use core::{ borrow::Borrow, panic::{RefUnwindSafe, UnwindSafe}, }; use alloc::{boxed::Box, sync::Arc, vec, vec::Vec}; use regex_syntax::{ ast, hir::{self, Hir}, }; use crate::{ meta::{ error::BuildError, strategy::{self, Strategy}, wrappers, }, nfa::thompson::WhichCaptures, util::{ captures::{Captures, GroupInfo}, iter, pool::{Pool, PoolGuard}, prefilter::Prefilter, primitives::{NonMaxUsize, PatternID}, search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span}, }, }; /// A type alias for our pool of meta::Cache that fixes the type parameters to /// what we use for the meta regex below. type CachePool = Pool; /// Same as above, but for the guard returned by a pool. type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>; /// The type of the closure we use to create new caches. We need to spell out /// all of the marker traits or else we risk leaking !MARKER impls. type CachePoolFn = Box Cache + Send + Sync + UnwindSafe + RefUnwindSafe>; /// A regex matcher that works by composing several other regex matchers /// automatically. /// /// In effect, a meta regex papers over a lot of the quirks or performance /// problems in each of the regex engines in this crate. Its goal is to provide /// an infallible and simple API that "just does the right thing" in the common /// case. /// /// A meta regex is the implementation of a `Regex` in the `regex` crate. /// Indeed, the `regex` crate API is essentially just a light wrapper over /// this type. This includes the `regex` crate's `RegexSet` API! /// /// # Composition /// /// This is called a "meta" matcher precisely because it uses other regex /// matchers to provide a convenient high level regex API. Here are some /// examples of how other regex matchers are composed: /// /// * When calling [`Regex::captures`], instead of immediately /// running a slower but more capable regex engine like the /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine /// will usually first look for the bounds of a match with a higher throughput /// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found /// is a slower engine like `PikeVM` used to find the matching span for each /// capture group. /// * While higher throughout engines like the lazy DFA cannot handle /// Unicode word boundaries in general, they can still be used on pure ASCII /// haystacks by pretending that Unicode word boundaries are just plain ASCII /// word boundaries. However, if a haystack is not ASCII, the meta regex engine /// will automatically switch to a (possibly slower) regex engine that supports /// Unicode word boundaries in general. /// * In some cases where a regex pattern is just a simple literal or a small /// set of literals, an actual regex engine won't be used at all. Instead, /// substring or multi-substring search algorithms will be employed. /// /// There are many other forms of composition happening too, but the above /// should give a general idea. In particular, it may perhaps be surprising /// that *multiple* regex engines might get executed for a single search. That /// is, the decision of what regex engine to use is not _just_ based on the /// pattern, but also based on the dynamic execution of the search itself. /// /// The primary reason for this composition is performance. The fundamental /// tension is that the faster engines tend to be less capable, and the more /// capable engines tend to be slower. /// /// Note that the forms of composition that are allowed are determined by /// compile time crate features and configuration. For example, if the `hybrid` /// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the /// meta regex engine will never use a lazy DFA. /// /// # Synchronization and cloning /// /// Most of the regex engines in this crate require some kind of mutable /// "scratch" space to read and write from while performing a search. Since /// a meta regex composes these regex engines, a meta regex also requires /// mutable scratch space. This scratch space is called a [`Cache`]. /// /// Most regex engines _also_ usually have a read-only component, typically /// a [Thompson `NFA`](crate::nfa::thompson::NFA). /// /// In order to make the `Regex` API convenient, most of the routines hide /// the fact that a `Cache` is needed at all. To achieve this, a [memory /// pool](crate::util::pool::Pool) is used internally to retrieve `Cache` /// values in a thread safe way that also permits reuse. This in turn implies /// that every such search call requires some form of synchronization. Usually /// this synchronization is fast enough to not notice, but in some cases, it /// can be a bottleneck. This typically occurs when all of the following are /// true: /// /// * The same `Regex` is shared across multiple threads simultaneously, /// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something /// similar from the `once_cell` or `lazy_static` crates. /// * The primary unit of work in each thread is a regex search. /// * Searches are run on very short haystacks. /// /// This particular case can lead to high contention on the pool used by a /// `Regex` internally, which can in turn increase latency to a noticeable /// effect. This cost can be mitigated in one of the following ways: /// /// * Use a distinct copy of a `Regex` in each thread, usually by cloning it. /// Cloning a `Regex` _does not_ do a deep copy of its read-only component. /// But it does lead to each `Regex` having its own memory pool, which in /// turn eliminates the problem of contention. In general, this technique should /// not result in any additional memory usage when compared to sharing the same /// `Regex` across multiple threads simultaneously. /// * Use lower level APIs, like [`Regex::search_with`], which permit passing /// a `Cache` explicitly. In this case, it is up to you to determine how best /// to provide a `Cache`. For example, you might put a `Cache` in thread-local /// storage if your use case allows for it. /// /// Overall, this is an issue that happens rarely in practice, but it can /// happen. /// /// # Warning: spin-locks may be used in alloc-only mode /// /// When this crate is built without the `std` feature and the high level APIs /// on a `Regex` are used, then a spin-lock will be used to synchronize access /// to an internal pool of `Cache` values. This may be undesirable because /// a spin-lock is [effectively impossible to implement correctly in user /// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could /// result in a deadlock. /// /// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html /// /// If one wants to avoid the use of spin-locks when the `std` feature is /// disabled, then you must use APIs that accept a `Cache` value explicitly. /// For example, [`Regex::search_with`]. /// /// # Example /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?; /// assert!(re.is_match("2010-03-14")); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: anchored search /// /// This example shows how to use [`Input::anchored`] to run an anchored /// search, even when the regex pattern itself isn't anchored. An anchored /// search guarantees that if a match is found, then the start offset of the /// match corresponds to the offset at which the search was started. /// /// ``` /// use regex_automata::{meta::Regex, Anchored, Input, Match}; /// /// let re = Regex::new(r"\bfoo\b")?; /// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes); /// // The offsets are in terms of the original haystack. /// assert_eq!(Some(Match::must(0, 3..6)), re.find(input)); /// /// // Notice that no match occurs here, because \b still takes the /// // surrounding context into account, even if it means looking back /// // before the start of your search. /// let hay = "xxfoo xx"; /// let input = Input::new(hay).range(2..).anchored(Anchored::Yes); /// assert_eq!(None, re.find(input)); /// // Indeed, you cannot achieve the above by simply slicing the /// // haystack itself, since the regex engine can't see the /// // surrounding context. This is why 'Input' permits setting /// // the bounds of a search! /// let input = Input::new(&hay[2..]).anchored(Anchored::Yes); /// // WRONG! /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: earliest search /// /// This example shows how to use [`Input::earliest`] to run a search that /// might stop before finding the typical leftmost match. /// /// ``` /// use regex_automata::{meta::Regex, Anchored, Input, Match}; /// /// let re = Regex::new(r"[a-z]{3}|b")?; /// let input = Input::new("abc").earliest(true); /// assert_eq!(Some(Match::must(0, 1..2)), re.find(input)); /// /// // Note that "earliest" isn't really a match semantic unto itself. /// // Instead, it is merely an instruction to whatever regex engine /// // gets used internally to quit as soon as it can. For example, /// // this regex uses a different search technique, and winds up /// // producing a different (but valid) match! /// let re = Regex::new(r"abc|b")?; /// let input = Input::new("abc").earliest(true); /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: change the line terminator /// /// This example shows how to enable multi-line mode by default and change /// the line terminator to the NUL byte: /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().multi_line(true)) /// .configure(Regex::config().line_terminator(b'\x00')) /// .build(r"^foo$")?; /// let hay = "\x00foo\x00"; /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` #[derive(Debug)] pub struct Regex { /// The actual regex implementation. imp: Arc, /// A thread safe pool of caches. /// /// For the higher level search APIs, a `Cache` is automatically plucked /// from this pool before running a search. The lower level `with` methods /// permit the caller to provide their own cache, thereby bypassing /// accesses to this pool. /// /// Note that we put this outside the `Arc` so that cloning a `Regex` /// results in creating a fresh `CachePool`. This in turn permits callers /// to clone regexes into separate threads where each such regex gets /// the pool's "thread owner" optimization. Otherwise, if one shares the /// `Regex` directly, then the pool will go through a slower mutex path for /// all threads except for the "owner." pool: CachePool, } /// The internal implementation of `Regex`, split out so that it can be wrapped /// in an `Arc`. #[derive(Debug)] struct RegexI { /// The core matching engine. /// /// Why is this reference counted when RegexI is already wrapped in an Arc? /// Well, we need to capture this in a closure to our `Pool` below in order /// to create new `Cache` values when needed. So since it needs to be in /// two places, we make it reference counted. /// /// We make `RegexI` itself reference counted too so that `Regex` itself /// stays extremely small and very cheap to clone. strat: Arc, /// Metadata about the regexes driving the strategy. The metadata is also /// usually stored inside the strategy too, but we put it here as well /// so that we can get quick access to it (without virtual calls) before /// executing the regex engine. For example, we use this metadata to /// detect a subset of cases where we know a match is impossible, and can /// thus avoid calling into the strategy at all. /// /// Since `RegexInfo` is stored in multiple places, it is also reference /// counted. info: RegexInfo, } /// Convenience constructors for a `Regex` using the default configuration. impl Regex { /// Builds a `Regex` from a single pattern string using the default /// configuration. /// /// If there was a problem parsing the pattern or a problem turning it into /// a regex matcher, then an error is returned. /// /// If you want to change the configuration of a `Regex`, use a [`Builder`] /// with a [`Config`]. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new(r"(?Rm)^foo$")?; /// let hay = "\r\nfoo\r\n"; /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn new(pattern: &str) -> Result { Regex::builder().build(pattern) } /// Builds a `Regex` from many pattern strings using the default /// configuration. /// /// If there was a problem parsing any of the patterns or a problem turning /// them into a regex matcher, then an error is returned. /// /// If you want to change the configuration of a `Regex`, use a [`Builder`] /// with a [`Config`]. /// /// # Example: simple lexer /// /// This simplistic example leverages the multi-pattern support to build a /// simple little lexer. The pattern ID in the match tells you which regex /// matched, which in turn might be used to map back to the "type" of the /// token returned by the lexer. /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new_many(&[ /// r"[[:space:]]", /// r"[A-Za-z0-9][A-Za-z0-9_]+", /// r"->", /// r".", /// ])?; /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;"; /// let matches: Vec = re.find_iter(haystack).collect(); /// assert_eq!(matches, vec![ /// Match::must(1, 0..2), // 'fn' /// Match::must(0, 2..3), // ' ' /// Match::must(1, 3..10), // 'is_boss' /// Match::must(3, 10..11), // '(' /// Match::must(1, 11..16), // 'bruce' /// Match::must(3, 16..17), // ':' /// Match::must(0, 17..18), // ' ' /// Match::must(1, 18..21), // 'i32' /// Match::must(3, 21..22), // ',' /// Match::must(0, 22..23), // ' ' /// Match::must(1, 23..34), // 'springsteen' /// Match::must(3, 34..35), // ':' /// Match::must(0, 35..36), // ' ' /// Match::must(1, 36..42), // 'String' /// Match::must(3, 42..43), // ')' /// Match::must(0, 43..44), // ' ' /// Match::must(2, 44..46), // '->' /// Match::must(0, 46..47), // ' ' /// Match::must(1, 47..51), // 'bool' /// Match::must(3, 51..52), // ';' /// ]); /// /// # Ok::<(), Box>(()) /// ``` /// /// One can write a lexer like the above using a regex like /// `(?P[[:space:]])|(?P[A-Za-z0-9][A-Za-z0-9_]+)|...`, /// but then you need to ask whether capture group matched to determine /// which branch in the regex matched, and thus, which token the match /// corresponds to. In contrast, the above example includes the pattern ID /// in the match. There's no need to use capture groups at all. /// /// # Example: finding the pattern that caused an error /// /// When a syntax error occurs, it is possible to ask which pattern /// caused the syntax error. /// /// ``` /// use regex_automata::{meta::Regex, PatternID}; /// /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err(); /// assert_eq!(Some(PatternID::must(2)), err.pattern()); /// ``` /// /// # Example: zero patterns is valid /// /// Building a regex with zero patterns results in a regex that never /// matches anything. Because this routine is generic, passing an empty /// slice usually requires a turbo-fish (or something else to help type /// inference). /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::new_many::<&str>(&[])?; /// assert_eq!