//! Parsers recognizing bytes streams, streaming version use crate::error::ErrorKind; use crate::error::ParseError; use crate::internal::{Err, IResult, Needed, Parser}; use crate::lib::std::ops::RangeFrom; use crate::lib::std::result::Result::*; use crate::traits::{ Compare, CompareResult, FindSubstring, FindToken, InputIter, InputLength, InputTake, InputTakeAtPosition, Slice, ToUsize, }; /// Recognizes a pattern. /// /// The input data will be compared to the tag combinator's argument and will return the part of /// the input that matches the argument. /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::tag; /// /// fn parser(s: &str) -> IResult<&str, &str> { /// tag("Hello")(s) /// } /// /// assert_eq!(parser("Hello, World!"), Ok((", World!", "Hello"))); /// assert_eq!(parser("Something"), Err(Err::Error(Error::new("Something", ErrorKind::Tag)))); /// assert_eq!(parser("S"), Err(Err::Error(Error::new("S", ErrorKind::Tag)))); /// assert_eq!(parser("H"), Err(Err::Incomplete(Needed::new(4)))); /// ``` pub fn tag>( tag: T, ) -> impl Fn(Input) -> IResult where Input: InputTake + InputLength + Compare, T: InputLength + Clone, { move |i: Input| { let tag_len = tag.input_len(); let t = tag.clone(); let res: IResult<_, _, Error> = match i.compare(t) { CompareResult::Ok => Ok(i.take_split(tag_len)), CompareResult::Incomplete => Err(Err::Incomplete(Needed::new(tag_len - i.input_len()))), CompareResult::Error => { let e: ErrorKind = ErrorKind::Tag; Err(Err::Error(Error::from_error_kind(i, e))) } }; res } } /// Recognizes a case insensitive pattern. /// /// The input data will be compared to the tag combinator's argument and will return the part of /// the input that matches the argument with no regard to case. /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::tag_no_case; /// /// fn parser(s: &str) -> IResult<&str, &str> { /// tag_no_case("hello")(s) /// } /// /// assert_eq!(parser("Hello, World!"), Ok((", World!", "Hello"))); /// assert_eq!(parser("hello, World!"), Ok((", World!", "hello"))); /// assert_eq!(parser("HeLlO, World!"), Ok((", World!", "HeLlO"))); /// assert_eq!(parser("Something"), Err(Err::Error(Error::new("Something", ErrorKind::Tag)))); /// assert_eq!(parser(""), Err(Err::Incomplete(Needed::new(5)))); /// ``` pub fn tag_no_case>( tag: T, ) -> impl Fn(Input) -> IResult where Input: InputTake + InputLength + Compare, T: InputLength + Clone, { move |i: Input| { let tag_len = tag.input_len(); let t = tag.clone(); let res: IResult<_, _, Error> = match (i).compare_no_case(t) { CompareResult::Ok => Ok(i.take_split(tag_len)), CompareResult::Incomplete => Err(Err::Incomplete(Needed::new(tag_len - i.input_len()))), CompareResult::Error => { let e: ErrorKind = ErrorKind::Tag; Err(Err::Error(Error::from_error_kind(i, e))) } }; res } } /// Parse till certain characters are met. /// /// The parser will return the longest slice till one of the characters of the combinator's argument are met. /// /// It doesn't consume the matched character. /// /// It will return a `Err::Incomplete(Needed::new(1))` if the pattern wasn't met. /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::is_not; /// /// fn not_space(s: &str) -> IResult<&str, &str> { /// is_not(" \t\r\n")(s) /// } /// /// assert_eq!(not_space("Hello, World!"), Ok((" World!", "Hello,"))); /// assert_eq!(not_space("Sometimes\t"), Ok(("\t", "Sometimes"))); /// assert_eq!(not_space("Nospace"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(not_space(""), Err(Err::Incomplete(Needed::new(1)))); /// ``` pub fn is_not>( arr: T, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, T: FindToken<::Item>, { move |i: Input| { let e: ErrorKind = ErrorKind::IsNot; i.split_at_position1(|c| arr.find_token(c), e) } } /// Returns the longest slice of the matches the pattern. /// /// The parser will return the longest slice consisting of the characters in provided in the /// combinator's argument. /// /// # Streaming specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` if the pattern wasn't met /// or if the pattern reaches the end of the input. /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::is_a; /// /// fn hex(s: &str) -> IResult<&str, &str> { /// is_a("1234567890ABCDEF")(s) /// } /// /// assert_eq!