// Copyright 2018 Developers of the Rand project. // Copyright 2013-2017 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Generating random samples from probability distributions //! //! This module is the home of the [`Distribution`] trait and several of its //! implementations. It is the workhorse behind some of the convenient //! functionality of the [`Rng`] trait, e.g. [`Rng::gen`] and of course //! [`Rng::sample`]. //! //! Abstractly, a [probability distribution] describes the probability of //! occurrence of each value in its sample space. //! //! More concretely, an implementation of `Distribution` for type `X` is an //! algorithm for choosing values from the sample space (a subset of `T`) //! according to the distribution `X` represents, using an external source of //! randomness (an RNG supplied to the `sample` function). //! //! A type `X` may implement `Distribution` for multiple types `T`. //! Any type implementing [`Distribution`] is stateless (i.e. immutable), //! but it may have internal parameters set at construction time (for example, //! [`Uniform`] allows specification of its sample space as a range within `T`). //! //! //! # The `Standard` distribution //! //! The [`Standard`] distribution is important to mention. This is the //! distribution used by [`Rng::gen`] and represents the "default" way to //! produce a random value for many different types, including most primitive //! types, tuples, arrays, and a few derived types. See the documentation of //! [`Standard`] for more details. //! //! Implementing `Distribution` for [`Standard`] for user types `T` makes it //! possible to generate type `T` with [`Rng::gen`], and by extension also //! with the [`random`] function. //! //! ## Random characters //! //! [`Alphanumeric`] is a simple distribution to sample random letters and //! numbers of the `char` type; in contrast [`Standard`] may sample any valid //! `char`. //! //! //! # Uniform numeric ranges //! //! The [`Uniform`] distribution is more flexible than [`Standard`], but also //! more specialised: it supports fewer target types, but allows the sample //! space to be specified as an arbitrary range within its target type `T`. //! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. //! //! Values may be sampled from this distribution using [`Rng::sample(Range)`] or //! by creating a distribution object with [`Uniform::new`], //! [`Uniform::new_inclusive`] or `From`. When the range limits are not //! known at compile time it is typically faster to reuse an existing //! `Uniform` object than to call [`Rng::sample(Range)`]. //! //! User types `T` may also implement `Distribution` for [`Uniform`], //! although this is less straightforward than for [`Standard`] (see the //! documentation in the [`uniform`] module). Doing so enables generation of //! values of type `T` with [`Rng::sample(Range)`]. //! //! ## Open and half-open ranges //! //! There are surprisingly many ways to uniformly generate random floats. A //! range between 0 and 1 is standard, but the exact bounds (open vs closed) //! and accuracy differ. In addition to the [`Standard`] distribution Rand offers //! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of //! [`Standard`] documentation for more details. //! //! # Non-uniform sampling //! //! Sampling a simple true/false outcome with a given probability has a name: //! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]). //! //! For weighted sampling from a sequence of discrete values, use the //! [`WeightedIndex`] distribution. //! //! This crate no longer includes other non-uniform distributions; instead //! it is recommended that you use either [`rand_distr`] or [`statrs`]. //! //! //! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution //! [`rand_distr`]: https://crates.io/crates/rand_distr //! [`statrs`]: https://crates.io/crates/statrs //! [`random`]: crate::random //! [`rand_distr`]: https://crates.io/crates/rand_distr //! [`statrs`]: https://crates.io/crates/statrs mod bernoulli; mod distribution; mod float; mod integer; mod other; mod slice; mod utils; #[cfg(feature = "alloc")] mod weighted_index; #[doc(hidden)] pub mod hidden_export { pub use super::float::IntoFloat; // used by rand_distr } pub mod uniform; #[deprecated( since = "0.8.0", note = "use rand::distributions::{WeightedIndex, WeightedError} instead" )] #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] pub mod weighted; pub use self::bernoulli::{Bernoulli, BernoulliError}; pub use self::distribution::{Distribution, DistIter, DistMap}; #[cfg(feature = "alloc")] pub use self::distribution::DistString; pub use self::float::{Open01, OpenClosed01}; pub use self::other::Alphanumeric; pub use self::slice::Slice; #[doc(inline)] pub use self::uniform::Uniform; #[cfg(feature = "alloc")] pub use self::weighted_index::{WeightedError, WeightedIndex}; #[allow(unused)] use crate::Rng; /// A generic random value distribution, implemented for many primitive types. /// Usually generates values with a numerically uniform distribution, and with a /// range appropriate to the type. /// /// ## Provided implementations /// /// Assuming the provided `Rng` is well-behaved, these implementations /// generate values with the following ranges and distributions: /// /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed /// over all values of the type. /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all /// code points in the range `0...0x10_FFFF`, except for the range /// `0xD800...0xDFFF` (the surrogate code points). This includes /// unassigned/reserved code points. /// * `bool`: Generates `false` or `true`, each with probability 0.5. /// * Floating point types (`f32` and `f64`): Uniformly distributed in the /// half-open range `[0, 1)`. See notes below. /// * Wrapping integers (`Wrapping`), besides the type identical to their /// normal integer variants. /// /// The `Standard` distribution also supports generation of the following /// compound types where all component types are supported: /// /// * Tuples (up to 12 elements): each element is generated sequentially. /// * Arrays (up to 32 elements): each element is generated sequentially; /// see also [`Rng::fill`] which supports arbitrary array length for integer /// and float types and tends to be faster for `u32` and smaller types. /// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support /// arrays larger than 32 elements. /// Note that [`Rng::fill`] and `Standard`'s array support are *not* equivalent: /// the former is optimised for integer types (using fewer RNG calls for /// element types smaller than the RNG word size), while the latter supports /// any element type supported by `Standard`. /// * `Option` first generates a `bool`, and if true generates and returns /// `Some(value)` where `value: T`, otherwise returning `None`. /// /// ## Custom implementations /// /// The [`Standard`] distribution may be implemented for user types as follows: /// /// ``` /// # #![allow(dead_code)] /// use rand::Rng; /// use rand::distributions::{Distribution, Standard}; /// /// struct MyF32 { /// x: f32, /// } /// /// impl Distribution for Standard { /// fn sample(&self, rng: &mut R) -> MyF32 { /// MyF32 { x: rng.gen() } /// } /// } /// ``` /// /// ## Example usage /// ``` /// use rand::prelude::*; /// use rand::distributions::Standard; /// /// let val: f32 = StdRng::from_entropy().sample(Standard); /// println!("f32 from [0, 1): {}", val); /// ``` /// /// # Floating point implementation /// The floating point implementations for `Standard` generate a random value in /// the half-open interval `[0, 1)`, i.e. including 0 but not 1. /// /// All values that can be generated are of the form `n * ε/2`. For `f32` /// the 24 most significant random bits of a `u32` are used and for `f64` the /// 53 most significant bits of a `u64` are used. The conversion uses the /// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`. /// /// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which /// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from /// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit /// less precision but may perform faster on some architectures (on modern Intel /// CPUs all methods have approximately equal performance). /// /// [`Uniform`]: uniform::Uniform #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] pub struct Standard;