// This file is part of ICU4X. For terms of use, please see the file // called LICENSE at the top level of the ICU4X source tree // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). use crate::store::*; use alloc::borrow::Borrow; use alloc::boxed::Box; use alloc::vec::Vec; use core::cmp::Ordering; use core::iter::FromIterator; use core::marker::PhantomData; use core::mem; use core::ops::{Index, IndexMut, Range}; /// A simple "flat" map based on a sorted vector /// /// See the [module level documentation][super] for why one should use this. /// /// The API is roughly similar to that of [`std::collections::BTreeMap`]. #[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] #[cfg_attr(feature = "yoke", derive(yoke::Yokeable))] pub struct LiteMap> { pub(crate) values: S, pub(crate) _key_type: PhantomData, pub(crate) _value_type: PhantomData, } impl LiteMap { /// Construct a new [`LiteMap`] backed by Vec pub const fn new_vec() -> Self { Self { values: alloc::vec::Vec::new(), _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap { /// Construct a new [`LiteMap`] using the given values /// /// The store must be sorted and have no duplicate keys. pub const fn from_sorted_store_unchecked(values: S) -> Self { Self { values, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap> { /// Convert a [`LiteMap`] into a sorted `Vec<(K, V)>`. #[inline] pub fn into_tuple_vec(self) -> Vec<(K, V)> { self.values } } impl LiteMap where S: StoreConstEmpty, { /// Create a new empty [`LiteMap`] pub const fn new() -> Self { Self { values: S::EMPTY, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap where S: Store, { /// The number of elements in the [`LiteMap`] pub fn len(&self) -> usize { self.values.lm_len() } /// Whether the [`LiteMap`] is empty pub fn is_empty(&self) -> bool { self.values.lm_is_empty() } /// Get the key-value pair residing at a particular index /// /// In most cases, prefer [`LiteMap::get()`] over this method. #[inline] pub fn get_indexed(&self, index: usize) -> Option<(&K, &V)> { self.values.lm_get(index) } /// Get the lowest-rank key/value pair from the `LiteMap`, if it exists. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = /// LiteMap::>::from_iter([(1, "uno"), (3, "tres")]); /// /// assert_eq!(map.first(), Some((&1, &"uno"))); /// ``` #[inline] pub fn first(&self) -> Option<(&K, &V)> { self.values.lm_get(0) } /// Get the highest-rank key/value pair from the `LiteMap`, if it exists. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = /// LiteMap::>::from_iter([(1, "uno"), (3, "tres")]); /// /// assert_eq!(map.last(), Some((&3, &"tres"))); /// ``` #[inline] pub fn last(&self) -> Option<(&K, &V)> { self.values.lm_get(self.len() - 1) } /// Returns a new [`LiteMap`] with owned keys and values. /// /// The trait bounds allow transforming most slice and string types. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap<&str, &str> = LiteMap::new_vec(); /// map.insert("one", "uno"); /// map.insert("two", "dos"); /// /// let boxed_map: LiteMap, Box> = map.to_boxed_keys_values(); /// /// assert_eq!(boxed_map.get("one"), Some(&Box::from("uno"))); /// ``` pub fn to_boxed_keys_values(&self) -> LiteMap, Box, SB> where SB: StoreMut, Box>, K: Borrow, V: Borrow, Box: for<'a> From<&'a KB>, Box: for<'a> From<&'a VB>, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(Box::from(k.borrow()), Box::from(v.borrow())) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } /// Returns a new [`LiteMap`] with owned keys and cloned values. /// /// The trait bounds allow transforming most slice and string types. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap<&str, usize> = LiteMap::new_vec(); /// map.insert("one", 11); /// map.insert("two", 22); /// /// let boxed_map: LiteMap, usize> = map.to_boxed_keys(); /// /// assert_eq!