(None, re.find("")); /// /// # Ok::<(), Box>(()) /// ``` pub fn new_many>( patterns: &[P], ) -> Result { Regex::builder().build_many(patterns) } /// Return a default configuration for a `Regex`. /// /// This is a convenience routine to avoid needing to import the [`Config`] /// type when customizing the construction of a `Regex`. /// /// # Example: lower the NFA size limit /// /// In some cases, the default size limit might be too big. The size limit /// can be lowered, which will prevent large regex patterns from compiling. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) /// // Not even 20KB is enough to build a single large Unicode class! /// .build(r"\pL"); /// assert!(result.is_err()); /// /// # Ok::<(), Box>(()) /// ``` pub fn config() -> Config { Config::new() } /// Return a builder for configuring the construction of a `Regex`. /// /// This is a convenience routine to avoid needing to import the /// [`Builder`] type in common cases. /// /// # Example: change the line terminator /// /// This example shows how to enable multi-line mode by default and change /// the line terminator to the NUL byte: /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().multi_line(true)) /// .configure(Regex::config().line_terminator(b'\x00')) /// .build(r"^foo$")?; /// let hay = "\x00foo\x00"; /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn builder() -> Builder { Builder::new() } } /// High level convenience routines for using a regex to search a haystack. impl Regex { /// Returns true if and only if this regex matches the given haystack. /// /// This routine may short circuit if it knows that scanning future input /// will never lead to a different result. (Consider how this might make /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`. /// This routine _may_ stop after it sees the first `a`, but routines like /// `find` need to continue searching because `+` is greedy by default.) /// /// # Example /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new("foo[0-9]+bar")?; /// /// assert!(re.is_match("foo12345bar")); /// assert!(!re.is_match("foobar")); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: consistency with search APIs /// /// `is_match` is guaranteed to return `true` whenever `find` returns a /// match. This includes searches that are executed entirely within a /// codepoint: /// /// ``` /// use regex_automata::{meta::Regex, Input}; /// /// let re = Regex::new("a*")?; /// /// // This doesn't match because the default configuration bans empty /// // matches from splitting a codepoint. /// assert!(!re.is_match(Input::new("☃").span(1..2))); /// assert_eq!(None, re.find(Input::new("☃").span(1..2))); /// /// # Ok::<(), Box>(()) /// ``` /// /// Notice that when UTF-8 mode is disabled, then the above reports a /// match because the restriction against zero-width matches that split a /// codepoint has been lifted: /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::builder() /// .configure(Regex::config().utf8_empty(false)) /// .build("a*")?; /// /// assert!(re.is_match(Input::new("☃").span(1..2))); /// assert_eq!( /// Some(Match::must(0, 1..1)), /// re.find(Input::new("☃").span(1..2)), /// ); /// /// # Ok::<(), Box>(()) /// ``` /// /// A similar idea applies when using line anchors with CRLF mode enabled, /// which prevents them from matching between a `\r` and a `\n`. /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::new(r"(?Rm:$)")?; /// assert!(!re.is_match(Input::new("\r\n").span(1..1))); /// // A regular line anchor, which only considers \n as a /// // line terminator, will match. /// let re = Regex::new(r"(?m:$)")?; /// assert!(re.is_match(Input::new("\r\n").span(1..1))); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn is_match<'h, I: Into>>(&self, input: I) -> bool { let input = input.into().earliest(true); if self.imp.info.is_impossible(&input) { return false; } let mut guard = self.pool.get(); let result = self.imp.strat.is_match(&mut guard, &input); // See 'Regex::search' for why we put the guard back explicitly. PoolGuard::put(guard); result } /// Executes a leftmost search and returns the first match that is found, /// if one exists. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new("foo[0-9]+")?; /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345")); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn find<'h, I: Into>>(&self, input: I) -> Option { self.search(&input.into()) } /// Executes a leftmost forward search and writes the spans of capturing /// groups that participated in a match into the provided [`Captures`] /// value. If no match was found, then [`Captures::is_match`] is guaranteed /// to return `false`. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Span}; /// /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?; /// let mut caps = re.create_captures(); /// /// re.captures("2010-03-14", &mut caps); /// assert!(caps.is_match()); /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn captures<'h, I: Into>>( &self, input: I, caps: &mut Captures, ) { self.search_captures(&input.into(), caps) } /// Returns an iterator over all non-overlapping leftmost matches in /// the given haystack. If no match exists, then the iterator yields no /// elements. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new("foo[0-9]+")?; /// let haystack = "foo1 foo12 foo123"; /// let matches: Vec = re.find_iter(haystack).collect(); /// assert_eq!(matches, vec![ /// Match::must(0, 0..4), /// Match::must(0, 5..10), /// Match::must(0, 11..17), /// ]); /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn find_iter<'r, 'h, I: Into>>( &'r self, input: I, ) -> FindMatches<'r, 'h> { let cache = self.pool.get(); let it = iter::Searcher::new(input.into()); FindMatches { re: self, cache, it } } /// Returns an iterator over all non-overlapping `Captures` values. If no /// match exists, then the iterator yields no elements. /// /// This yields the same matches as [`Regex::find_iter`], but it includes /// the spans of all capturing groups that participate in each match. /// /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for /// how to correctly iterate over all matches in a haystack while avoiding /// the creation of a new `Captures` value for every match. (Which you are /// forced to do with an `Iterator`.) /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Span}; /// /// let re = Regex::new("foo(?P[0-9]+)")?; /// /// let haystack = "foo1 foo12 foo123"; /// let matches: Vec = re /// .captures_iter(haystack) /// // The unwrap is OK since 'numbers' matches if the pattern matches. /// .map(|caps| caps.get_group_by_name("numbers").unwrap()) /// .collect(); /// assert_eq!(matches, vec![ /// Span::from(3..4), /// Span::from(8..10), /// Span::from(14..17), /// ]); /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn captures_iter<'r, 'h, I: Into>>( &'r self, input: I, ) -> CapturesMatches<'r, 'h> { let cache = self.pool.get(); let caps = self.create_captures(); let it = iter::Searcher::new(input.into()); CapturesMatches { re: self, cache, caps, it } } /// Returns an iterator of spans of the haystack given, delimited by a /// match of the regex. Namely, each element of the iterator corresponds to /// a part of the haystack that *isn't* matched by the regular expression. /// /// # Example /// /// To split a string delimited by arbitrary amounts of spaces or tabs: /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"[ \t]+")?; /// let hay = "a b \t c\td e"; /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect(); /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: more cases /// /// Basic usage: /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r" ")?; /// let hay = "Mary had a little lamb"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]); /// /// let re = Regex::new(r"X")?; /// let hay = ""; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec![""]); /// /// let re = Regex::new(r"X")?; /// let hay = "lionXXtigerXleopard"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]); /// /// let re = Regex::new(r"::")?; /// let hay = "lion::tiger::leopard"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["lion", "tiger", "leopard"]); /// /// # Ok::<(), Box>(()) /// ``` /// /// If a haystack contains multiple contiguous matches, you will end up /// with empty spans yielded by the iterator: /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"X")?; /// let hay = "XXXXaXXbXc"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); /// /// let re = Regex::new(r"/")?; /// let hay = "(///)"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["(", "", "", ")"]); /// /// # Ok::<(), Box>(()) /// ``` /// /// Separators at the start or end of a haystack are neighbored by empty /// spans. /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"0")?; /// let hay = "010"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["", "1", ""]); /// /// # Ok::<(), Box>(()) /// ``` /// /// When the empty string is used as a regex, it splits at every valid /// UTF-8 boundary by default (which includes the beginning and end of the /// haystack): /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"")?; /// let hay = "rust"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]); /// /// // Splitting by an empty string is UTF-8 aware by default! /// let re = Regex::new(r"")?; /// let hay = "☃"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["", "☃", ""]); /// /// # Ok::<(), Box>(()) /// ``` /// /// But note that UTF-8 mode for empty strings can be disabled, which will /// then result in a match at every byte offset in the haystack, /// including between every UTF-8 code unit. /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::builder() /// .configure(Regex::config().utf8_empty(false)) /// .build(r"")?; /// let hay = "☃".as_bytes(); /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec![ /// // Writing byte string slices is just brutal. The problem is that /// // b"foo" has type &[u8; 3] instead of &[u8]. /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..], /// ]); /// /// # Ok::<(), Box>(()) /// ``` /// /// Contiguous separators (commonly shows up with whitespace), can lead to /// possibly surprising behavior. For example, this code is correct: /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r" ")?; /// let hay = " a b c"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); /// /// # Ok::<(), Box>(()) /// ``` /// /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want /// to match contiguous space characters: /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r" +")?; /// let hay = " a b c"; /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); /// // N.B. This does still include a leading empty span because ' +' /// // matches at the beginning of the haystack. /// assert_eq!(got, vec!["", "a", "b", "c"]); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn split<'r, 'h, I: Into>>( &'r self, input: I, ) -> Split<'r, 'h> { Split { finder: self.find_iter(input), last: 0 } } /// Returns an iterator of at most `limit` spans of the haystack given, /// delimited by a match of the regex. (A `limit` of `0` will return no /// spans.) Namely, each element of the iterator corresponds to a part /// of the haystack that *isn't* matched by the regular expression. The /// remainder of the haystack that is not split will be the last element in /// the iterator. /// /// # Example /// /// Get the first two words in some haystack: /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"\W+").unwrap(); /// let hay = "Hey! How are you?"; /// let fields: Vec<&str> = /// re.splitn(hay, 3).map(|span| &hay[span]).collect(); /// assert_eq!(fields, vec!["Hey", "How", "are you?"]); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Examples: more cases /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r" ")?; /// let hay = "Mary had a little lamb"; /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]); /// /// let re = Regex::new(r"X")?; /// let hay = ""; /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec![""]); /// /// let re = Regex::new(r"X")?; /// let hay = "lionXXtigerXleopard"; /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]); /// /// let re = Regex::new(r"::")?; /// let hay = "lion::tiger::leopard"; /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["lion", "tiger::leopard"]); /// /// let re = Regex::new(r"X")?; /// let hay = "abcXdef"; /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["abcXdef"]); /// /// let re = Regex::new(r"X")?; /// let hay = "abcdef"; /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); /// assert_eq!(got, vec!["abcdef"]); /// /// let re = Regex::new(r"X")?; /// let hay = "abcXdef"; /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect(); /// assert!(got.is_empty()); /// /// # Ok::<(), Box>(()) /// ``` pub fn splitn<'r, 'h, I: Into>>( &'r self, input: I, limit: usize, ) -> SplitN<'r, 'h> { SplitN { splits: self.split(input), limit } } } /// Lower level search routines that give more control. impl Regex { /// Returns the start and end offset of the leftmost match. If no match /// exists, then `None` is returned. /// /// This is like [`Regex::find`] but, but it accepts a concrete `&Input` /// instead of an `Into`. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::new(r"Samwise|Sam")?; /// let input = Input::new( /// "one of the chief characters, Samwise the Brave", /// ); /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input)); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search(&self, input: &Input<'_>) -> Option { if self.imp.info.is_impossible(input) { return None; } let mut guard = self.pool.get(); let result = self.imp.strat.search(&mut guard, input); // We do this dance with the guard and explicitly put it back in the // pool because it seems to result in better codegen. If we let the // guard's Drop impl put it back in the pool, then functions like // ptr::drop_in_place get called and they *don't* get inlined. This // isn't usually a big deal, but in latency sensitive benchmarks the // extra function call can matter. // // I used `rebar measure -f '^grep/every-line$' -e meta` to measure // the effects here. // // Note that this doesn't eliminate the latency effects of using the // pool. There is still some (minor) cost for the "thread owner" of the // pool. (i.e., The thread that first calls a regex search routine.) // However, for other threads using the regex, the pool access can be // quite expensive as it goes through a mutex. Callers can avoid this // by either cloning the Regex (which creates a distinct copy of the // pool), or callers can use the lower level APIs that accept a 'Cache' // directly and do their own handling. PoolGuard::put(guard); result } /// Returns the end offset of the leftmost match. If no match exists, then /// `None` is returned. /// /// This is distinct from [`Regex::search`] in that it only returns the end /// of a match and not the start of the match. Depending on a variety of /// implementation details, this _may_ permit the regex engine to do less /// overall work. For example, if a DFA is being used to execute a search, /// then the start of a match usually requires running a separate DFA in /// reverse to the find the start of a match. If one only needs the end of /// a match, then the separate reverse scan to find the start of a match /// can be skipped. (Note that the reverse scan is avoided even when using /// `Regex::search` when possible, for example, in the case of an anchored /// search.) /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, HalfMatch}; /// /// let re = Regex::new(r"Samwise|Sam")?; /// let input = Input::new( /// "one of the chief characters, Samwise the Brave", /// ); /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input)); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_half(&self, input: &Input<'_>) -> Option { if self.imp.info.is_impossible(input) { return None; } let mut guard = self.pool.get(); let result = self.imp.strat.search_half(&mut guard, input); // See 'Regex::search' for why we put the guard back explicitly. PoolGuard::put(guard); result } /// Executes a leftmost forward search and writes the spans of capturing /// groups that participated in a match into the provided [`Captures`] /// value. If no match was found, then [`Captures::is_match`] is guaranteed /// to return `false`. /// /// This is like [`Regex::captures`], but it accepts a concrete `&Input` /// instead of an `Into`. /// /// # Example: specific pattern search /// /// This example shows how to build a multi-pattern `Regex` that permits /// searching for specific patterns. /// /// ``` /// use regex_automata::{ /// meta::Regex, /// Anchored, Match, PatternID, Input, /// }; /// /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?; /// let mut caps = re.create_captures(); /// let haystack = "foo123"; /// /// // Since we are using the default leftmost-first match and both /// // patterns match at the same starting position, only the first pattern /// // will be returned in this case when doing a search for any of the /// // patterns. /// let expected = Some(Match::must(0, 0..6)); /// re.search_captures(&Input::new(haystack), &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// // But if we want to check whether some other pattern matches, then we /// // can provide its pattern ID. /// let expected = Some(Match::must(1, 0..6)); /// let input = Input::new(haystack) /// .anchored(Anchored::Pattern(PatternID::must(1))); /// re.search_captures(&input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: specifying the bounds of a search /// /// This example shows how providing the bounds of a search can produce /// different results than simply sub-slicing the haystack. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Match, Input}; /// /// let re = Regex::new(r"\b[0-9]{3}\b")?; /// let mut caps = re.create_captures(); /// let haystack = "foo123bar"; /// /// // Since we sub-slice the haystack, the search doesn't know about /// // the larger context and assumes that `123` is surrounded by word /// // boundaries. And of course, the match position is reported relative /// // to the sub-slice as well, which means we get `0..3` instead of /// // `3..6`. /// let expected = Some(Match::must(0, 0..3)); /// let input = Input::new(&haystack[3..6]); /// re.search_captures(&input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// // But if we provide the bounds of the search within the context of the /// // entire haystack, then the search can take the surrounding context /// // into account. (And if we did find a match, it would be reported /// // as a valid offset into `haystack` instead of its sub-slice.) /// let expected = None; /// let input = Input::new(haystack).range(3..6); /// re.search_captures(&input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) { caps.set_pattern(None); let pid = self.search_slots(input, caps.slots_mut()); caps.set_pattern(pid); } /// Executes a leftmost forward search and writes the spans of capturing /// groups that participated in a match into the provided `slots`, and /// returns the matching pattern ID. The contents of the slots for patterns /// other than the matching pattern are unspecified. If no match was found, /// then `None` is returned and the contents of `slots` is unspecified. /// /// This is like [`Regex::search`], but it accepts a raw slots slice /// instead of a `Captures` value. This is useful in contexts where you /// don't want or need to allocate a `Captures`. /// /// It is legal to pass _any_ number of slots to this routine. If the regex /// engine would otherwise write a slot offset that doesn't fit in the /// provided slice, then it is simply skipped. In general though, there are /// usually three slice lengths you might want to use: /// /// * An empty slice, if you only care about which pattern matched. /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you /// only care about the overall match spans for each matching pattern. /// * A slice with /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which /// permits recording match offsets for every capturing group in every /// pattern. /// /// # Example /// /// This example shows how to find the overall match offsets in a /// multi-pattern search without allocating a `Captures` value. Indeed, we /// can put our slots right on the stack. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, PatternID, Input}; /// /// let re = Regex::new_many(&[ /// r"\pL+", /// r"\d+", /// ])?; /// let input = Input::new("!@#123"); /// /// // We only care about the overall match offsets here, so we just /// // allocate two slots for each pattern. Each slot records the start /// // and end of the match. /// let mut slots = [None; 4]; /// let pid = re.search_slots(&input, &mut slots); /// assert_eq!(Some(PatternID::must(1)), pid); /// /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. /// // See 'GroupInfo' for more details on the mapping between groups and /// // slot indices. /// let slot_start = pid.unwrap().as_usize() * 2; /// let slot_end = slot_start + 1; /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_slots( &self, input: &Input<'_>, slots: &mut [Option], ) -> Option { if self.imp.info.is_impossible(input) { return None; } let mut guard = self.pool.get(); let result = self.imp.strat.search_slots(&mut guard, input, slots); // See 'Regex::search' for why we put the guard back explicitly. PoolGuard::put(guard); result } /// Writes the set of patterns that match anywhere in the given search /// configuration to `patset`. If multiple patterns match at the same /// position and this `Regex` was configured with [`MatchKind::All`] /// semantics, then all matching patterns are written to the given set. /// /// Unless all of the patterns in this `Regex` are anchored, then generally /// speaking, this will scan the entire haystack. /// /// This search routine *does not* clear the pattern set. This gives some /// flexibility to the caller (e.g., running multiple searches with the /// same pattern set), but does make the API bug-prone if you're reusing /// the same pattern set for multiple searches but intended them to be /// independent. /// /// If a pattern ID matched but the given `PatternSet` does not have /// sufficient capacity to store it, then it is not inserted and silently /// dropped. /// /// # Example /// /// This example shows how to find all matching patterns in a haystack, /// even when some patterns match at the same position as other patterns. /// It is important that we configure the `Regex` with [`MatchKind::All`] /// semantics here, or else overlapping matches will not be reported. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; /// /// let patterns = &[ /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", /// ]; /// let re = Regex::builder() /// .configure(Regex::config().match_kind(MatchKind::All)) /// .build_many(patterns)?; /// /// let input = Input::new("foobar"); /// let mut patset = PatternSet::new(re.pattern_len()); /// re.which_overlapping_matches(&input, &mut patset); /// let expected = vec![0, 2, 3, 4, 6]; /// let got: Vec = patset.iter().map(|p| p.as_usize()).collect(); /// assert_eq!(expected, got); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn which_overlapping_matches( &self, input: &Input<'_>, patset: &mut PatternSet, ) { if self.imp.info.is_impossible(input) { return; } let mut guard = self.pool.get(); let result = self .imp .strat .which_overlapping_matches(&mut guard, input, patset); // See 'Regex::search' for why we put the guard back explicitly. PoolGuard::put(guard); result } } /// Lower level search routines that give more control, and require the caller /// to provide an explicit [`Cache`] parameter. impl Regex { /// This is like [`Regex::search`], but requires the caller to /// explicitly pass a [`Cache`]. /// /// # Why pass a `Cache` explicitly? /// /// Passing a `Cache` explicitly will bypass the use of an internal memory /// pool used by `Regex` to get a `Cache` for a search. The use of this /// pool can be slower in some cases when a `Regex` is used from multiple /// threads simultaneously. Typically, performance only becomes an issue /// when there is heavy contention, which in turn usually only occurs /// when each thread's primary unit of work is a regex search on a small /// haystack. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::new(r"Samwise|Sam")?; /// let mut cache = re.create_cache(); /// let input = Input::new( /// "one of the chief characters, Samwise the Brave", /// ); /// assert_eq!( /// Some(Match::must(0, 29..36)), /// re.search_with(&mut cache, &input), /// ); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_with( &self, cache: &mut Cache, input: &Input<'_>, ) -> Option { if self.imp.info.is_impossible(input) { return None; } self.imp.strat.search(cache, input) } /// This is like [`Regex::search_half`], but requires the caller to /// explicitly pass a [`Cache`]. /// /// # Why pass a `Cache` explicitly? /// /// Passing a `Cache` explicitly will bypass the use of an internal memory /// pool used by `Regex` to get a `Cache` for a search. The use of this /// pool can be slower in some cases when a `Regex` is used from multiple /// threads simultaneously. Typically, performance only becomes an issue /// when there is heavy contention, which in turn usually only occurs /// when each thread's primary unit of work is a regex search on a small /// haystack. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, HalfMatch}; /// /// let re = Regex::new(r"Samwise|Sam")?; /// let mut cache = re.create_cache(); /// let input = Input::new( /// "one of the chief characters, Samwise the Brave", /// ); /// assert_eq!( /// Some(HalfMatch::must(0, 36)), /// re.search_half_with(&mut cache, &input), /// ); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_half_with( &self, cache: &mut Cache, input: &Input<'_>, ) -> Option { if self.imp.info.is_impossible(input) { return None; } self.imp.strat.search_half(cache, input) } /// This is like [`Regex::search_captures`], but requires the caller to /// explicitly pass a [`Cache`]. /// /// # Why pass a `Cache` explicitly? /// /// Passing a `Cache` explicitly will bypass the use of an internal memory /// pool used by `Regex` to get a `Cache` for a search. The use of this /// pool can be slower in some cases when a `Regex` is used from multiple /// threads simultaneously. Typically, performance only becomes an issue /// when there is heavy contention, which in turn usually only occurs /// when each thread's primary unit of work is a regex search on a small /// haystack. /// /// # Example: specific pattern search /// /// This example shows how to build a multi-pattern `Regex` that permits /// searching for specific patterns. /// /// ``` /// use regex_automata::{ /// meta::Regex, /// Anchored, Match, PatternID, Input, /// }; /// /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?; /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); /// let haystack = "foo123"; /// /// // Since we are using the default leftmost-first match and both /// // patterns match at the same starting position, only the first pattern /// // will be returned in this case when doing a search for any of the /// // patterns. /// let expected = Some(Match::must(0, 0..6)); /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// // But if we want to check whether some other pattern matches, then we /// // can provide its pattern ID. /// let expected = Some(Match::must(1, 0..6)); /// let input = Input::new(haystack) /// .anchored(Anchored::Pattern(PatternID::must(1))); /// re.search_captures_with(&mut cache, &input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: specifying the bounds of a search /// /// This example shows how providing the bounds of a search can produce /// different results than simply sub-slicing the haystack. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Match, Input}; /// /// let re = Regex::new(r"\b[0-9]{3}\b")?; /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); /// let haystack = "foo123bar"; /// /// // Since we sub-slice the haystack, the search doesn't know about /// // the larger context and assumes that `123` is surrounded by word /// // boundaries. And of course, the match position is reported relative /// // to the sub-slice as well, which means we get `0..3` instead of /// // `3..6`. /// let expected = Some(Match::must(0, 0..3)); /// let input = Input::new(&haystack[3..6]); /// re.search_captures_with(&mut cache, &input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// // But if we provide the bounds of the search within the context of the /// // entire haystack, then the search can take the surrounding context /// // into account. (And if we did find a match, it would be reported /// // as a valid offset into `haystack` instead of its sub-slice.) /// let expected = None; /// let input = Input::new(haystack).range(3..6); /// re.search_captures_with(&mut cache, &input, &mut caps); /// assert_eq!