use super::{Bucket, Entries, IndexSet, IntoIter, Iter}; use crate::util::try_simplify_range; use alloc::boxed::Box; use alloc::vec::Vec; use core::cmp::Ordering; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{self, Bound, Index, RangeBounds}; /// A dynamically-sized slice of values in an [`IndexSet`]. /// /// This supports indexed operations much like a `[T]` slice, /// but not any hashed operations on the values. /// /// Unlike `IndexSet`, `Slice` does consider the order for [`PartialEq`] /// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`]. #[repr(transparent)] pub struct Slice { pub(crate) entries: [Bucket], } // SAFETY: `Slice` is a transparent wrapper around `[Bucket]`, // and reference lifetimes are bound together in function signatures. #[allow(unsafe_code)] impl Slice { pub(super) const fn from_slice(entries: &[Bucket]) -> &Self { unsafe { &*(entries as *const [Bucket] as *const Self) } } pub(super) fn from_boxed(entries: Box<[Bucket]>) -> Box { unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) } } fn into_boxed(self: Box) -> Box<[Bucket]> { unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket]) } } } impl Slice { pub(crate) fn into_entries(self: Box) -> Vec> { self.into_boxed().into_vec() } /// Returns an empty slice. pub const fn new<'a>() -> &'a Self { Self::from_slice(&[]) } /// Return the number of elements in the set slice. pub const fn len(&self) -> usize { self.entries.len() } /// Returns true if the set slice contains no elements. pub const fn is_empty(&self) -> bool { self.entries.is_empty() } /// Get a value by index. /// /// Valid indices are *0 <= index < self.len()* pub fn get_index(&self, index: usize) -> Option<&T> { self.entries.get(index).map(Bucket::key_ref) } /// Returns a slice of values in the given range of indices. /// /// Valid indices are *0 <= index < self.len()* pub fn get_range>(&self, range: R) -> Option<&Self> { let range = try_simplify_range(range, self.entries.len())?; self.entries.get(range).map(Self::from_slice) } /// Get the first value. pub fn first(&self) -> Option<&T> { self.entries.first().map(Bucket::key_ref) } /// Get the last value. pub fn last(&self) -> Option<&T> { self.entries.last().map(Bucket::key_ref) } /// Divides one slice into two at an index. /// /// ***Panics*** if `index > len`. pub fn split_at(&self, index: usize) -> (&Self, &Self) { let (first, second) = self.entries.split_at(index); (Self::from_slice(first), Self::from_slice(second)) } /// Returns the first value and the rest of the slice, /// or `None` if it is empty. pub fn split_first(&self) -> Option<(&T, &Self)> { if let [first, rest @ ..] = &self.entries { Some((&first.key, Self::from_slice(rest))) } else { None } } /// Returns the last value and the rest of the slice, /// or `None` if it is empty. pub fn split_last(&self) -> Option<(&T, &Self)> { if let [rest @ .., last] = &self.entries { Some((&last.key, Self::from_slice(rest))) } else { None } } /// Return an iterator over the values of the set slice. pub fn iter(&self) -> Iter<'_, T> { Iter::new(&self.entries) } /// Search over a sorted set for a value. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search`] for more details. /// /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up in /// the set this is a slice from using [`IndexSet::get_index_of`], but this can also position /// missing values. pub fn binary_search(&self, x: &T) -> Result where T: Ord, { self.binary_search_by(|p| p.cmp(x)) } /// Search over a sorted set with a comparator function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result where F: FnMut(&'a T) -> Ordering, { self.entries.binary_search_by(move |a| f(&a.key)) } /// Search over a sorted set with an extraction function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result where F: FnMut(&'a T) -> B, B: Ord, { self.binary_search_by(|k| f(k).cmp(b)) } /// Returns the index of the partition point of a sorted set according to the given predicate /// (the index of the first element of the second partition). /// /// See [`slice::partition_point`] for more details. /// /// Computes in **O(log(n))** time. #[must_use] pub fn partition_point

(&self, mut pred: P) -> usize where P: FnMut(&T) -> bool, { self.entries.partition_point(move |a| pred(&a.key)) } } impl<'a, T> IntoIterator for &'a Slice { type IntoIter = Iter<'a, T>; type Item = &'a T; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl IntoIterator for Box> { type IntoIter = IntoIter; type Item = T; fn into_iter(self) -> Self::IntoIter { IntoIter::new(self.into_entries()) } } impl Default for &'_ Slice { fn default() -> Self { Slice::from_slice(&[]) } } impl Default for Box> { fn default() -> Self { Slice::from_boxed(Box::default()) } } impl Clone for Box> { fn clone(&self) -> Self { Slice::from_boxed(self.entries.to_vec().into_boxed_slice()) } } impl From<&Slice> for Box> { fn from(slice: &Slice) -> Self { Slice::from_boxed(Box::from(&slice.entries)) } } impl fmt::Debug for Slice { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self).finish() } } impl PartialEq for Slice { fn eq(&self, other: &Self) -> bool { self.len() == other.len() && self.iter().eq(other) } } impl Eq for Slice {} impl PartialOrd for Slice { fn partial_cmp(&self, other: &Self) -> Option { self.iter().partial_cmp(other) } } impl Ord for Slice { fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl Hash for Slice { fn hash(&self, state: &mut H) { self.len().hash(state); for value in self { value.hash(state); } } } impl Index for Slice { type Output = T; fn index(&self, index: usize) -> &Self::Output { &self.entries[index].key } } // We can't have `impl> Index` because that conflicts with `Index`. // Instead, we repeat the implementations for all the core range types. macro_rules! impl_index { ($($range:ty),*) => {$( impl Index<$range> for IndexSet { type Output = Slice; fn index(&self, range: $range) -> &Self::Output { Slice::from_slice(&self.as_entries()[range]) } } impl Index<$range> for Slice { type Output = Self; fn index(&self, range: $range) -> &Self::Output { Slice::from_slice(&self.entries[range]) } } )*} } impl_index!( ops::Range, ops::RangeFrom, ops::RangeFull, ops::RangeInclusive, ops::RangeTo, ops::RangeToInclusive, (Bound, Bound) ); #[cfg(test)] mod tests { use super::*; #[test] fn slice_index() { fn check(vec_slice: &[i32], set_slice: &Slice, sub_slice: &Slice) { assert_eq!(set_slice as *const _, sub_slice as *const _); itertools::assert_equal(vec_slice, set_slice); } let vec: Vec = (0..10).map(|i| i * i).collect(); let set: IndexSet = vec.iter().cloned().collect(); let slice = set.as_slice(); // RangeFull check(&vec[..], &set[..], &slice[..]); for i in 0usize..10 { // Index assert_eq!(vec[i], set[i]); assert_eq!(vec[i], slice[i]); // RangeFrom check(&vec[i..], &set[i..], &slice[i..]); // RangeTo check(&vec[..i], &set[..i], &slice[..i]); // RangeToInclusive check(&vec[..=i], &set[..=i], &slice[..=i]); // (Bound, Bound) let bounds = (Bound::Excluded(i), Bound::Unbounded); check(&vec[i + 1..], &set[bounds], &slice[bounds]); for j in i..=10 { // Range check(&vec[i..j], &set[i..j], &slice[i..j]); } for j in i..10 { // RangeInclusive check(&vec[i..=j], &set[i..=j], &slice[i..=j]); } } } }