(hex("123 and voila"), Ok((" and voila", "123"))); /// assert_eq!(hex("DEADBEEF and others"), Ok((" and others", "DEADBEEF"))); /// assert_eq!(hex("BADBABEsomething"), Ok(("something", "BADBABE"))); /// assert_eq!(hex("D15EA5E"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(hex(""), Err(Err::Incomplete(Needed::new(1)))); /// ``` pub fn is_a>( arr: T, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, T: FindToken<::Item>, { move |i: Input| { let e: ErrorKind = ErrorKind::IsA; i.split_at_position1(|c| !arr.find_token(c), e) } } /// Returns the longest input slice (if any) that matches the predicate. /// /// The parser will return the longest slice that matches the given predicate *(a function that /// takes the input and returns a bool)*. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` if the pattern reaches the end of the input. /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::take_while; /// use nom::character::is_alphabetic; /// /// fn alpha(s: &[u8]) -> IResult<&[u8], &[u8]> { /// take_while(is_alphabetic)(s) /// } /// /// assert_eq!(alpha(b"latin123"), Ok((&b"123"[..], &b"latin"[..]))); /// assert_eq!(alpha(b"12345"), Ok((&b"12345"[..], &b""[..]))); /// assert_eq!(alpha(b"latin"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(alpha(b""), Err(Err::Incomplete(Needed::new(1)))); /// ``` pub fn take_while>( cond: F, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, F: Fn(::Item) -> bool, { move |i: Input| i.split_at_position(|c| !cond(c)) } /// Returns the longest (at least 1) input slice that matches the predicate. /// /// The parser will return the longest slice that matches the given predicate *(a function that /// takes the input and returns a bool)*. /// /// It will return an `Err(Err::Error((_, ErrorKind::TakeWhile1)))` if the pattern wasn't met. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` or if the pattern reaches the end of the input. /// /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::take_while1; /// use nom::character::is_alphabetic; /// /// fn alpha(s: &[u8]) -> IResult<&[u8], &[u8]> { /// take_while1(is_alphabetic)(s) /// } /// /// assert_eq!(alpha(b"latin123"), Ok((&b"123"[..], &b"latin"[..]))); /// assert_eq!(alpha(b"latin"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(alpha(b"12345"), Err(Err::Error(Error::new(&b"12345"[..], ErrorKind::TakeWhile1)))); /// ``` pub fn take_while1>( cond: F, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, F: Fn(::Item) -> bool, { move |i: Input| { let e: ErrorKind = ErrorKind::TakeWhile1; i.split_at_position1(|c| !cond(c), e) } } /// Returns the longest (m <= len <= n) input slice that matches the predicate. /// /// The parser will return the longest slice that matches the given predicate *(a function that /// takes the input and returns a bool)*. /// /// It will return an `Err::Error((_, ErrorKind::TakeWhileMN))` if the pattern wasn't met. /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` if the pattern reaches the end of the input or is too short. /// /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::take_while_m_n; /// use nom::character::is_alphabetic; /// /// fn short_alpha(s: &[u8]) -> IResult<&[u8], &[u8]> { /// take_while_m_n(3, 6, is_alphabetic)(s) /// } /// /// assert_eq!(short_alpha(b"latin123"), Ok((&b"123"[..], &b"latin"[..]))); /// assert_eq!(short_alpha(b"lengthy"), Ok((&b"y"[..], &b"length"[..]))); /// assert_eq!