(expected, caps.get_match()); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_captures_with( &self, cache: &mut Cache, input: &Input<'_>, caps: &mut Captures, ) { caps.set_pattern(None); let pid = self.search_slots_with(cache, input, caps.slots_mut()); caps.set_pattern(pid); } /// This is like [`Regex::search_slots`], but requires the caller to /// explicitly pass a [`Cache`]. /// /// # Why pass a `Cache` explicitly? /// /// Passing a `Cache` explicitly will bypass the use of an internal memory /// pool used by `Regex` to get a `Cache` for a search. The use of this /// pool can be slower in some cases when a `Regex` is used from multiple /// threads simultaneously. Typically, performance only becomes an issue /// when there is heavy contention, which in turn usually only occurs /// when each thread's primary unit of work is a regex search on a small /// haystack. /// /// # Example /// /// This example shows how to find the overall match offsets in a /// multi-pattern search without allocating a `Captures` value. Indeed, we /// can put our slots right on the stack. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, PatternID, Input}; /// /// let re = Regex::new_many(&[ /// r"\pL+", /// r"\d+", /// ])?; /// let mut cache = re.create_cache(); /// let input = Input::new("!@#123"); /// /// // We only care about the overall match offsets here, so we just /// // allocate two slots for each pattern. Each slot records the start /// // and end of the match. /// let mut slots = [None; 4]; /// let pid = re.search_slots_with(&mut cache, &input, &mut slots); /// assert_eq!(Some(PatternID::must(1)), pid); /// /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. /// // See 'GroupInfo' for more details on the mapping between groups and /// // slot indices. /// let slot_start = pid.unwrap().as_usize() * 2; /// let slot_end = slot_start + 1; /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn search_slots_with( &self, cache: &mut Cache, input: &Input<'_>, slots: &mut [Option], ) -> Option { if self.imp.info.is_impossible(input) { return None; } self.imp.strat.search_slots(cache, input, slots) } /// This is like [`Regex::which_overlapping_matches`], but requires the /// caller to explicitly pass a [`Cache`]. /// /// Passing a `Cache` explicitly will bypass the use of an internal memory /// pool used by `Regex` to get a `Cache` for a search. The use of this /// pool can be slower in some cases when a `Regex` is used from multiple /// threads simultaneously. Typically, performance only becomes an issue /// when there is heavy contention, which in turn usually only occurs /// when each thread's primary unit of work is a regex search on a small /// haystack. /// /// # Why pass a `Cache` explicitly? /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; /// /// let patterns = &[ /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", /// ]; /// let re = Regex::builder() /// .configure(Regex::config().match_kind(MatchKind::All)) /// .build_many(patterns)?; /// let mut cache = re.create_cache(); /// /// let input = Input::new("foobar"); /// let mut patset = PatternSet::new(re.pattern_len()); /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset); /// let expected = vec![0, 2, 3, 4, 6]; /// let got: Vec = patset.iter().map(|p| p.as_usize()).collect(); /// assert_eq!(expected, got); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn which_overlapping_matches_with( &self, cache: &mut Cache, input: &Input<'_>, patset: &mut PatternSet, ) { if self.imp.info.is_impossible(input) { return; } self.imp.strat.which_overlapping_matches(cache, input, patset) } } /// Various non-search routines for querying properties of a `Regex` and /// convenience routines for creating [`Captures`] and [`Cache`] values. impl Regex { /// Creates a new object for recording capture group offsets. This is used /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`]. /// /// This is a convenience routine for /// `Captures::all(re.group_info().clone())`. Callers may build other types /// of `Captures` values that record less information (and thus require /// less work from the regex engine) using [`Captures::matches`] and /// [`Captures::empty`]. /// /// # Example /// /// This shows some alternatives to [`Regex::create_captures`]: /// /// ``` /// use regex_automata::{ /// meta::Regex, /// util::captures::Captures, /// Match, PatternID, Span, /// }; /// /// let re = Regex::new(r"(?[A-Z][a-z]+) (?[A-Z][a-z]+)")?; /// /// // This is equivalent to Regex::create_captures. It stores matching /// // offsets for all groups in the regex. /// let mut all = Captures::all(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut all); /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first")); /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last")); /// /// // In this version, we only care about the implicit groups, which /// // means offsets for the explicit groups will be unavailable. It can /// // sometimes be faster to ask for fewer groups, since the underlying /// // regex engine needs to do less work to keep track of them. /// let mut matches = Captures::matches(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut matches); /// // We still get the overall match info. /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); /// // But now the explicit groups are unavailable. /// assert_eq!(None, matches.get_group_by_name("first")); /// assert_eq!(None, matches.get_group_by_name("last")); /// /// // Finally, in this version, we don't ask to keep track of offsets for /// // *any* groups. All we get back is whether a match occurred, and if /// // so, the ID of the pattern that matched. /// let mut empty = Captures::empty(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut empty); /// // it's a match! /// assert!(empty.is_match()); /// // for pattern ID 0 /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); /// // Match offsets are unavailable. /// assert_eq!(None, empty.get_match()); /// // And of course, explicit groups are unavailable too. /// assert_eq!(None, empty.get_group_by_name("first")); /// assert_eq!(None, empty.get_group_by_name("last")); /// /// # Ok::<(), Box>(()) /// ``` pub fn create_captures(&self) -> Captures { Captures::all(self.group_info().clone()) } /// Creates a new cache for use with lower level search APIs like /// [`Regex::search_with`]. /// /// The cache returned should only be used for searches for this `Regex`. /// If you want to reuse the cache for another `Regex`, then you must call /// [`Cache::reset`] with that `Regex`. /// /// This is a convenience routine for [`Cache::new`]. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?; /// let mut cache = re.create_cache(); /// let input = Input::new("crazy janey and her mission man"); /// assert_eq!( /// Some(Match::must(0, 20..31)), /// re.search_with(&mut cache, &input), /// ); /// /// # Ok::<(), Box>(()) /// ``` pub fn create_cache(&self) -> Cache { self.imp.strat.create_cache() } /// Returns the total number of patterns in this regex. /// /// The standard [`Regex::new`] constructor always results in a `Regex` /// with a single pattern, but [`Regex::new_many`] permits building a /// multi-pattern regex. /// /// A `Regex` guarantees that the maximum possible `PatternID` returned in /// any match is `Regex::pattern_len() - 1`. In the case where the number /// of patterns is `0`, a match is impossible. /// /// # Example /// /// ``` /// use regex_automata::meta::Regex; /// /// let re = Regex::new(r"(?m)^[a-z]$")?; /// assert_eq!(1, re.pattern_len()); /// /// let re = Regex::new_many::<&str>(&[])?; /// assert_eq!(0, re.pattern_len()); /// /// let re = Regex::new_many(&["a", "b", "c"])?; /// assert_eq!(3, re.pattern_len()); /// /// # Ok::<(), Box>(()) /// ``` pub fn pattern_len(&self) -> usize { self.imp.info.pattern_len() } /// Returns the total number of capturing groups. /// /// This includes the implicit capturing group corresponding to the /// entire match. Therefore, the minimum value returned is `1`. /// /// # Example /// /// This shows a few patterns and how many capture groups they have. /// /// ``` /// use regex_automata::meta::Regex; /// /// let len = |pattern| { /// Regex::new(pattern).map(|re| re.captures_len()) /// }; /// /// assert_eq!(1, len("a")?); /// assert_eq!(2, len("(a)")?); /// assert_eq!(3, len("(a)|(b)")?); /// assert_eq!(5, len("(a)(b)|(c)(d)")?); /// assert_eq!(2, len("(a)|b")?); /// assert_eq!(2, len("a|(b)")?); /// assert_eq!(2, len("(b)*")?); /// assert_eq!(2, len("(b)+")?); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: multiple patterns /// /// This routine also works for multiple patterns. The total number is /// the sum of the capture groups of each pattern. /// /// ``` /// use regex_automata::meta::Regex; /// /// let len = |patterns| { /// Regex::new_many(patterns).map(|re| re.captures_len()) /// }; /// /// assert_eq!(2, len(&["a", "b"])?); /// assert_eq!(4, len(&["(a)", "(b)"])?); /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?); /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?); /// assert_eq!(3, len(&["(a)", "b"])?); /// assert_eq!(3, len(&["a", "(b)"])?); /// assert_eq!(4, len(&["(a)", "(b)*"])?); /// assert_eq!(4, len(&["(a)+", "(b)+"])?); /// /// # Ok::<(), Box>(()) /// ``` pub fn captures_len(&self) -> usize { self.imp .info .props_union() .explicit_captures_len() .saturating_add(self.pattern_len()) } /// Returns the total number of capturing groups that appear in every /// possible match. /// /// If the number of capture groups can vary depending on the match, then /// this returns `None`. That is, a value is only returned when the number /// of matching groups is invariant or "static." /// /// Note that like [`Regex::captures_len`], this **does** include the /// implicit capturing group corresponding to the entire match. Therefore, /// when a non-None value is returned, it is guaranteed to be at least `1`. /// Stated differently, a return value of `Some(0)` is impossible. /// /// # Example /// /// This shows a few cases where a static number of capture groups is /// available and a few cases where it is not. /// /// ``` /// use regex_automata::meta::Regex; /// /// let len = |pattern| { /// Regex::new(pattern).map(|re| re.static_captures_len()) /// }; /// /// assert_eq!(Some(1), len("a")?); /// assert_eq!(Some(2), len("(a)")?); /// assert_eq!(Some(2), len("(a)|(b)")?); /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?); /// assert_eq!(None, len("(a)|b")?); /// assert_eq!(None, len("a|(b)")?); /// assert_eq!(None, len("(b)*")?); /// assert_eq!(Some(2), len("(b)+")?); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: multiple patterns /// /// This property extends to regexes with multiple patterns as well. In /// order for their to be a static number of capture groups in this case, /// every pattern must have the same static number. /// /// ``` /// use regex_automata::meta::Regex; /// /// let len = |patterns| { /// Regex::new_many(patterns).map(|re| re.static_captures_len()) /// }; /// /// assert_eq!(Some(1), len(&["a", "b"])?); /// assert_eq!(Some(2), len(&["(a)", "(b)"])?); /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?); /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?); /// assert_eq!(None, len(&["(a)", "b"])?); /// assert_eq!(None, len(&["a", "(b)"])?); /// assert_eq!(None, len(&["(a)", "(b)*"])?); /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn static_captures_len(&self) -> Option { self.imp .info .props_union() .static_explicit_captures_len() .map(|len| len.saturating_add(1)) } /// Return information about the capture groups in this `Regex`. /// /// A `GroupInfo` is an immutable object that can be cheaply cloned. It /// is responsible for maintaining a mapping between the capture groups /// in the concrete syntax of zero or more regex patterns and their /// internal representation used by some of the regex matchers. It is also /// responsible for maintaining a mapping between the name of each group /// (if one exists) and its corresponding group index. /// /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value, /// which is some mutable space where group offsets are stored as a result /// of a search. /// /// # Example /// /// This shows some alternatives to [`Regex::create_captures`]: /// /// ``` /// use regex_automata::{ /// meta::Regex, /// util::captures::Captures, /// Match, PatternID, Span, /// }; /// /// let re = Regex::new(r"(?[A-Z][a-z]+) (?[A-Z][a-z]+)")?; /// /// // This is equivalent to Regex::create_captures. It stores matching /// // offsets for all groups in the regex. /// let mut all = Captures::all(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut all); /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first")); /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last")); /// /// // In this version, we only care about the implicit groups, which /// // means offsets for the explicit groups will be unavailable. It can /// // sometimes be faster to ask for fewer groups, since the underlying /// // regex engine needs to do less work to keep track of them. /// let mut matches = Captures::matches(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut matches); /// // We still get the overall match info. /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); /// // But now the explicit groups are unavailable. /// assert_eq!(None, matches.get_group_by_name("first")); /// assert_eq!(None, matches.get_group_by_name("last")); /// /// // Finally, in this version, we don't ask to keep track of offsets for /// // *any* groups. All we get back is whether a match occurred, and if /// // so, the ID of the pattern that matched. /// let mut empty = Captures::empty(re.group_info().clone()); /// re.captures("Bruce Springsteen", &mut empty); /// // it's a match! /// assert!(empty.is_match()); /// // for pattern ID 0 /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); /// // Match offsets are unavailable. /// assert_eq!(None, empty.get_match()); /// // And of course, explicit groups are unavailable too. /// assert_eq!(None, empty.get_group_by_name("first")); /// assert_eq!