(boxed_map.get("one"), Some(&11)); /// ``` pub fn to_boxed_keys(&self) -> LiteMap, V, SB> where V: Clone, SB: StoreMut, V>, K: Borrow, Box: for<'a> From<&'a KB>, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(Box::from(k.borrow()), v.clone()) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } /// Returns a new [`LiteMap`] with cloned keys and owned values. /// /// The trait bounds allow transforming most slice and string types. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap = LiteMap::new_vec(); /// map.insert(11, "uno"); /// map.insert(22, "dos"); /// /// let boxed_map: LiteMap> = map.to_boxed_values(); /// /// assert_eq!(boxed_map.get(&11), Some(&Box::from("uno"))); /// ``` pub fn to_boxed_values(&self) -> LiteMap, SB> where K: Clone, SB: StoreMut>, V: Borrow, Box: for<'a> From<&'a VB>, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(k.clone(), Box::from(v.borrow())) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap where K: Ord, S: Store, { /// Get the value associated with `key`, if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&3), None); /// ``` pub fn get(&self, key: &Q) -> Option<&V> where K: Borrow, Q: Ord, { match self.find_index(key) { #[allow(clippy::unwrap_used)] // find_index returns a valid index Ok(found) => Some(self.values.lm_get(found).unwrap().1), Err(_) => None, } } /// Binary search the map with `predicate` to find a key, returning the value. pub fn get_by(&self, predicate: impl FnMut(&K) -> Ordering) -> Option<&V> { let index = self.values.lm_binary_search_by(predicate).ok()?; self.values.lm_get(index).map(|(_, v)| v) } /// Returns whether `key` is contained in this map /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert!(map.contains_key(&1)); /// assert!(!map.contains_key(&3)); /// ``` pub fn contains_key(&self, key: &Q) -> bool where K: Borrow, Q: Ord, { self.find_index(key).is_ok() } /// Obtain the index for a given key, or if the key is not found, the index /// at which it would be inserted. /// /// (The return value works equivalently to [`slice::binary_search_by()`]) /// /// The indices returned can be used with [`Self::get_indexed()`]. Prefer using /// [`Self::get()`] directly where possible. #[inline] pub fn find_index(&self, key: &Q) -> Result where K: Borrow, Q: Ord, { self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) } } impl LiteMap where S: StoreSlice, { /// Creates a new [`LiteMap`] from a range of the current [`LiteMap`]. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// map.insert(3, "three"); /// /// let mut sub_map = map.get_indexed_range(1..3).expect("valid range"); /// assert_eq!(sub_map.get(&1), None); /// assert_eq!(sub_map.get(&2), Some(&"two")); /// assert_eq!(sub_map.get(&3), Some(&"three")); /// ``` pub fn get_indexed_range(&self, range: Range) -> Option> { let subslice = self.values.lm_get_range(range)?; Some(LiteMap { values: subslice, _key_type: PhantomData, _value_type: PhantomData, }) } /// Borrows this [`LiteMap`] as one of its slice type. /// /// This can be useful in situations where you need a `LiteMap` by value but do not want /// to clone the owned version. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// /// let borrowed_map = map.as_sliced(); /// assert_eq!(borrowed_map.get(&1), Some(&"one")); /// assert_eq!(borrowed_map.get(&2), Some(&"two")); /// ``` pub fn as_sliced(&self) -> LiteMap { // Won't panic: 0..self.len() is within range #[allow(clippy::unwrap_used)] let subslice = self.values.lm_get_range(0..self.len()).unwrap(); LiteMap { values: subslice, _key_type: PhantomData, _value_type: PhantomData, } } /// Borrows the backing buffer of this [`LiteMap`] as its slice type. /// /// The slice will be sorted. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// /// let slice = map.as_slice(); /// assert_eq!