(short_alpha(b"latin"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(short_alpha(b"ed"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(short_alpha(b"12345"), Err(Err::Error(Error::new(&b"12345"[..], ErrorKind::TakeWhileMN)))); /// ``` pub fn take_while_m_n>( m: usize, n: usize, cond: F, ) -> impl Fn(Input) -> IResult where Input: InputTake + InputIter + InputLength, F: Fn(::Item) -> bool, { move |i: Input| { let input = i; match input.position(|c| !cond(c)) { Some(idx) => { if idx >= m { if idx <= n { let res: IResult<_, _, Error> = if let Ok(index) = input.slice_index(idx) { Ok(input.take_split(index)) } else { Err(Err::Error(Error::from_error_kind( input, ErrorKind::TakeWhileMN, ))) }; res } else { let res: IResult<_, _, Error> = if let Ok(index) = input.slice_index(n) { Ok(input.take_split(index)) } else { Err(Err::Error(Error::from_error_kind( input, ErrorKind::TakeWhileMN, ))) }; res } } else { let e = ErrorKind::TakeWhileMN; Err(Err::Error(Error::from_error_kind(input, e))) } } None => { let len = input.input_len(); if len >= n { match input.slice_index(n) { Ok(index) => Ok(input.take_split(index)), Err(_needed) => Err(Err::Error(Error::from_error_kind( input, ErrorKind::TakeWhileMN, ))), } } else { let needed = if m > len { m - len } else { 1 }; Err(Err::Incomplete(Needed::new(needed))) } } } } } /// Returns the longest input slice (if any) till a predicate is met. /// /// The parser will return the longest slice till the given predicate *(a function that /// takes the input and returns a bool)*. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` if the match reaches the /// end of input or if there was not match. /// /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::take_till; /// /// fn till_colon(s: &str) -> IResult<&str, &str> { /// take_till(|c| c == ':')(s) /// } /// /// assert_eq!(till_colon("latin:123"), Ok((":123", "latin"))); /// assert_eq!(till_colon(":empty matched"), Ok((":empty matched", ""))); //allowed /// assert_eq!(till_colon("12345"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(till_colon(""), Err(Err::Incomplete(Needed::new(1)))); /// ``` pub fn take_till>( cond: F, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, F: Fn(::Item) -> bool, { move |i: Input| i.split_at_position(|c| cond(c)) } /// Returns the longest (at least 1) input slice till a predicate is met. /// /// The parser will return the longest slice till the given predicate *(a function that /// takes the input and returns a bool)*. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(1))` if the match reaches the /// end of input or if there was not match. /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::take_till1; /// /// fn till_colon(s: &str) -> IResult<&str, &str> { /// take_till1(|c| c == ':')(s) /// } /// /// assert_eq!(till_colon("latin:123"), Ok((":123", "latin"))); /// assert_eq!(till_colon(":empty matched"), Err(Err::Error(Error::new(":empty matched", ErrorKind::TakeTill1)))); /// assert_eq!(till_colon("12345"), Err(Err::Incomplete(Needed::new(1)))); /// assert_eq!(till_colon(""), Err(Err::Incomplete(Needed::new(1)))); /// ``` pub fn take_till1>( cond: F, ) -> impl Fn(Input) -> IResult where Input: InputTakeAtPosition, F: Fn(::Item) -> bool, { move |i: Input| { let e: ErrorKind = ErrorKind::TakeTill1; i.split_at_position1(|c| cond(c), e) } } /// Returns an input slice containing the first N input elements (Input[..N]). /// /// # Streaming Specific /// *Streaming version* if the input has less than N elements, `take` will /// return a `Err::Incomplete(Needed::new(M))` where M is the number of /// additional bytes the parser would need to succeed. /// It is well defined for `&[u8]` as the number of elements is the byte size, /// but for types like `&str`, we cannot know how many bytes correspond for /// the next few chars, so the result will be `Err::Incomplete(Needed::Unknown)` /// /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::take; /// /// fn take6(s: &str) -> IResult<&str, &str> { /// take(6usize)(s) /// } /// /// assert_eq!