(None, empty.get_group_by_name("last")); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn group_info(&self) -> &GroupInfo { self.imp.strat.group_info() } /// Returns the configuration object used to build this `Regex`. /// /// If no configuration object was explicitly passed, then the /// configuration returned represents the default. #[inline] pub fn get_config(&self) -> &Config { self.imp.info.config() } /// Returns true if this regex has a high chance of being "accelerated." /// /// The precise meaning of "accelerated" is specifically left unspecified, /// but the general meaning is that the search is a high likelihood of /// running faster than than a character-at-a-time loop inside a standard /// regex engine. /// /// When a regex is accelerated, it is only a *probabilistic* claim. That /// is, just because the regex is believed to be accelerated, that doesn't /// mean it will definitely execute searches very fast. Similarly, if a /// regex is *not* accelerated, that is also a probabilistic claim. That /// is, a regex for which `is_accelerated` returns `false` could still run /// searches more quickly than a regex for which `is_accelerated` returns /// `true`. /// /// Whether a regex is marked as accelerated or not is dependent on /// implementations details that may change in a semver compatible release. /// That is, a regex that is accelerated in a `x.y.1` release might not be /// accelerated in a `x.y.2` release. /// /// Basically, the value of acceleration boils down to a hedge: a hodge /// podge of internal heuristics combine to make a probabilistic guess /// that this regex search may run "fast." The value in knowing this from /// a caller's perspective is that it may act as a signal that no further /// work should be done to accelerate a search. For example, a grep-like /// tool might try to do some extra work extracting literals from a regex /// to create its own heuristic acceleration strategies. But it might /// choose to defer to this crate's acceleration strategy if one exists. /// This routine permits querying whether such a strategy is active for a /// particular regex. /// /// # Example /// /// ``` /// use regex_automata::meta::Regex; /// /// // A simple literal is very likely to be accelerated. /// let re = Regex::new(r"foo")?; /// assert!(re.is_accelerated()); /// /// // A regex with no literals is likely to not be accelerated. /// let re = Regex::new(r"\w")?; /// assert!(!re.is_accelerated()); /// /// # Ok::<(), Box>(()) /// ``` #[inline] pub fn is_accelerated(&self) -> bool { self.imp.strat.is_accelerated() } /// Return the total approximate heap memory, in bytes, used by this `Regex`. /// /// Note that currently, there is no high level configuration for setting /// a limit on the specific value returned by this routine. Instead, the /// following routines can be used to control heap memory at a bit of a /// lower level: /// /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are /// allowed to be. /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is /// allowed to be. /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy /// DFA is permitted to allocate to store its transition table. /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is /// allowed to be. /// * [`Config::dfa_state_limit`] controls the conditions under which the /// meta regex engine will even attempt to build a fully compiled DFA. #[inline] pub fn memory_usage(&self) -> usize { self.imp.strat.memory_usage() } } impl Clone for Regex { fn clone(&self) -> Regex { let imp = Arc::clone(&self.imp); let pool = { let strat = Arc::clone(&imp.strat); let create: CachePoolFn = Box::new(move || strat.create_cache()); Pool::new(create) }; Regex { imp, pool } } } #[derive(Clone, Debug)] pub(crate) struct RegexInfo(Arc); #[derive(Clone, Debug)] struct RegexInfoI { config: Config, props: Vec, props_union: hir::Properties, } impl RegexInfo { fn new(config: Config, hirs: &[&Hir]) -> RegexInfo { // Collect all of the properties from each of the HIRs, and also // union them into one big set of properties representing all HIRs // as if they were in one big alternation. let mut props = vec![]; for hir in hirs.iter() { props.push(hir.properties().clone()); } let props_union = hir::Properties::union(&props); RegexInfo(Arc::new(RegexInfoI { config, props, props_union })) } pub(crate) fn config(&self) -> &Config { &self.0.config } pub(crate) fn props(&self) -> &[hir::Properties] { &self.0.props } pub(crate) fn props_union(&self) -> &hir::Properties { &self.0.props_union } pub(crate) fn pattern_len(&self) -> usize { self.props().len() } pub(crate) fn memory_usage(&self) -> usize { self.props().iter().map(|p| p.memory_usage()).sum::() + self.props_union().memory_usage() } /// Returns true when the search is guaranteed to be anchored. That is, /// when a match is reported, its offset is guaranteed to correspond to /// the start of the search. /// /// This includes returning true when `input` _isn't_ anchored but the /// underlying regex is. #[cfg_attr(feature = "perf-inline", inline(always))] pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool { input.get_anchored().is_anchored() || self.is_always_anchored_start() } /// Returns true when this regex is always anchored to the start of a /// search. And in particular, that regardless of an `Input` configuration, /// if any match is reported it must start at `0`. #[cfg_attr(feature = "perf-inline", inline(always))] pub(crate) fn is_always_anchored_start(&self) -> bool { use regex_syntax::hir::Look; self.props_union().look_set_prefix().contains(Look::Start) } /// Returns true when this regex is always anchored to the end of a /// search. And in particular, that regardless of an `Input` configuration, /// if any match is reported it must end at the end of the haystack. #[cfg_attr(feature = "perf-inline", inline(always))] pub(crate) fn is_always_anchored_end(&self) -> bool { use regex_syntax::hir::Look; self.props_union().look_set_suffix().contains(Look::End) } /// Returns true if and only if it is known that a match is impossible /// for the given input. This is useful for short-circuiting and avoiding /// running the regex engine if it's known no match can be reported. /// /// Note that this doesn't necessarily detect every possible case. For /// example, when `pattern_len() == 0`, a match is impossible, but that /// case is so rare that it's fine to be handled by the regex engine /// itself. That is, it's not worth the cost of adding it here in order to /// make it a little faster. The reason is that this is called for every /// search. so there is some cost to adding checks here. Arguably, some of /// the checks that are here already probably shouldn't be here... #[cfg_attr(feature = "perf-inline", inline(always))] fn is_impossible(&self, input: &Input<'_>) -> bool { // The underlying regex is anchored, so if we don't start the search // at position 0, a match is impossible, because the anchor can only // match at position 0. if input.start() > 0 && self.is_always_anchored_start() { return true; } // Same idea, but for the end anchor. if input.end() < input.haystack().len() && self.is_always_anchored_end() { return true; } // If the haystack is smaller than the minimum length required, then // we know there can be no match. let minlen = match self.props_union().minimum_len() { None => return false, Some(minlen) => minlen, }; if input.get_span().len() < minlen { return true; } // Same idea as minimum, but for maximum. This is trickier. We can // only apply the maximum when we know the entire span that we're // searching *has* to match according to the regex (and possibly the // input configuration). If we know there is too much for the regex // to match, we can bail early. // // I don't think we can apply the maximum otherwise unfortunately. if self.is_anchored_start(input) && self.is_always_anchored_end() { let maxlen = match self.props_union().maximum_len() { None => return false, Some(maxlen) => maxlen, }; if input.get_span().len() > maxlen { return true; } } false } } /// An iterator over all non-overlapping matches. /// /// The iterator yields a [`Match`] value until no more matches could be found. /// /// The lifetime parameters are as follows: /// /// * `'r` represents the lifetime of the `Regex` that produced this iterator. /// * `'h` represents the lifetime of the haystack being searched. /// /// This iterator can be created with the [`Regex::find_iter`] method. #[derive(Debug)] pub struct FindMatches<'r, 'h> { re: &'r Regex, cache: CachePoolGuard<'r>, it: iter::Searcher<'h>, } impl<'r, 'h> FindMatches<'r, 'h> { /// Returns the `Regex` value that created this iterator. #[inline] pub fn regex(&self) -> &'r Regex { self.re } /// Returns the current `Input` associated with this iterator. /// /// The `start` position on the given `Input` may change during iteration, /// but all other values are guaranteed to remain invariant. #[inline] pub fn input<'s>(&'s self) -> &'s Input<'h> { self.it.input() } } impl<'r, 'h> Iterator for FindMatches<'r, 'h> { type Item = Match; #[inline] fn next(&mut self) -> Option { let FindMatches { re, ref mut cache, ref mut it } = *self; it.advance(|input| Ok(re.search_with(cache, input))) } #[inline] fn count(self) -> usize { // If all we care about is a count of matches, then we only need to // find the end position of each match. This can give us a 2x perf // boost in some cases, because it avoids needing to do a reverse scan // to find the start of a match. let FindMatches { re, mut cache, it } = self; // This does the deref for PoolGuard once instead of every iter. let cache = &mut *cache; it.into_half_matches_iter( |input| Ok(re.search_half_with(cache, input)), ) .count() } } impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {} /// An iterator over all non-overlapping leftmost matches with their capturing /// groups. /// /// The iterator yields a [`Captures`] value until no more matches could be /// found. /// /// The lifetime parameters are as follows: /// /// * `'r` represents the lifetime of the `Regex` that produced this iterator. /// * `'h` represents the lifetime of the haystack being searched. /// /// This iterator can be created with the [`Regex::captures_iter`] method. #[derive(Debug)] pub struct CapturesMatches<'r, 'h> { re: &'r Regex, cache: CachePoolGuard<'r>, caps: Captures, it: iter::Searcher<'h>, } impl<'r, 'h> CapturesMatches<'r, 'h> { /// Returns the `Regex` value that created this iterator. #[inline] pub fn regex(&self) -> &'r Regex { self.re } /// Returns the current `Input` associated with this iterator. /// /// The `start` position on the given `Input` may change during iteration, /// but all other values are guaranteed to remain invariant. #[inline] pub fn input<'s>(&'s self) -> &'s Input<'h> { self.it.input() } } impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> { type Item = Captures; #[inline] fn next(&mut self) -> Option { // Splitting 'self' apart seems necessary to appease borrowck. let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } = *self; let _ = it.advance(|input| { re.search_captures_with(cache, input, caps); Ok(caps.get_match()) }); if caps.is_match() { Some(caps.clone()) } else { None } } #[inline] fn count(self) -> usize { let CapturesMatches { re, mut cache, it, .. } = self; // This does the deref for PoolGuard once instead of every iter. let cache = &mut *cache; it.into_half_matches_iter( |input| Ok(re.search_half_with(cache, input)), ) .count() } } impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {} /// Yields all substrings delimited by a regular expression match. /// /// The spans correspond to the offsets between matches. /// /// The lifetime parameters are as follows: /// /// * `'r` represents the lifetime of the `Regex` that produced this iterator. /// * `'h` represents the lifetime of the haystack being searched. /// /// This iterator can be created with the [`Regex::split`] method. #[derive(Debug)] pub struct Split<'r, 'h> { finder: FindMatches<'r, 'h>, last: usize, } impl<'r, 'h> Split<'r, 'h> { /// Returns the current `Input` associated with this iterator. /// /// The `start` position on the given `Input` may change during iteration, /// but all other values are guaranteed to remain invariant. #[inline] pub fn input<'s>(&'s self) -> &'s Input<'h> { self.finder.input() } } impl<'r, 'h> Iterator for Split<'r, 'h> { type Item = Span; fn next(&mut self) -> Option { match self.finder.next() { None => { let len = self.finder.it.input().haystack().len(); if self.last > len { None } else { let span = Span::from(self.last..len); self.last = len + 1; // Next call will return None Some(span) } } Some(m) => { let span = Span::from(self.last..m.start()); self.last = m.end(); Some(span) } } } } impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {} /// Yields at most `N` spans delimited by a regular expression match. /// /// The spans correspond to the offsets between matches. The last span will be /// whatever remains after splitting. /// /// The lifetime parameters are as follows: /// /// * `'r` represents the lifetime of the `Regex` that produced this iterator. /// * `'h` represents the lifetime of the haystack being searched. /// /// This iterator can be created with the [`Regex::splitn`] method. #[derive(Debug)] pub struct SplitN<'r, 'h> { splits: Split<'r, 'h>, limit: usize, } impl<'r, 'h> SplitN<'r, 'h> { /// Returns the current `Input` associated with this iterator. /// /// The `start` position on the given `Input` may change during iteration, /// but all other values are guaranteed to remain invariant. #[inline] pub fn input<'s>(&'s self) -> &'s Input<'h> { self.splits.input() } } impl<'r, 'h> Iterator for SplitN<'r, 'h> { type Item = Span; fn next(&mut self) -> Option { if self.limit == 0 { return None; } self.limit -= 1; if self.limit > 0 { return self.splits.next(); } let len = self.splits.finder.it.input().haystack().len(); if self.splits.last > len { // We've already returned all substrings. None } else { // self.n == 0, so future calls will return None immediately Some(Span::from(self.splits.last..len)) } } fn size_hint(&self) -> (usize, Option) { (0, Some(self.limit)) } } impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {} /// Represents mutable scratch space used by regex engines during a search. /// /// Most of the regex engines in this crate require some kind of /// mutable state in order to execute a search. This mutable state is /// explicitly separated from the the core regex object (such as a /// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex /// object can be shared across multiple threads simultaneously without any /// synchronization. Conversely, a `Cache` must either be duplicated if using /// the same `Regex` from multiple threads, or else there must be some kind of /// synchronization that guarantees exclusive access while it's in use by one /// thread. /// /// A `Regex` attempts to do this synchronization for you by using a thread /// pool internally. Its size scales roughly with the number of simultaneous /// regex searches. /// /// For cases where one does not want to rely on a `Regex`'s internal thread /// pool, lower level routines such as [`Regex::search_with`] are provided /// that permit callers to pass a `Cache` into the search routine explicitly. /// /// General advice is that the thread pool is often more than good enough. /// However, it may be possible to observe the effects of its latency, /// especially when searching many small haystacks from many threads /// simultaneously. /// /// Caches can be created from their corresponding `Regex` via /// [`Regex::create_cache`]. A cache can only be used with either the `Regex` /// that created it, or the `Regex` that was most recently used to reset it /// with [`Cache::reset`]. Using a cache with any other `Regex` may result in /// panics or incorrect results. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Input, Match}; /// /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?; /// let mut cache = re.create_cache(); /// let input = Input::new("crazy janey and her mission man"); /// assert_eq!( /// Some(Match::must(0, 20..31)), /// re.search_with(&mut cache, &input), /// ); /// /// # Ok::<(), Box>(()) /// ``` #[derive(Debug, Clone)] pub struct Cache { pub(crate) capmatches: Captures, pub(crate) pikevm: wrappers::PikeVMCache, pub(crate) backtrack: wrappers::BoundedBacktrackerCache, pub(crate) onepass: wrappers::OnePassCache, pub(crate) hybrid: wrappers::HybridCache, pub(crate) revhybrid: wrappers::ReverseHybridCache, } impl Cache { /// Creates a new `Cache` for use with this regex. /// /// The cache returned should only be used for searches for the given /// `Regex`. If you want to reuse the cache for another `Regex`, then you /// must call [`Cache::reset`] with that `Regex`. pub fn new(re: &Regex) -> Cache { re.create_cache() } /// Reset this cache such that it can be used for searching with the given /// `Regex` (and only that `Regex`). /// /// A cache reset permits potentially reusing memory already allocated in /// this cache with a different `Regex`. /// /// # Example /// /// This shows how to re-purpose a cache for use with a different `Regex`. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Match, Input}; /// /// let re1 = Regex::new(r"\w")?; /// let re2 = Regex::new(r"\W")?; /// /// let mut cache = re1.create_cache(); /// assert_eq!( /// Some(Match::must(0, 0..2)), /// re1.search_with(&mut cache, &Input::new("Δ")), /// ); /// /// // Using 'cache' with re2 is not allowed. It may result in panics or /// // incorrect results. In order to re-purpose the cache, we must reset /// // it with the Regex we'd like to use it with. /// // /// // Similarly, after this reset, using the cache with 're1' is also not /// // allowed. /// cache.reset(&re2); /// assert_eq!( /// Some(Match::must(0, 0..3)), /// re2.search_with(&mut cache, &Input::new("☃")), /// ); /// /// # Ok::<(), Box>(()) /// ``` pub fn reset(&mut self, re: &Regex) { re.imp.strat.reset_cache(self) } /// Returns the heap memory usage, in bytes, of this cache. /// /// This does **not** include the stack size used up by this cache. To /// compute that, use `std::mem::size_of::()`. pub fn memory_usage(&self) -> usize { let mut bytes = 0; bytes += self.pikevm.memory_usage(); bytes += self.backtrack.memory_usage(); bytes += self.onepass.memory_usage(); bytes += self.hybrid.memory_usage(); bytes += self.revhybrid.memory_usage(); bytes } } /// An object describing the configuration of a `Regex`. /// /// This configuration only includes options for the /// non-syntax behavior of a `Regex`, and can be applied via the /// [`Builder::configure`] method. For configuring the syntax options, see /// [`util::syntax::Config`](crate::util::syntax::Config). /// /// # Example: lower the NFA size limit /// /// In some cases, the default size limit might be too big. The size limit can /// be lowered, which will prevent large regex patterns from compiling. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) /// // Not even 20KB is enough to build a single large Unicode class! /// .build(r"\pL"); /// assert!(result.is_err()); /// /// # Ok::<(), Box>(()) /// ``` #[derive(Clone, Debug, Default)] pub struct Config { // As with other configuration types in this crate, we put all our knobs // in options so that we can distinguish between "default" and "not set." // This makes it possible to easily combine multiple configurations // without default values overwriting explicitly specified values. See the // 'overwrite' method. // // For docs on the fields below, see the corresponding method setters. match_kind: Option, utf8_empty: Option, autopre: Option, pre: Option>, which_captures: Option, nfa_size_limit: Option>, onepass_size_limit: Option>, hybrid_cache_capacity: Option, hybrid: Option, dfa: Option, dfa_size_limit: Option>, dfa_state_limit: Option>, onepass: Option, backtrack: Option, byte_classes: Option, line_terminator: Option, } impl Config { /// Create a new configuration object for a `Regex`. pub fn new() -> Config { Config::default() } /// Set the match semantics for a `Regex`. /// /// The default value is [`MatchKind::LeftmostFirst`]. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match, MatchKind}; /// /// // By default, leftmost-first semantics are used, which /// // disambiguates matches at the same position by selecting /// // the one that corresponds earlier in the pattern. /// let re = Regex::new("sam|samwise")?; /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise")); /// /// // But with 'all' semantics, match priority is ignored /// // and all match states are included. When coupled with /// // a leftmost search, the search will report the last /// // possible match. /// let re = Regex::builder() /// .configure(Regex::config().match_kind(MatchKind::All)) /// .build("sam|samwise")?; /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise")); /// // Beware that this can lead to skipping matches! /// // Usually 'all' is used for anchored reverse searches /// // only, or for overlapping searches. /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise")); /// /// # Ok::<(), Box>(()) /// ``` pub fn match_kind(self, kind: MatchKind) -> Config { Config { match_kind: Some(kind), ..self } } /// Toggles whether empty matches are permitted to occur between the code /// units of a UTF-8 encoded codepoint. /// /// This should generally be enabled when search a `&str` or anything that /// you otherwise know is valid UTF-8. It should be disabled in all other /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled, /// then behavior is unspecified. /// /// By default, this is enabled. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new("")?; /// let got: Vec = re.find_iter("☃").collect(); /// // Matches only occur at the beginning and end of the snowman. /// assert_eq!(got, vec![ /// Match::must(0, 0..0), /// Match::must(0, 3..3), /// ]); /// /// let re = Regex::builder() /// .configure(Regex::config().utf8_empty(false)) /// .build("")?; /// let got: Vec = re.find_iter("☃").collect(); /// // Matches now occur at every position! /// assert_eq!(got, vec![ /// Match::must(0, 0..0), /// Match::must(0, 1..1), /// Match::must(0, 2..2), /// Match::must(0, 3..3), /// ]); /// /// Ok::<(), Box>(()) /// ``` pub fn utf8_empty(self, yes: bool) -> Config { Config { utf8_empty: Some(yes), ..self } } /// Toggles whether automatic prefilter support is enabled. /// /// If this is disabled and [`Config::prefilter`] is not set, then the /// meta regex engine will not use any prefilters. This can sometimes /// be beneficial in cases where you know (or have measured) that the /// prefilter leads to overall worse search performance. /// /// By default, this is enabled. /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::builder() /// .configure(Regex::config().auto_prefilter(false)) /// .build(r"Bruce \w+")?; /// let hay = "Hello Bruce Springsteen!"; /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); /// /// Ok::<(), Box>(()) /// ``` pub fn auto_prefilter(self, yes: bool) -> Config { Config { autopre: Some(yes), ..self } } /// Overrides and sets the prefilter to use inside a `Regex`. /// /// This permits one to forcefully set a prefilter in cases where the /// caller knows better than whatever the automatic prefilter logic is /// capable of. /// /// By default, this is set to `None` and an automatic prefilter will be /// used if one could be built. (Assuming [`Config::auto_prefilter`] is /// enabled, which it is by default.) /// /// # Example /// /// This example shows how to set your own prefilter. In the case of a /// pattern like `Bruce \w+`, the automatic prefilter is likely to be /// constructed in a way that it will look for occurrences of `Bruce `. /// In most cases, this is the best choice. But in some cases, it may be /// the case that running `memchr` on `B` is the best choice. One can /// achieve that behavior by overriding the automatic prefilter logic /// and providing a prefilter that just matches `B`. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{ /// meta::Regex, /// util::prefilter::Prefilter, /// Match, MatchKind, /// }; /// /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"]) /// .expect("a prefilter"); /// let re = Regex::builder() /// .configure(Regex::config().prefilter(Some(pre))) /// .build(r"Bruce \w+")?; /// let hay = "Hello Bruce Springsteen!"; /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: incorrect prefilters can lead to incorrect results! /// /// Be warned that setting an incorrect prefilter can lead to missed /// matches. So if you use this option, ensure your prefilter can _never_ /// report false negatives. (A false positive is, on the other hand, quite /// okay and generally unavoidable.) /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::{ /// meta::Regex, /// util::prefilter::Prefilter, /// Match, MatchKind, /// }; /// /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"]) /// .expect("a prefilter"); /// let re = Regex::builder() /// .configure(Regex::config().prefilter(Some(pre))) /// .build(r"Bruce \w+")?; /// let hay = "Hello Bruce Springsteen!"; /// // Oops! No match found, but there should be one! /// assert_eq!(None, re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn prefilter(self, pre: Option) -> Config { Config { pre: Some(pre), ..self } } /// Configures what kinds of groups are compiled as "capturing" in the /// underlying regex engine. /// /// This is set to [`WhichCaptures::All`] by default. Callers may wish to /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the /// overhead of capture states for explicit groups. /// /// Note that another approach to avoiding the overhead of capture groups /// is by using non-capturing groups in the regex pattern. That is, /// `(?:a)` instead of `(a)`. This option is useful when you can't control /// the concrete syntax but know that you don't need the underlying capture /// states. For example, using `WhichCaptures::Implicit` will behave as if /// all explicit capturing groups in the pattern were non-capturing. /// /// Setting this to `WhichCaptures::None` is usually not the right thing to /// do. When no capture states are compiled, some regex engines (such as /// the `PikeVM`) won't be able to report match offsets. This will manifest /// as no match being found. /// /// # Example /// /// This example demonstrates how the results of capture groups can change /// based on this option. First we show the default (all capture groups in /// the pattern are capturing): /// /// ``` /// use regex_automata::{meta::Regex, Match, Span}; /// /// let re = Regex::new(r"foo([0-9]+)bar")?; /// let hay = "foo123bar"; /// /// let mut caps = re.create_captures(); /// re.captures(hay, &mut caps); /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1)); /// /// Ok::<(), Box>(()) /// ``` /// /// And now we show the behavior when we only include implicit capture /// groups. In this case, we can only find the overall match span, but the /// spans of any other explicit group don't exist because they are treated /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used, /// there is no real point in using [`Regex::captures`] since it will never /// be able to report more information than [`Regex::find`].) /// /// ``` /// use regex_automata::{ /// meta::Regex, /// nfa::thompson::WhichCaptures, /// Match, /// Span, /// }; /// /// let re = Regex::builder() /// .configure(Regex::config().which_captures(WhichCaptures::Implicit)) /// .build(r"foo([0-9]+)bar")?; /// let hay = "foo123bar"; /// /// let mut caps = re.create_captures(); /// re.captures(hay, &mut caps); /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); /// assert_eq!(None, caps.get_group(1)); /// /// Ok::<(), Box>(()) /// ``` pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config { self.which_captures = Some(which_captures); self } /// Sets the size limit, in bytes, to enforce on the construction of every /// NFA build by the meta regex engine. /// /// Setting it to `None` disables the limit. This is not recommended if /// you're compiling untrusted patterns. /// /// Note that this limit is applied to _each_ NFA built, and if any of /// them excceed the limit, then construction will fail. This limit does /// _not_ correspond to the total memory used by all NFAs in the meta regex /// engine. /// /// This defaults to some reasonable number that permits most reasonable /// patterns. /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) /// // Not even 20KB is enough to build a single large Unicode class! /// .build(r"\pL"); /// assert!(result.is_err()); /// /// // But notice that building such a regex with the exact same limit /// // can succeed depending on other aspects of the configuration. For /// // example, a single *forward* NFA will (at time of writing) fit into /// // the 20KB limit, but a *reverse* NFA of the same pattern will not. /// // So if one configures a meta regex such that a reverse NFA is never /// // needed and thus never built, then the 20KB limit will be enough for /// // a pattern like \pL! /// let result = Regex::builder() /// .configure(Regex::config() /// .nfa_size_limit(Some(20 * (1<<10))) /// // The DFAs are the only thing that (currently) need a reverse /// // NFA. So if both are disabled, the meta regex engine will /// // skip building the reverse NFA. Note that this isn't an API /// // guarantee. A future semver compatible version may introduce /// // new use cases for a reverse NFA. /// .hybrid(false) /// .dfa(false) /// ) /// // Not even 20KB is enough to build a single large Unicode class! /// .build(r"\pL"); /// assert!