//! Implements vertical (lane-wise) floating-point `mul_adde`. macro_rules! impl_math_float_mul_adde { ([$elem_ty:ident; $elem_count:expr]: $id:ident | $test_tt:tt) => { impl $id { /// Fused multiply add estimate: ~= `self * y + z` /// /// While fused multiply-add (`fma`) has infinite precision, /// `mul_adde` has _at worst_ the same precision of a multiply followed by an add. /// This might be more efficient on architectures that do not have an `fma` instruction. #[inline] pub fn mul_adde(self, y: Self, z: Self) -> Self { use crate::codegen::math::float::mul_adde::MulAddE; MulAddE::mul_adde(self, y, z) } } test_if!{ $test_tt: paste::item! { pub mod [<$id _math_mul_adde>] { use super::*; #[cfg_attr(not(target_arch = "wasm32"), test)] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)] fn mul_adde() { let z = $id::splat(0 as $elem_ty); let o = $id::splat(1 as $elem_ty); let t = $id::splat(2 as $elem_ty); let t3 = $id::splat(3 as $elem_ty); let f = $id::splat(4 as $elem_ty); assert_eq!(z, z.mul_adde(z, z)); assert_eq!(o, o.mul_adde(o, z)); assert_eq!(o, o.mul_adde(z, o)); assert_eq!(o, z.mul_adde(o, o)); assert_eq!(t, o.mul_adde(o, o)); assert_eq!(t, o.mul_adde(t, z)); assert_eq!(t, t.mul_adde(o, z)); assert_eq!(f, t.mul_adde(t, z)); assert_eq!(f, t.mul_adde(o, t)); assert_eq!(t3, t.mul_adde(o, o)); } } } } }; }