(slice, &[(1, "one"), (2, "two")]); /// ``` pub fn as_slice(&self) -> &S::Slice { // Won't panic: 0..self.len() is within range #[allow(clippy::unwrap_used)] self.values.lm_get_range(0..self.len()).unwrap() } } impl<'a, K: 'a, V: 'a, S> LiteMap where S: Store, { /// Returns a new [`LiteMap`] with keys and values borrowed from this one. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap, String> = LiteMap::new_vec(); /// map.insert(Box::new(1), "one".to_string()); /// map.insert(Box::new(2), "two".to_string()); /// /// let borrowed_map: LiteMap<&usize, &str> = map.to_borrowed_keys_values(); /// /// assert_eq!(borrowed_map.get(&1), Some(&"one")); /// ``` pub fn to_borrowed_keys_values( &'a self, ) -> LiteMap<&'a KB, &'a VB, SB> where K: Borrow, V: Borrow, SB: StoreMut<&'a KB, &'a VB>, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(k.borrow(), v.borrow()) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } /// Returns a new [`LiteMap`] with keys borrowed from this one and cloned values. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap, String> = LiteMap::new_vec(); /// map.insert(Box::new(1), "one".to_string()); /// map.insert(Box::new(2), "two".to_string()); /// /// let borrowed_map: LiteMap<&usize, String> = map.to_borrowed_keys(); /// /// assert_eq!(borrowed_map.get(&1), Some(&"one".to_string())); /// ``` pub fn to_borrowed_keys(&'a self) -> LiteMap<&'a KB, V, SB> where K: Borrow, V: Clone, SB: StoreMut<&'a KB, V>, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(k.borrow(), v.clone()) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } /// Returns a new [`LiteMap`] with values borrowed from this one and cloned keys. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map: LiteMap, String> = LiteMap::new_vec(); /// map.insert(Box::new(1), "one".to_string()); /// map.insert(Box::new(2), "two".to_string()); /// /// let borrowed_map: LiteMap, &str> = map.to_borrowed_values(); /// /// assert_eq!(borrowed_map.get(&1), Some(&"one")); /// ``` pub fn to_borrowed_values(&'a self) -> LiteMap where K: Clone, V: Borrow, SB: StoreMut, { let mut values = SB::lm_with_capacity(self.len()); for i in 0..self.len() { #[allow(clippy::unwrap_used)] // iterating over our own length let (k, v) = self.values.lm_get(i).unwrap(); values.lm_push(k.clone(), v.borrow()) } LiteMap { values, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap where S: StoreMut, { /// Construct a new [`LiteMap`] with a given capacity pub fn with_capacity(capacity: usize) -> Self { Self { values: S::lm_with_capacity(capacity), _key_type: PhantomData, _value_type: PhantomData, } } /// Remove all elements from the [`LiteMap`] pub fn clear(&mut self) { self.values.lm_clear() } /// Reserve capacity for `additional` more elements to be inserted into /// the [`LiteMap`] to avoid frequent reallocations. /// /// See [`Vec::reserve()`] for more information. /// /// [`Vec::reserve()`]: alloc::vec::Vec::reserve pub fn reserve(&mut self, additional: usize) { self.values.lm_reserve(additional) } } impl LiteMap where K: Ord, S: StoreMut, { /// Get the value associated with `key`, if it exists, as a mutable reference. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// if let Some(mut v) = map.get_mut(&1) { /// *v = "uno"; /// } /// assert_eq!(map.get(&1), Some(&"uno")); /// ``` pub fn get_mut(&mut self, key: &Q) -> Option<&mut V> where K: Borrow, Q: Ord, { match self.find_index(key) { #[allow(clippy::unwrap_used)] // find_index returns a valid index Ok(found) => Some(self.values.lm_get_mut(found).unwrap().1), Err(_) => None, } } /// Appends `value` with `key` to the end of the underlying vector, returning /// `key` and `value` _if it failed_. Useful for extending with an existing /// sorted list. /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// assert!(map.try_append(1, "uno").is_none()); /// assert!(map.try_append(3, "tres").is_none()); /// /// assert!( /// matches!