(result.is_ok()); /// /// # Ok::<(), Box>(()) /// ``` pub fn nfa_size_limit(self, limit: Option) -> Config { Config { nfa_size_limit: Some(limit), ..self } } /// Sets the size limit, in bytes, for the one-pass DFA. /// /// Setting it to `None` disables the limit. Disabling the limit is /// strongly discouraged when compiling untrusted patterns. Even if the /// patterns are trusted, it still may not be a good idea, since a one-pass /// DFA can use a lot of memory. With that said, as the size of a regex /// increases, the likelihood of it being one-pass likely decreases. /// /// This defaults to some reasonable number that permits most reasonable /// one-pass patterns. /// /// # Example /// /// This shows how to set the one-pass DFA size limit. Note that since /// a one-pass DFA is an optional component of the meta regex engine, /// this size limit only impacts what is built internally and will never /// determine whether a `Regex` itself fails to build. /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20)))) /// .build(r"\pL{5}"); /// assert!(result.is_ok()); /// # Ok::<(), Box>(()) /// ``` pub fn onepass_size_limit(self, limit: Option) -> Config { Config { onepass_size_limit: Some(limit), ..self } } /// Set the cache capacity, in bytes, for the lazy DFA. /// /// The cache capacity of the lazy DFA determines approximately how much /// heap memory it is allowed to use to store its state transitions. The /// state transitions are computed at search time, and if the cache fills /// up it, it is cleared. At this point, any previously generated state /// transitions are lost and are re-generated if they're needed again. /// /// This sort of cache filling and clearing works quite well _so long as /// cache clearing happens infrequently_. If it happens too often, then the /// meta regex engine will stop using the lazy DFA and switch over to a /// different regex engine. /// /// In cases where the cache is cleared too often, it may be possible to /// give the cache more space and reduce (or eliminate) how often it is /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't /// used at all if its cache capacity isn't big enough. /// /// The capacity set here is a _limit_ on how much memory is used. The /// actual memory used is only allocated as it's needed. /// /// Determining the right value for this is a little tricky and will likely /// required some profiling. Enabling the `logging` feature and setting the /// log level to `trace` will also tell you how often the cache is being /// cleared. /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20))) /// .build(r"\pL{5}"); /// assert!(result.is_ok()); /// # Ok::<(), Box>(()) /// ``` pub fn hybrid_cache_capacity(self, limit: usize) -> Config { Config { hybrid_cache_capacity: Some(limit), ..self } } /// Sets the size limit, in bytes, for heap memory used for a fully /// compiled DFA. /// /// **NOTE:** If you increase this, you'll likely also need to increase /// [`Config::dfa_state_limit`]. /// /// In contrast to the lazy DFA, building a full DFA requires computing /// all of its state transitions up front. This can be a very expensive /// process, and runs in worst case `2^n` time and space (where `n` is /// proportional to the size of the regex). However, a full DFA unlocks /// some additional optimization opportunities. /// /// Because full DFAs can be so expensive, the default limits for them are /// incredibly small. Generally speaking, if your regex is moderately big /// or if you're using Unicode features (`\w` is Unicode-aware by default /// for example), then you can expect that the meta regex engine won't even /// attempt to build a DFA for it. /// /// If this and [`Config::dfa_state_limit`] are set to `None`, then the /// meta regex will not use any sort of limits when deciding whether to /// build a DFA. This in turn makes construction of a `Regex` take /// worst case exponential time and space. Even short patterns can result /// in huge space blow ups. So it is strongly recommended to keep some kind /// of limit set! /// /// The default is set to a small number that permits some simple regexes /// to get compiled into DFAs in reasonable time. /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// // 100MB is much bigger than the default. /// .configure(Regex::config() /// .dfa_size_limit(Some(100 * (1<<20))) /// // We don't care about size too much here, so just /// // remove the NFA state limit altogether. /// .dfa_state_limit(None)) /// .build(r"\pL{5}"); /// assert!(result.is_ok()); /// # Ok::<(), Box>(()) /// ``` pub fn dfa_size_limit(self, limit: Option) -> Config { Config { dfa_size_limit: Some(limit), ..self } } /// Sets a limit on the total number of NFA states, beyond which, a full /// DFA is not attempted to be compiled. /// /// This limit works in concert with [`Config::dfa_size_limit`]. Namely, /// where as `Config::dfa_size_limit` is applied by attempting to construct /// a DFA, this limit is used to avoid the attempt in the first place. This /// is useful to avoid hefty initialization costs associated with building /// a DFA for cases where it is obvious the DFA will ultimately be too big. /// /// By default, this is set to a very small number. /// /// # Example /// /// ``` /// # if cfg!(miri) { return Ok(()); } // miri takes too long /// use regex_automata::meta::Regex; /// /// let result = Regex::builder() /// .configure(Regex::config() /// // Sometimes the default state limit rejects DFAs even /// // if they would fit in the size limit. Here, we disable /// // the check on the number of NFA states and just rely on /// // the size limit. /// .dfa_state_limit(None)) /// .build(r"(?-u)\w{30}"); /// assert!(result.is_ok()); /// # Ok::<(), Box>(()) /// ``` pub fn dfa_state_limit(self, limit: Option) -> Config { Config { dfa_state_limit: Some(limit), ..self } } /// Whether to attempt to shrink the size of the alphabet for the regex /// pattern or not. When enabled, the alphabet is shrunk into a set of /// equivalence classes, where every byte in the same equivalence class /// cannot discriminate between a match or non-match. /// /// **WARNING:** This is only useful for debugging DFAs. Disabling this /// does not yield any speed advantages. Indeed, disabling it can result /// in much higher memory usage. Disabling byte classes is useful for /// debugging the actual generated transitions because it lets one see the /// transitions defined on actual bytes instead of the equivalence classes. /// /// This option is enabled by default and should never be disabled unless /// one is debugging the meta regex engine's internals. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::builder() /// .configure(Regex::config().byte_classes(false)) /// .build(r"[a-z]+")?; /// let hay = "!!quux!!"; /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn byte_classes(self, yes: bool) -> Config { Config { byte_classes: Some(yes), ..self } } /// Set the line terminator to be used by the `^` and `$` anchors in /// multi-line mode. /// /// This option has no effect when CRLF mode is enabled. That is, /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat /// `\r` and `\n` as line terminators (and will never match between a `\r` /// and a `\n`). /// /// By default, `\n` is the line terminator. /// /// **Warning**: This does not change the behavior of `.`. To do that, /// you'll need to configure the syntax option /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator) /// in addition to this. Otherwise, `.` will continue to match any /// character other than `\n`. /// /// # Example /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().multi_line(true)) /// .configure(Regex::config().line_terminator(b'\x00')) /// .build(r"^foo$")?; /// let hay = "\x00foo\x00"; /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn line_terminator(self, byte: u8) -> Config { Config { line_terminator: Some(byte), ..self } } /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should /// be available for use by the meta regex engine. /// /// Enabling this does not necessarily mean that the lazy DFA will /// definitely be used. It just means that it will be _available_ for use /// if the meta regex engine thinks it will be useful. /// /// When the `hybrid` crate feature is enabled, then this is enabled by /// default. Otherwise, if the crate feature is disabled, then this is /// always disabled, regardless of its setting by the caller. pub fn hybrid(self, yes: bool) -> Config { Config { hybrid: Some(yes), ..self } } /// Toggle whether a fully compiled DFA should be available for use by the /// meta regex engine. /// /// Enabling this does not necessarily mean that a DFA will definitely be /// used. It just means that it will be _available_ for use if the meta /// regex engine thinks it will be useful. /// /// When the `dfa-build` crate feature is enabled, then this is enabled by /// default. Otherwise, if the crate feature is disabled, then this is /// always disabled, regardless of its setting by the caller. pub fn dfa(self, yes: bool) -> Config { Config { dfa: Some(yes), ..self } } /// Toggle whether a one-pass DFA should be available for use by the meta /// regex engine. /// /// Enabling this does not necessarily mean that a one-pass DFA will /// definitely be used. It just means that it will be _available_ for /// use if the meta regex engine thinks it will be useful. (Indeed, a /// one-pass DFA can only be used when the regex is one-pass. See the /// [`dfa::onepass`](crate::dfa::onepass) module for more details.) /// /// When the `dfa-onepass` crate feature is enabled, then this is enabled /// by default. Otherwise, if the crate feature is disabled, then this is /// always disabled, regardless of its setting by the caller. pub fn onepass(self, yes: bool) -> Config { Config { onepass: Some(yes), ..self } } /// Toggle whether a bounded backtracking regex engine should be available /// for use by the meta regex engine. /// /// Enabling this does not necessarily mean that a bounded backtracker will /// definitely be used. It just means that it will be _available_ for use /// if the meta regex engine thinks it will be useful. /// /// When the `nfa-backtrack` crate feature is enabled, then this is enabled /// by default. Otherwise, if the crate feature is disabled, then this is /// always disabled, regardless of its setting by the caller. pub fn backtrack(self, yes: bool) -> Config { Config { backtrack: Some(yes), ..self } } /// Returns the match kind on this configuration, as set by /// [`Config::match_kind`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_match_kind(&self) -> MatchKind { self.match_kind.unwrap_or(MatchKind::LeftmostFirst) } /// Returns whether empty matches must fall on valid UTF-8 boundaries, as /// set by [`Config::utf8_empty`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_utf8_empty(&self) -> bool { self.utf8_empty.unwrap_or(true) } /// Returns whether automatic prefilters are enabled, as set by /// [`Config::auto_prefilter`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_auto_prefilter(&self) -> bool { self.autopre.unwrap_or(true) } /// Returns a manually set prefilter, if one was set by /// [`Config::prefilter`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_prefilter(&self) -> Option<&Prefilter> { self.pre.as_ref().unwrap_or(&None).as_ref() } /// Returns the capture configuration, as set by /// [`Config::which_captures`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_which_captures(&self) -> WhichCaptures { self.which_captures.unwrap_or(WhichCaptures::All) } /// Returns NFA size limit, as set by [`Config::nfa_size_limit`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_nfa_size_limit(&self) -> Option { self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20))) } /// Returns one-pass DFA size limit, as set by /// [`Config::onepass_size_limit`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_onepass_size_limit(&self) -> Option { self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20))) } /// Returns hybrid NFA/DFA cache capacity, as set by /// [`Config::hybrid_cache_capacity`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_hybrid_cache_capacity(&self) -> usize { self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20)) } /// Returns DFA size limit, as set by [`Config::dfa_size_limit`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_dfa_size_limit(&self) -> Option { // The default for this is VERY small because building a full DFA is // ridiculously costly. But for regexes that are very small, it can be // beneficial to use a full DFA. In particular, a full DFA can enable // additional optimizations via something called "accelerated" states. // Namely, when there's a state with only a few outgoing transitions, // we can temporary suspend walking the transition table and use memchr // for just those outgoing transitions to skip ahead very quickly. // // Generally speaking, if Unicode is enabled in your regex and you're // using some kind of Unicode feature, then it's going to blow this // size limit. Moreover, Unicode tends to defeat the "accelerated" // state optimization too, so it's a double whammy. // // We also use a limit on the number of NFA states to avoid even // starting the DFA construction process. Namely, DFA construction // itself could make lots of initial allocs proportional to the size // of the NFA, and if the NFA is large, it doesn't make sense to pay // that cost if we know it's likely to be blown by a large margin. self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10))) } /// Returns DFA size limit in terms of the number of states in the NFA, as /// set by [`Config::dfa_state_limit`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_dfa_state_limit(&self) -> Option { // Again, as with the size limit, we keep this very small. self.dfa_state_limit.unwrap_or(Some(30)) } /// Returns whether byte classes are enabled, as set by /// [`Config::byte_classes`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_byte_classes(&self) -> bool { self.byte_classes.unwrap_or(true) } /// Returns the line terminator for this configuration, as set by /// [`Config::line_terminator`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_line_terminator(&self) -> u8 { self.line_terminator.unwrap_or(b'\n') } /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by /// [`Config::hybrid`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_hybrid(&self) -> bool { #[cfg(feature = "hybrid")] { self.hybrid.unwrap_or(true) } #[cfg(not(feature = "hybrid"))] { false } } /// Returns whether the DFA regex engine may be used, as set by /// [`Config::dfa`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_dfa(&self) -> bool { #[cfg(feature = "dfa-build")] { self.dfa.unwrap_or(true) } #[cfg(not(feature = "dfa-build"))] { false } } /// Returns whether the one-pass DFA regex engine may be used, as set by /// [`Config::onepass`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_onepass(&self) -> bool { #[cfg(feature = "dfa-onepass")] { self.onepass.unwrap_or(true) } #[cfg(not(feature = "dfa-onepass"))] { false } } /// Returns whether the bounded backtracking regex engine may be used, as /// set by [`Config::backtrack`]. /// /// If it was not explicitly set, then a default value is returned. pub fn get_backtrack(&self) -> bool { #[cfg(feature = "nfa-backtrack")] { self.backtrack.unwrap_or(true) } #[cfg(not(feature = "nfa-backtrack"))] { false } } /// Overwrite the default configuration such that the options in `o` are /// always used. If an option in `o` is not set, then the corresponding /// option in `self` is used. If it's not set in `self` either, then it /// remains not set. pub(crate) fn overwrite(&self, o: Config) -> Config { Config { match_kind: o.match_kind.or(self.match_kind), utf8_empty: o.utf8_empty.or(self.utf8_empty), autopre: o.autopre.or(self.autopre), pre: o.pre.or_else(|| self.pre.clone()), which_captures: o.which_captures.or(self.which_captures), nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit), onepass_size_limit: o .onepass_size_limit .or(self.onepass_size_limit), hybrid_cache_capacity: o .hybrid_cache_capacity .or(self.hybrid_cache_capacity), hybrid: o.hybrid.or(self.hybrid), dfa: o.dfa.or(self.dfa), dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit), onepass: o.onepass.or(self.onepass), backtrack: o.backtrack.or(self.backtrack), byte_classes: o.byte_classes.or(self.byte_classes), line_terminator: o.line_terminator.or(self.line_terminator), } } } /// A builder for configuring and constructing a `Regex`. /// /// The builder permits configuring two different aspects of a `Regex`: /// /// * [`Builder::configure`] will set high-level configuration options as /// described by a [`Config`]. /// * [`Builder::syntax`] will set the syntax level configuration options /// as described by a [`util::syntax::Config`](crate::util::syntax::Config). /// This only applies when building a `Regex` from pattern strings. /// /// Once configured, the builder can then be used to construct a `Regex` from /// one of 4 different inputs: /// /// * [`Builder::build`] creates a regex from a single pattern string. /// * [`Builder::build_many`] creates a regex from many pattern strings. /// * [`Builder::build_from_hir`] creates a regex from a /// [`regex-syntax::Hir`](Hir) expression. /// * [`Builder::build_many_from_hir`] creates a regex from many /// [`regex-syntax::Hir`](Hir) expressions. /// /// The latter two methods in particular provide a way to construct a fully /// feature regular expression matcher directly from an `Hir` expression /// without having to first convert it to a string. (This is in contrast to the /// top-level `regex` crate which intentionally provides no such API in order /// to avoid making `regex-syntax` a public dependency.) /// /// As a convenience, this builder may be created via [`Regex::builder`], which /// may help avoid an extra import. /// /// # Example: change the line terminator /// /// This example shows how to enable multi-line mode by default and change the /// line terminator to the NUL byte: /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().multi_line(true)) /// .configure(Regex::config().line_terminator(b'\x00')) /// .build(r"^foo$")?; /// let hay = "\x00foo\x00"; /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` /// /// # Example: disable UTF-8 requirement /// /// By default, regex patterns are required to match UTF-8. This includes /// regex patterns that can produce matches of length zero. In the case of an /// empty match, by default, matches will not appear between the code units of /// a UTF-8 encoded codepoint. /// /// However, it can be useful to disable this requirement, particularly if /// you're searching things like `&[u8]` that are not known to be valid UTF-8. /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let mut builder = Regex::builder(); /// // Disables the requirement that non-empty matches match UTF-8. /// builder.syntax(syntax::Config::new().utf8(false)); /// // Disables the requirement that empty matches match UTF-8 boundaries. /// builder.configure(Regex::config().utf8_empty(false)); /// /// // We can match raw bytes via \xZZ syntax, but we need to disable /// // Unicode mode to do that. We could disable it everywhere, or just /// // selectively, as shown here. /// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?; /// let hay = b"\xFFfoo\xFF"; /// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay)); /// /// // We can also match between code units. /// let re = builder.build(r"")?; /// let hay = "☃"; /// assert_eq!(re.find_iter(hay).collect::>(), vec![ /// Match::must(0, 0..0), /// Match::must(0, 1..1), /// Match::must(0, 2..2), /// Match::must(0, 3..3), /// ]); /// /// # Ok::<(), Box>(()) /// ``` #[derive(Clone, Debug)] pub struct Builder { config: Config, ast: ast::parse::ParserBuilder, hir: hir::translate::TranslatorBuilder, } impl Builder { /// Creates a new builder for configuring and constructing a [`Regex`]. pub fn new() -> Builder { Builder { config: Config::default(), ast: ast::parse::ParserBuilder::new(), hir: hir::translate::TranslatorBuilder::new(), } } /// Builds a `Regex` from a single pattern string. /// /// If there was a problem parsing the pattern or a problem turning it into /// a regex matcher, then an error is returned. /// /// # Example /// /// This example shows how to configure syntax options. /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().crlf(true).multi_line(true)) /// .build(r"^foo$")?; /// let hay = "\r\nfoo\r\n"; /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); /// /// # Ok::<(), Box>(()) /// ``` pub fn build(&self, pattern: &str) -> Result { self.build_many(&[pattern]) } /// Builds a `Regex` from many pattern strings. /// /// If there was a problem parsing any of the patterns or a problem turning /// them into a regex matcher, then an error is returned. /// /// # Example: finding the pattern that caused an error /// /// When a syntax error occurs, it is possible to ask which pattern /// caused the syntax error. /// /// ``` /// use regex_automata::{meta::Regex, PatternID}; /// /// let err = Regex::builder() /// .build_many(&["a", "b", r"\p{Foo}", "c"]) /// .unwrap_err(); /// assert_eq!(Some(PatternID::must(2)), err.pattern()); /// ``` /// /// # Example: zero patterns is valid /// /// Building a regex with zero patterns results in a regex that never /// matches anything. Because this routine is generic, passing an empty /// slice usually requires a turbo-fish (or something else to help type /// inference). /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .build_many::<&str>(&[])?; /// assert_eq!(None, re.find("")); /// /// # Ok::<(), Box>(()) /// ``` pub fn build_many>( &self, patterns: &[P], ) -> Result { use crate::util::primitives::IteratorIndexExt; log! { debug!("building meta regex with {} patterns:", patterns.len()); for (pid, p) in patterns.iter().with_pattern_ids() { let p = p.as_ref(); // We might split a grapheme with this truncation logic, but // that's fine. We at least avoid splitting a codepoint. let maxoff = p .char_indices() .map(|(i, ch)| i + ch.len_utf8()) .take(1000) .last() .unwrap_or(0); if maxoff < p.len() { debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]); } else { debug!("{:?}: {}", pid, p); } } } let (mut asts, mut hirs) = (vec![], vec![]); for (pid, p) in patterns.iter().with_pattern_ids() { let ast = self .ast .build() .parse(p.as_ref()) .map_err(|err| BuildError::ast(pid, err))?; asts.push(ast); } for ((pid, p), ast) in patterns.iter().with_pattern_ids().zip(asts.iter()) { let hir = self .hir .build() .translate(p.as_ref(), ast) .map_err(|err| BuildError::hir(pid, err))?; hirs.push(hir); } self.build_many_from_hir(&hirs) } /// Builds a `Regex` directly from an `Hir` expression. /// /// This is useful if you needed to parse a pattern string into an `Hir` /// for other reasons (such as analysis or transformations). This routine /// permits building a `Regex` directly from the `Hir` expression instead /// of first converting the `Hir` back to a pattern string. /// /// When using this method, any options set via [`Builder::syntax`] are /// ignored. Namely, the syntax options only apply when parsing a pattern /// string, which isn't relevant here. /// /// If there was a problem building the underlying regex matcher for the /// given `Hir`, then an error is returned. /// /// # Example /// /// This example shows how one can hand-construct an `Hir` expression and /// build a regex from it without doing any parsing at all. /// /// ``` /// use { /// regex_automata::{meta::Regex, Match}, /// regex_syntax::hir::{Hir, Look}, /// }; /// /// // (?Rm)^foo$ /// let hir = Hir::concat(vec![ /// Hir::look(Look::StartCRLF), /// Hir::literal("foo".as_bytes()), /// Hir::look(Look::EndCRLF), /// ]); /// let re = Regex::builder() /// .build_from_hir(&hir)?; /// let hay = "\r\nfoo\r\n"; /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); /// /// Ok::<(), Box>(()) /// ``` pub fn build_from_hir(&self, hir: &Hir) -> Result { self.build_many_from_hir(&[hir]) } /// Builds a `Regex` directly from many `Hir` expressions. /// /// This is useful if you needed to parse pattern strings into `Hir` /// expressions for other reasons (such as analysis or transformations). /// This routine permits building a `Regex` directly from the `Hir` /// expressions instead of first converting the `Hir` expressions back to /// pattern strings. /// /// When using this method, any options set via [`Builder::syntax`] are /// ignored. Namely, the syntax options only apply when parsing a pattern /// string, which isn't relevant here. /// /// If there was a problem building the underlying regex matcher for the /// given `Hir` expressions, then an error is returned. /// /// Note that unlike [`Builder::build_many`], this can only fail as a /// result of building the underlying matcher. In that case, there is /// no single `Hir` expression that can be isolated as a reason for the /// failure. So if this routine fails, it's not possible to determine which /// `Hir` expression caused the failure. /// /// # Example /// /// This example shows how one can hand-construct multiple `Hir` /// expressions and build a single regex from them without doing any /// parsing at all. /// /// ``` /// use { /// regex_automata::{meta::Regex, Match}, /// regex_syntax::hir::{Hir, Look}, /// }; /// /// // (?Rm)^foo$ /// let hir1 = Hir::concat(vec![ /// Hir::look(Look::StartCRLF), /// Hir::literal("foo".as_bytes()), /// Hir::look(Look::EndCRLF), /// ]); /// // (?Rm)^bar$ /// let hir2 = Hir::concat(vec![ /// Hir::look(Look::StartCRLF), /// Hir::literal("bar".as_bytes()), /// Hir::look(Look::EndCRLF), /// ]); /// let re = Regex::builder() /// .build_many_from_hir(&[&hir1, &hir2])?; /// let hay = "\r\nfoo\r\nbar"; /// let got: Vec = re.find_iter(hay).collect(); /// let expected = vec![ /// Match::must(0, 2..5), /// Match::must(1, 7..10), /// ]; /// assert_eq!(expected, got); /// /// Ok::<(), Box>(()) /// ``` pub fn build_many_from_hir>( &self, hirs: &[H], ) -> Result { let config = self.config.clone(); // We collect the HIRs into a vec so we can write internal routines // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code // bloat down.. let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect(); let info = RegexInfo::new(config, &hirs); let strat = strategy::new(&info, &hirs)?; let pool = { let strat = Arc::clone(&strat); let create: CachePoolFn = Box::new(move || strat.create_cache()); Pool::new(create) }; Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool }) } /// Configure the behavior of a `Regex`. /// /// This configuration controls non-syntax options related to the behavior /// of a `Regex`. This includes things like whether empty matches can split /// a codepoint, prefilters, line terminators and a long list of options /// for configuring which regex engines the meta regex engine will be able /// to use internally. /// /// # Example /// /// This example shows how to disable UTF-8 empty mode. This will permit /// empty matches to occur between the UTF-8 encoding of a codepoint. /// /// ``` /// use regex_automata::{meta::Regex, Match}; /// /// let re = Regex::new("")?; /// let got: Vec = re.find_iter("☃").collect(); /// // Matches only occur at the beginning and end of the snowman. /// assert_eq!(got, vec![ /// Match::must(0, 0..0), /// Match::must(0, 3..3), /// ]); /// /// let re = Regex::builder() /// .configure(Regex::config().utf8_empty(false)) /// .build("")?; /// let got: Vec = re.find_iter("☃").collect(); /// // Matches now occur at every position! /// assert_eq!(got, vec![ /// Match::must(0, 0..0), /// Match::must(0, 1..1), /// Match::must(0, 2..2), /// Match::must(0, 3..3), /// ]); /// /// Ok::<(), Box>(()) /// ``` pub fn configure(&mut self, config: Config) -> &mut Builder { self.config = self.config.overwrite(config); self } /// Configure the syntax options when parsing a pattern string while /// building a `Regex`. /// /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`] /// are used. The other build methods accept `Hir` values, which have /// already been parsed. /// /// # Example /// /// This example shows how to enable case insensitive mode. /// /// ``` /// use regex_automata::{meta::Regex, util::syntax, Match}; /// /// let re = Regex::builder() /// .syntax(syntax::Config::new().case_insensitive(true)) /// .build(r"δ")?; /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ")); /// /// Ok::<(), Box>(()) /// ``` pub fn syntax( &mut self, config: crate::util::syntax::Config, ) -> &mut Builder { config.apply_ast(&mut self.ast); config.apply_hir(&mut self.hir); self } } #[cfg(test)] mod tests { use super::*; // I found this in the course of building out the benchmark suite for // rebar. #[test] fn regression() { env_logger::init(); let re = Regex::new(r"[a-zA-Z]+ing").unwrap(); assert_eq!(1, re.find_iter("tingling").count()); } }