(take6("1234567"), Ok(("7", "123456"))); /// assert_eq!(take6("things"), Ok(("", "things"))); /// assert_eq!(take6("short"), Err(Err::Incomplete(Needed::Unknown))); /// ``` pub fn take>( count: C, ) -> impl Fn(Input) -> IResult where Input: InputIter + InputTake + InputLength, C: ToUsize, { let c = count.to_usize(); move |i: Input| match i.slice_index(c) { Err(i) => Err(Err::Incomplete(i)), Ok(index) => Ok(i.take_split(index)), } } /// Returns the input slice up to the first occurrence of the pattern. /// /// It doesn't consume the pattern. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(N))` if the input doesn't /// contain the pattern or if the input is smaller than the pattern. /// # Example /// ```rust /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// use nom::bytes::streaming::take_until; /// /// fn until_eof(s: &str) -> IResult<&str, &str> { /// take_until("eof")(s) /// } /// /// assert_eq!(until_eof("hello, worldeof"), Ok(("eof", "hello, world"))); /// assert_eq!(until_eof("hello, world"), Err(Err::Incomplete(Needed::Unknown))); /// assert_eq!(until_eof("hello, worldeo"), Err(Err::Incomplete(Needed::Unknown))); /// assert_eq!(until_eof("1eof2eof"), Ok(("eof2eof", "1"))); /// ``` pub fn take_until>( tag: T, ) -> impl Fn(Input) -> IResult where Input: InputTake + InputLength + FindSubstring, T: Clone, { move |i: Input| { let t = tag.clone(); let res: IResult<_, _, Error> = match i.find_substring(t) { None => Err(Err::Incomplete(Needed::Unknown)), Some(index) => Ok(i.take_split(index)), }; res } } /// Returns the non empty input slice up to the first occurrence of the pattern. /// /// It doesn't consume the pattern. /// /// # Streaming Specific /// *Streaming version* will return a `Err::Incomplete(Needed::new(N))` if the input doesn't /// contain the pattern or if the input is smaller than the pattern. /// # Example /// ```rust /// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; /// use nom::bytes::streaming::take_until1; /// /// fn until_eof(s: &str) -> IResult<&str, &str> { /// take_until1("eof")(s) /// } /// /// assert_eq!(until_eof("hello, worldeof"), Ok(("eof", "hello, world"))); /// assert_eq!(until_eof("hello, world"), Err(Err::Incomplete(Needed::Unknown))); /// assert_eq!(until_eof("hello, worldeo"), Err(Err::Incomplete(Needed::Unknown))); /// assert_eq!(until_eof("1eof2eof"), Ok(("eof2eof", "1"))); /// assert_eq!(until_eof("eof"), Err(Err::Error(Error::new("eof", ErrorKind::TakeUntil)))); /// ``` pub fn take_until1>( tag: T, ) -> impl Fn(Input) -> IResult where Input: InputTake + InputLength + FindSubstring, T: Clone, { move |i: Input| { let t = tag.clone(); let res: IResult<_, _, Error> = match i.find_substring(t) { None => Err(Err::Incomplete(Needed::Unknown)), Some(0) => Err(Err::Error(Error::from_error_kind(i, ErrorKind::TakeUntil))), Some(index) => Ok(i.take_split(index)), }; res } } /// Matches a byte string with escaped characters. /// /// * The first argument matches the normal characters (it must not accept the control character) /// * The second argument is the control character (like `\` in most languages) /// * The third argument matches the escaped characters /// # Example /// ``` /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// # use nom::character::complete::digit1; /// use nom::bytes::streaming::escaped; /// use nom::character::streaming::one_of; /// /// fn esc(s: &str) -> IResult<&str, &str> { /// escaped(digit1, '\\', one_of("\"n\\"))(s) /// } /// /// assert_eq!(esc("123;"), Ok((";", "123"))); /// assert_eq!