(map.try_append(3, "tres-updated"), Some((3, "tres-updated"))), /// "append duplicate of last key", /// ); /// /// assert!( /// matches!(map.try_append(2, "dos"), Some((2, "dos"))), /// "append out of order" /// ); /// /// assert_eq!(map.get(&1), Some(&"uno")); /// /// // contains the original value for the key: 3 /// assert_eq!(map.get(&3), Some(&"tres")); /// /// // not appended since it wasn't in order /// assert_eq!(map.get(&2), None); /// ``` #[must_use] pub fn try_append(&mut self, key: K, value: V) -> Option<(K, V)> { if let Some(last) = self.values.lm_last() { if last.0 >= &key { return Some((key, value)); } } self.values.lm_push(key, value); None } /// Insert `value` with `key`, returning the existing value if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&3), None); /// ``` pub fn insert(&mut self, key: K, value: V) -> Option { self.insert_save_key(key, value).map(|(_, v)| v) } /// Version of [`Self::insert()`] that returns both the key and the old value. fn insert_save_key(&mut self, key: K, value: V) -> Option<(K, V)> { match self.values.lm_binary_search_by(|k| k.cmp(&key)) { #[allow(clippy::unwrap_used)] // Index came from binary_search Ok(found) => Some(( key, mem::replace(self.values.lm_get_mut(found).unwrap().1, value), )), Err(ins) => { self.values.lm_insert(ins, key, value); None } } } /// Attempts to insert a unique entry into the map. /// /// If `key` is not already in the map, inserts it with the corresponding `value` /// and returns `None`. /// /// If `key` is already in the map, no change is made to the map, and the key and value /// are returned back to the caller. /// /// ``` /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(3, "three"); /// /// // 2 is not yet in the map... /// assert_eq!(map.try_insert(2, "two"), None); /// assert_eq!(map.len(), 3); /// /// // ...but now it is. /// assert_eq!(map.try_insert(2, "TWO"), Some((2, "TWO"))); /// assert_eq!(map.len(), 3); /// ``` pub fn try_insert(&mut self, key: K, value: V) -> Option<(K, V)> { match self.values.lm_binary_search_by(|k| k.cmp(&key)) { Ok(_) => Some((key, value)), Err(ins) => { self.values.lm_insert(ins, key, value); None } } } /// Attempts to insert a unique entry into the map. /// /// If `key` is not already in the map, invokes the closure to compute `value`, inserts /// the pair into the map, and returns a reference to the value. The closure is passed /// a reference to the `key` argument. /// /// If `key` is already in the map, a reference to the existing value is returned. /// /// Additionally, the index of the value in the map is returned. If it is not desirable /// to hold on to the mutable reference's lifetime, the index can be used to access the /// element via [`LiteMap::get_indexed()`]. /// /// The closure returns a `Result` to allow for a fallible insertion function. If the /// creation of `value` is infallible, you can use [`core::convert::Infallible`]. /// /// ``` /// use litemap::LiteMap; /// /// /// Helper function to unwrap an `Infallible` result from the insertion function /// fn unwrap_infallible(result: Result) -> T { /// result.unwrap_or_else(|never| match never {}) /// } /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(3, "three"); /// /// // 2 is not yet in the map... /// let result1 = unwrap_infallible( /// map.try_get_or_insert(2, |_| Ok("two")) /// ); /// assert_eq!(result1.1, &"two"); /// assert_eq!(map.len(), 3); /// /// // ...but now it is. /// let result1 = unwrap_infallible( /// map.try_get_or_insert(2, |_| Ok("TWO")) /// ); /// assert_eq!(result1.1, &"two"); /// assert_eq!(map.len(), 3); /// ``` pub fn try_get_or_insert( &mut self, key: K, value: impl FnOnce(&K) -> Result, ) -> Result<(usize, &V), E> { let idx = match self.values.lm_binary_search_by(|k| k.cmp(&key)) { Ok(idx) => idx, Err(idx) => { let value = value(&key)?; self.values.lm_insert(idx, key, value); idx } }; #[allow(clippy::unwrap_used)] // item at idx found or inserted above Ok((idx, self.values.lm_get(idx).unwrap().1)) } /// Remove the value at `key`, returning it if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.remove(&1), Some("one")); /// assert_eq!