice()) } /// Get a value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_index(&self, index: usize) -> Option<&T> { self.as_entries().get(index).map(Bucket::key_ref) } /// Returns a slice of values in the given range of indices. /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_range>(&self, range: R) -> Option<&Slice> { let entries = self.as_entries(); let range = try_simplify_range(range, entries.len())?; entries.get(range).map(Slice::from_slice) } /// Get the first value /// /// Computes in **O(1)** time. pub fn first(&self) -> Option<&T> { self.as_entries().first().map(Bucket::key_ref) } /// Get the last value /// /// Computes in **O(1)** time. pub fn last(&self) -> Option<&T> { self.as_entries().last().map(Bucket::key_ref) } /// Remove the value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like [`Vec::swap_remove`], the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_index(&mut self, index: usize) -> Option { self.map.swap_remove_index(index).map(|(x, ())| x) } /// Remove the value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like [`Vec::remove`], the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn shift_remove_index(&mut self, index: usize) -> Option { self.map.shift_remove_index(index).map(|(x, ())| x) } /// Moves the position of a value from one index to another /// by shifting all other values in-between. /// /// * If `from < to`, the other values will shift down while the targeted value moves up. /// * If `from > to`, the other values will shift up while the targeted value moves down. /// /// ***Panics*** if `from` or `to` are out of bounds. /// /// Computes in **O(n)** time (average). pub fn move_index(&mut self, from: usize, to: usize) { self.map.move_index(from, to) } /// Swaps the position of two values in the set. /// /// ***Panics*** if `a` or `b` are out of bounds. /// /// Computes in **O(1)** time (average). pub fn swap_indices(&mut self, a: usize, b: usize) { self.map.swap_indices(a, b) } } /// Access [`IndexSet`] values at indexed positions. /// /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// let mut set = IndexSet::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// set.insert(word.to_string()); /// } /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "ipsum"); /// set.reverse(); /// assert_eq!(set[0], "amet"); /// assert_eq!(set[1], "sit"); /// set.sort(); /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "amet"); /// ``` /// /// ```should_panic /// use indexmap::IndexSet; /// /// let mut set = IndexSet::new(); /// set.insert("foo"); /// println!("{:?}", set[10]); // panics! /// ``` impl Index for IndexSet { type Output = T; /// Returns a reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index(&self, index: usize) -> &T { self.get_index(index) .expect("IndexSet: index out of bounds") } } impl FromIterator for IndexSet where T: Hash + Eq, S: BuildHasher + Default, { fn from_iter>(iterable: I) -> Self { let iter = iterable.into_iter().map(|x| (x, ())); IndexSet { map: IndexMap::from_iter(iter), } } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl From<[T; N]> for IndexSet where T: Eq + Hash, { /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// let set1 = IndexSet::from([1, 2, 3, 4]); /// let set2: IndexSet<_> = [1, 2, 3, 4].into(); /// assert_eq!(set1, set2); /// ``` fn from(arr: [T; N]) -> Self { Self::from_iter(arr) } } impl Extend for IndexSet where T: Hash + Eq, S: BuildHasher, { fn extend>(&mut self, iterable: I) { let iter = iterable.into_iter().map(|x| (x, ())); self.map.extend(iter); } } impl<'a, T, S> Extend<&'a T> for IndexSet where T: Hash + Eq + Copy + 'a, S: BuildHasher, { fn extend>(&mut self, iterable: I) { let iter = iterable.into_iter().copied(); self.extend(iter); } } impl Default for IndexSet where S: Default, { /// Return an empty [`IndexSet`] fn default() -> Self { IndexSet { map: IndexMap::default(), } } } impl PartialEq> for IndexSet where T: Hash + Eq, S1: BuildHasher, S2: BuildHasher, { fn eq(&self, other: &IndexSet) -> bool { self.len() == other.len() && self.is_subset(other) } } impl Eq for IndexSet where T: Eq + Hash, S: BuildHasher, { } impl IndexSet where T: Eq + Hash, S: BuildHasher, { /// Returns `true` if `self` has no elements in common with `other`. pub fn is_disjoint(&self, other: &IndexSet) -> bool where S2: BuildHasher, { if self.len() <= other.len() { self.iter().all(move |value| !other.contains(value)) } else { other.iter().all(move |value| !self.contains(value)) } } /// Returns `true` if all elements of `self` are contained in `other`. pub fn is_subset(&self, other: &IndexSet) -> bool where S2: BuildHasher, { self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) } /// Returns `true` if all elements of `other` are contained in `self`. pub fn is_superset(&self, other: &IndexSet) -> bool where S2: BuildHasher, { other.is_subset(self) } } impl BitAnd<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set intersection, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn bitand(self, other: &IndexSet) -> Self::Output { self.intersection(other).cloned().collect() } } impl BitOr<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set union, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values that are unique to `other` in their original order. fn bitor(self, other: &IndexSet) -> Self::Output { self.union(other).cloned().collect() } } impl BitXor<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set symmetric-difference, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values from `other` in their original order. fn bitxor(self, other: &IndexSet) -> Self::Output { self.symmetric_difference(other).cloned().collect() } } impl Sub<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set difference, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn sub(self, other: &IndexSet) -> Self::Output { self.difference(other).cloned().collect() } }