(esc("12\\\"34;"), Ok((";", "12\\\"34"))); /// ``` /// pub fn escaped( mut normal: F, control_char: char, mut escapable: G, ) -> impl FnMut(Input) -> IResult where Input: Clone + crate::traits::Offset + InputLength + InputTake + InputTakeAtPosition + Slice> + InputIter, ::Item: crate::traits::AsChar, F: Parser, G: Parser, Error: ParseError, { use crate::traits::AsChar; move |input: Input| { let mut i = input.clone(); while i.input_len() > 0 { let current_len = i.input_len(); match normal.parse(i.clone()) { Ok((i2, _)) => { if i2.input_len() == 0 { return Err(Err::Incomplete(Needed::Unknown)); } else if i2.input_len() == current_len { let index = input.offset(&i2); return Ok(input.take_split(index)); } else { i = i2; } } Err(Err::Error(_)) => { // unwrap() should be safe here since index < $i.input_len() if i.iter_elements().next().unwrap().as_char() == control_char { let next = control_char.len_utf8(); if next >= i.input_len() { return Err(Err::Incomplete(Needed::new(1))); } else { match escapable.parse(i.slice(next..)) { Ok((i2, _)) => { if i2.input_len() == 0 { return Err(Err::Incomplete(Needed::Unknown)); } else { i = i2; } } Err(e) => return Err(e), } } } else { let index = input.offset(&i); return Ok(input.take_split(index)); } } Err(e) => { return Err(e); } } } Err(Err::Incomplete(Needed::Unknown)) } } /// Matches a byte string with escaped characters. /// /// * The first argument matches the normal characters (it must not match the control character) /// * The second argument is the control character (like `\` in most languages) /// * The third argument matches the escaped characters and transforms them /// /// As an example, the chain `abc\tdef` could be `abc def` (it also consumes the control character) /// /// ``` /// # use nom::{Err, error::ErrorKind, Needed, IResult}; /// # use std::str::from_utf8; /// use nom::bytes::streaming::{escaped_transform, tag}; /// use nom::character::streaming::alpha1; /// use nom::branch::alt; /// use nom::combinator::value; /// /// fn parser(input: &str) -> IResult<&str, String> { /// escaped_transform( /// alpha1, /// '\\', /// alt(( /// value("\\", tag("\\")), /// value("\"", tag("\"")), /// value("\n", tag("n")), /// )) /// )(input) /// } /// /// assert_eq!(parser("ab\\\"cd\""), Ok(("\"", String::from("ab\"cd")))); /// ``` #[cfg(feature = "alloc")] #[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] pub fn escaped_transform( mut normal: F, control_char: char, mut transform: G, ) -> impl FnMut(Input) -> IResult where Input: Clone + crate::traits::Offset + InputLength + InputTake + InputTakeAtPosition + Slice> + InputIter, Input: crate::traits::ExtendInto, O1: crate::traits::ExtendInto, O2: crate::traits::ExtendInto, ::Item: crate::traits::AsChar, F: Parser, G: Parser, Error: ParseError, { use crate::traits::AsChar; move |input: Input| { let mut index = 0; let mut res = input.new_builder(); let i = input.clone(); while index < i.input_len() { let current_len = i.input_len(); let remainder = i.slice(index..); match normal.parse(remainder.clone()) { Ok((i2, o)) => { o.extend_into(&mut res); if i2.input_len() == 0 { return Err(Err::Incomplete(Needed::Unknown)); } else if i2.input_len() == current_len { return Ok((remainder, res)); } else { index = input.offset(&i2); } } Err(Err::Error(_)) => { // unwrap() should be safe here since index < $i.input_len() if remainder.iter_elements().next().unwrap().as_char() == control_char { let next = index + control_char.len_utf8(); let input_len = input.input_len(); if next >= input_len { return Err(Err::Incomplete(Needed::Unknown)); } else { match transform.parse(i.slice(next..)) { Ok((i2, o)) => { o.extend_into(&mut res); if i2.input_len() == 0 { return Err(Err::Incomplete(Needed::Unknown)); } else { index = input.offset(&i2); } } Err(e) => return Err(e), } } } else { return Ok((remainder, res)); } } Err(e) => return Err(e), } } Err(Err::Incomplete(Needed::Unknown)) } }