(map.get(&1), None); /// ``` pub fn remove(&mut self, key: &Q) -> Option where K: Borrow, Q: Ord, { match self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) { Ok(found) => Some(self.values.lm_remove(found).1), Err(_) => None, } } } impl<'a, K: 'a, V: 'a, S> LiteMap where K: Ord, S: StoreIterableMut<'a, K, V> + StoreFromIterator, { /// Insert all elements from `other` into this `LiteMap`. /// /// If `other` contains keys that already exist in `self`, the values in `other` replace the /// corresponding ones in `self`, and the rejected items from `self` are returned as a new /// `LiteMap`. Otherwise, `None` is returned. /// /// The implementation of this function is optimized if `self` and `other` have no overlap. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map1 = LiteMap::new_vec(); /// map1.insert(1, "one"); /// map1.insert(2, "two"); /// /// let mut map2 = LiteMap::new_vec(); /// map2.insert(2, "TWO"); /// map2.insert(4, "FOUR"); /// /// let leftovers = map1.extend_from_litemap(map2); /// /// assert_eq!(map1.len(), 3); /// assert_eq!(map1.get(&1), Some("one").as_ref()); /// assert_eq!(map1.get(&2), Some("TWO").as_ref()); /// assert_eq!(map1.get(&4), Some("FOUR").as_ref()); /// /// let map3 = leftovers.expect("Duplicate keys"); /// assert_eq!(map3.len(), 1); /// assert_eq!(map3.get(&2), Some("two").as_ref()); /// ``` pub fn extend_from_litemap(&mut self, other: Self) -> Option { if self.is_empty() { self.values = other.values; return None; } if other.is_empty() { return None; } if self.last().map(|(k, _)| k) < other.first().map(|(k, _)| k) { // append other to self self.values.lm_extend_end(other.values); None } else if self.first().map(|(k, _)| k) > other.last().map(|(k, _)| k) { // prepend other to self self.values.lm_extend_start(other.values); None } else { // insert every element let leftover_tuples = other .values .lm_into_iter() .filter_map(|(k, v)| self.insert_save_key(k, v)) .collect(); let ret = LiteMap { values: leftover_tuples, _key_type: PhantomData, _value_type: PhantomData, }; if ret.is_empty() { None } else { Some(ret) } } } } impl Default for LiteMap where S: Store + Default, { fn default() -> Self { Self { values: S::default(), _key_type: PhantomData, _value_type: PhantomData, } } } impl Index<&'_ K> for LiteMap where K: Ord, S: Store, { type Output = V; fn index(&self, key: &K) -> &V { #[allow(clippy::panic)] // documented match self.get(key) { Some(v) => v, None => panic!("no entry found for key"), } } } impl IndexMut<&'_ K> for LiteMap where K: Ord, S: StoreMut, { fn index_mut(&mut self, key: &K) -> &mut V { #[allow(clippy::panic)] // documented match self.get_mut(key) { Some(v) => v, None => panic!("no entry found for key"), } } } impl FromIterator<(K, V)> for LiteMap where K: Ord, S: StoreFromIterable, { fn from_iter>(iter: I) -> Self { let values = S::lm_sort_from_iter(iter); Self::from_sorted_store_unchecked(values) } } impl<'a, K: 'a, V: 'a, S> LiteMap where S: StoreIterable<'a, K, V>, { /// Produce an ordered iterator over key-value pairs pub fn iter(&'a self) -> impl DoubleEndedIterator { self.values.lm_iter() } /// Produce an ordered iterator over keys pub fn iter_keys(&'a self) -> impl DoubleEndedIterator { self.values.lm_iter().map(|val| val.0) } /// Produce an iterator over values, ordered by their keys pub fn iter_values(&'a self) -> impl DoubleEndedIterator { self.values.lm_iter().map(|val| val.1) } } impl<'a, K: 'a, V: 'a, S> LiteMap where S: StoreIterableMut<'a, K, V>, { /// Produce an ordered mutable iterator over key-value pairs pub fn iter_mut(&'a mut self) -> impl DoubleEndedIterator { self.values.lm_iter_mut() } } impl LiteMap where S: StoreMut, { /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements such that `f((&k, &v))` returns `false`. /// /// # Example /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// map.insert(3, "three"); /// /// // Retain elements with odd keys /// map.retain(|k, _| k % 2 == 1); /// /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&2), None); /// ``` #[inline] pub fn retain(&mut self, predicate: F) where F: FnMut(&K, &V) -> bool, { self.values.lm_retain(predicate) } } impl<'a, K, V> LiteMap { /// Const version of [`LiteMap::len()`] for a slice store. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// static map: LiteMap<&str, usize, &[(&str, usize)]> = /// LiteMap::from_sorted_store_unchecked(&[("a", 11), ("b", 22)]); /// static len: usize = map.const_len(); /// assert_eq!(len, 2); /// ``` #[inline] pub const fn const_len(&self) -> usize { self.values.len() } /// Const version of [`LiteMap::is_empty()`] for a slice store. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// static map: LiteMap<&str, usize, &[(&str, usize)]> = /// LiteMap::from_sorted_store_unchecked(&[]); /// static is_empty: bool = map.const_is_empty(); /// assert!(is_empty); /// ``` #[inline] pub const fn const_is_empty(&self) -> bool { self.values.is_empty() } /// Const version of [`LiteMap::get_indexed()`] for a slice store. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// # Panics /// /// Panics if the index is out of bounds. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// static map: LiteMap<&str, usize, &[(&str, usize)]> = /// LiteMap::from_sorted_store_unchecked(&[("a", 11), ("b", 22)]); /// static t: &(&str, usize) = map.const_get_indexed_or_panic(0); /// assert_eq!(t.0, "a"); /// assert_eq!(t.1, 11); /// ``` #[inline] #[allow(clippy::indexing_slicing)] // documented pub const fn const_get_indexed_or_panic(&self, index: usize) -> &'a (K, V) { &self.values[index] } } const fn const_cmp_bytes(a: &[u8], b: &[u8]) -> Ordering { let (max, default) = if a.len() == b.len() { (a.len(), Ordering::Equal) } else if a.len() < b.len() { (a.len(), Ordering::Less) } else { (b.len(), Ordering::Greater) }; let mut i = 0; #[allow(clippy::indexing_slicing)] // indexes in range by above checks while i < max { if a[i] == b[i] { i += 1; continue; } else if a[i] < b[i] { return Ordering::Less; } else { return Ordering::Greater; } } default } impl<'a, V> LiteMap<&'a str, V, &'a [(&'a str, V)]> { /// Const function to get the value associated with a `&str` key, if it exists. /// /// Also returns the index of the value. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// static map: LiteMap<&str, usize, &[(&str, usize)]> = /// LiteMap::from_sorted_store_unchecked(&[ /// ("abc", 11), /// ("bcd", 22), /// ("cde", 33), /// ("def", 44), /// ("efg", 55), /// ]); /// /// static d: Option<(usize, &usize)> = map.const_get_with_index("def"); /// assert_eq!(d, Some((3, &44))); /// /// static n: Option<(usize, &usize)> = map.const_get_with_index("dng"); /// assert_eq!(n, None); /// ``` pub const fn const_get_with_index(&self, key: &str) -> Option<(usize, &'a V)> { let mut i = 0; let mut j = self.const_len(); while i < j { let mid = (i + j) / 2; #[allow(clippy::indexing_slicing)] // in range let x = &self.values[mid]; match const_cmp_bytes(key.as_bytes(), x.0.as_bytes()) { Ordering::Equal => return Some((mid, &x.1)), Ordering::Greater => i = mid + 1, Ordering::Less => j = mid, }; } None } } impl<'a, V> LiteMap<&'a [u8], V, &'a [(&'a [u8], V)]> { /// Const function to get the value associated with a `&[u8]` key, if it exists. /// /// Also returns the index of the value. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// static map: LiteMap<&[u8], usize, &[(&[u8], usize)]> = /// LiteMap::from_sorted_store_unchecked(&[ /// (b"abc", 11), /// (b"bcd", 22), /// (b"cde", 33), /// (b"def", 44), /// (b"efg", 55), /// ]); /// /// static d: Option<(usize, &usize)> = map.const_get_with_index(b"def"); /// assert_eq!(d, Some((3, &44))); /// /// static n: Option<(usize, &usize)> = map.const_get_with_index(b"dng"); /// assert_eq!(n, None); /// ``` pub const fn const_get_with_index(&self, key: &[u8]) -> Option<(usize, &'a V)> { let mut i = 0; let mut j = self.const_len(); while i < j { let mid = (i + j) / 2; #[allow(clippy::indexing_slicing)] // in range let x = &self.values[mid]; match const_cmp_bytes(key, x.0) { Ordering::Equal => return Some((mid, &x.1)), Ordering::Greater => i = mid + 1, Ordering::Less => j = mid, }; } None } } macro_rules! impl_const_get_with_index_for_integer { ($integer:ty) => { impl<'a, V> LiteMap<$integer, V, &'a [($integer, V)]> { /// Const function to get the value associated with an integer key, if it exists. /// /// Note: This function will no longer be needed if const trait behavior is stabilized. /// /// Also returns the index of the value. pub const fn const_get_with_index(&self, key: $integer) -> Option<(usize, &'a V)> { let mut i = 0; let mut j = self.const_len(); while i < j { let mid = (i + j) / 2; #[allow(clippy::indexing_slicing)] // in range let x = &self.values[mid]; if key == x.0 { return Some((mid, &x.1)); } else if key > x.0 { i = mid + 1; } else { j = mid; } } return None; } } }; } impl_const_get_with_index_for_integer!(u8); impl_const_get_with_index_for_integer!(u16); impl_const_get_with_index_for_integer!(u32); impl_const_get_with_index_for_integer!(u64); impl_const_get_with_index_for_integer!(u128); impl_const_get_with_index_for_integer!(usize); impl_const_get_with_index_for_integer!(i8); impl_const_get_with_index_for_integer!(i16); impl_const_get_with_index_for_integer!(i32); impl_const_get_with_index_for_integer!(i64); impl_const_get_with_index_for_integer!(i128); impl_const_get_with_index_for_integer!(isize); #[cfg(test)] mod test { use super::*; #[test] fn from_iterator() { let mut expected = LiteMap::with_capacity(4); expected.insert(1, "updated-one"); expected.insert(2, "original-two"); expected.insert(3, "original-three"); expected.insert(4, "updated-four"); let actual = [ (1, "original-one"), (2, "original-two"), (4, "original-four"), (4, "updated-four"), (1, "updated-one"), (3, "original-three"), ] .into_iter() .collect::>(); assert_eq!(expected, actual); } fn make_13() -> LiteMap { let mut result = LiteMap::new(); result.insert(1, "one"); result.insert(3, "three"); result } fn make_24() -> LiteMap { let mut result = LiteMap::new(); result.insert(2, "TWO"); result.insert(4, "FOUR"); result } fn make_46() -> LiteMap { let mut result = LiteMap::new(); result.insert(4, "four"); result.insert(6, "six"); result } #[test] fn extend_from_litemap_append() { let mut map = LiteMap::new(); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Append to empty map"); map.extend_from_litemap(make_46()) .ok_or(()) .expect_err("Append to lesser map"); assert_eq!(map.len(), 4); } #[test] fn extend_from_litemap_prepend() { let mut map = LiteMap::new(); map.extend_from_litemap(make_46()) .ok_or(()) .expect_err("Prepend to empty map"); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Prepend to lesser map"); assert_eq!(map.len(), 4); } #[test] fn extend_from_litemap_insert() { let mut map = LiteMap::new(); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Append to empty map"); map.extend_from_litemap(make_24()) .ok_or(()) .expect_err("Insert with no conflict"); map.extend_from_litemap(make_46()) .ok_or(()) .expect("Insert with conflict"); assert_eq!(map.len(), 5); } #[test] fn test_const_cmp_bytes() { let strs = &["a", "aa", "abc", "abde", "bcd", "bcde"]; for i in 0..strs.len() { for j in 0..strs.len() { let a = strs[i].as_bytes(); let b = strs[j].as_bytes(); assert_eq!(a.cmp(b), const_cmp_bytes(a, b)); } } } }