//! Generic context-aware conversion traits, for automatic _downstream_ extension of `Pread`, et. al //! //! The context traits are arguably the center piece of the scroll crate. In simple terms they //! define how to actually read and write, respectively, a data type from a container, being able to //! take context into account. //! //! ### Reading //! //! Types implementing [TryFromCtx](trait.TryFromCtx.html) and it's infallible cousin [FromCtx](trait.FromCtx.html) //! allow a user of [Pread::pread](../trait.Pread.html#method.pread) or respectively //! [Cread::cread](../trait.Cread.html#method.cread) and //! [IOread::ioread](../trait.IOread.html#method.ioread) to read that data type from a data source one //! of the `*read` traits has been implemented for. //! //! Implementations of `TryFromCtx` specify a source (called `This`) and an `Error` type for failed //! reads. The source defines the kind of container the type can be read from, and defaults to //! `[u8]` for any type that implements `AsRef<[u8]>`. //! //! `FromCtx` is slightly more restricted; it requires the implementer to use `[u8]` as source and //! never fail, and thus does not have an `Error` type. //! //! Types chosen here are of relevance to `Pread` implementations; of course only a container which //! can produce a source of the type `This` can be used to read a `TryFromCtx` requiring it and the //! `Error` type returned in `Err` of `Pread::pread`'s Result. //! //! ### Writing //! //! [TryIntoCtx](trait.TryIntoCtx.html) and the infallible [IntoCtx](trait.IntoCtx.html) work //! similarly to the above traits, allowing [Pwrite::pwrite](../trait.Pwrite.html#method.pwrite) or //! respectively [Cwrite::cwrite](../trait.Cwrite.html#method.cwrite) and //! [IOwrite::iowrite](../trait.IOwrite.html#method.iowrite) to write data into a byte sink for //! which one of the `*write` traits has been implemented for. //! //! `IntoCtx` is similarly restricted as `FromCtx` is to `TryFromCtx`. And equally the types chosen //! affect usable `Pwrite` implementation. //! //! ### Context //! //! Each of the traits passes along a `Ctx` to the marshalling logic. This context type contains //! any additional information that may be required to successfully parse or write the data: //! Examples would be endianness to use, field lengths of a serialized struct, or delimiters to use //! when reading/writing `&str`. The context type can be any type but must derive //! [Copy](https://doc.rust-lang.org/std/marker/trait.Copy.html). In addition if you want to use //! the `*read`-methods instead of the `*read_with` ones you must also implement //! [default::Default](https://doc.rust-lang.org/std/default/trait.Default.html). //! //! # Example //! //! Let's expand on the [previous example](../index.html#complex-use-cases). //! //! ```rust //! use scroll::{self, ctx, Pread, Endian}; //! use scroll::ctx::StrCtx; //! //! #[derive(Copy, Clone, PartialEq, Eq)] //! enum FieldSize { //! U32, //! U64 //! } //! //! // Our custom context type. As said above it has to derive Copy. //! #[derive(Copy, Clone)] //! struct Context { //! fieldsize: FieldSize, //! endianess: Endian, //! } //! //! // Our custom data type //! struct Data<'b> { //! // These u64 are encoded either as 32-bit or 64-bit wide ints. Which one it is is defined in //! // the Context. //! // Also, let's imagine they have a strict relationship: A < B < C otherwise the struct is //! // invalid. //! field_a: u64, //! field_b: u64, //! field_c: u64, //! //! // Both of these are marshalled with a prefixed length. //! name: &'b str, //! value: &'b [u8], //! } //! //! #[derive(Debug)] //! enum Error { //! // We'll return this custom error if the field* relationship doesn't hold //! BadFieldMatchup, //! Scroll(scroll::Error), //! } //! //! impl<'a> ctx::TryFromCtx<'a, Context> for Data<'a> { //! type Error = Error; //! //! // Using the explicit lifetime specification again you ensure that read data doesn't outlife //! // its source buffer without having to resort to copying. //! fn try_from_ctx (src: &'a [u8], ctx: Context) //! // the `usize` returned here is the amount of bytes read. //! -> Result<(Self, usize), Self::Error> //! { //! // The offset counter; gread and gread_with increment a given counter automatically so we //! // don't have to manually care. //! let offset = &mut 0; //! //! let field_a; //! let field_b; //! let field_c; //! //! // Switch the amount of bytes read depending on the parsing context //! if ctx.fieldsize == FieldSize::U32 { //! field_a = src.gread_with::(offset, ctx.endianess)? as u64; //! field_b = src.gread_with::(offset, ctx.endianess)? as u64; //! field_c = src.gread_with::(offset, ctx.endianess)? as u64; //! } else { //! field_a = src.gread_with::(offset, ctx.endianess)?; //! field_b = src.gread_with::(offset, ctx.endianess)?; //! field_c = src.gread_with::(offset, ctx.endianess)?; //! } //! //! // You can use type ascribition or turbofish operators, whichever you prefer. //! let namelen = src.gread_with::(offset, ctx.endianess)? as usize; //! let name: &str = src.gread_with(offset, scroll::ctx::StrCtx::Length(namelen))?; //! //! let vallen = src.gread_with::(offset, ctx.endianess)? as usize; //! let value = &src[*offset..(*offset+vallen)]; //! //! // Let's sanity check those fields, shall we? //! if ! (field_a < field_b && field_b < field_c) { //! return Err(Error::BadFieldMatchup); //! } //! //! Ok((Data { field_a, field_b, field_c, name, value }, *offset)) //! } //! } //! //! // In lieu of a complex byte buffer we hearken back to the venerable &[u8]; do note however //! // that the implementation of TryFromCtx did not specify such. In fact any type that implements //! // Pread can now read `Data` as it implements TryFromCtx. //! let bytes = b"\x00\x02\x03\x04\x01\x02\x03\x04\xde\xad\xbe\xef\x00\x08UserName\x00\x02\xCA\xFE"; //! //! // We define an appropiate context, and get going //! let contextA = Context { //! fieldsize: FieldSize::U32, //! endianess: Endian::Big, //! }; //! let data: Data = bytes.pread_with(0, contextA).unwrap(); //! //! assert_eq!(data.field_a, 0x00020304); //! assert_eq!(data.field_b, 0x01020304); //! assert_eq!(data.field_c, 0xdeadbeef); //! assert_eq!(data.name, "UserName"); //! assert_eq!(data.value, [0xCA, 0xFE]); //! //! // Here we have a context with a different FieldSize, changing parsing information at runtime. //! let contextB = Context { //! fieldsize: FieldSize::U64, //! endianess: Endian::Big, //! }; //! //! // Which will of course error with a malformed input for the context //! let err: Result = bytes.pread_with(0, contextB); //! assert!(err.is_err()); //! //! let bytes_long = [0x00,0x00,0x00,0x00,0x00,0x02,0x03,0x04,0x00,0x00,0x00,0x00,0x01,0x02,0x03, //! 0x04,0x00,0x00,0x00,0x00,0xde,0xad,0xbe,0xef,0x00,0x08,0x55,0x73,0x65,0x72, //! 0x4e,0x61,0x6d,0x65,0x00,0x02,0xCA,0xFE]; //! //! let data: Data = bytes_long.pread_with(0, contextB).unwrap(); //! //! assert_eq!(data.field_a, 0x00020304); //! assert_eq!(data.field_b, 0x01020304); //! assert_eq!(data.field_c, 0xdeadbeef); //! assert_eq!(data.name, "UserName"); //! assert_eq!(data.value, [0xCA, 0xFE]); //! //! // Ergonomic conversion, not relevant really. //! use std::convert::From; //! impl From for Error { //! fn from(error: scroll::Error) -> Error { //! Error::Scroll(error) //! } //! } //! ``` use core::mem::size_of; use core::mem::transmute; use core::ptr::copy_nonoverlapping; use core::result; use core::str; #[cfg(feature = "std")] use std::ffi::{CStr, CString}; use crate::endian::Endian; use crate::error; /// A trait for measuring how large something is; for a byte sequence, it will be its length. pub trait MeasureWith { /// How large is `Self`, given the `ctx`? fn measure_with(&self, ctx: &Ctx) -> usize; } impl MeasureWith for [u8] { #[inline] fn measure_with(&self, _ctx: &Ctx) -> usize { self.len() } } impl> MeasureWith for T { #[inline] fn measure_with(&self, _ctx: &Ctx) -> usize { self.as_ref().len() } } /// The parsing context for converting a byte sequence to a `&str` /// /// `StrCtx` specifies what byte delimiter to use, and defaults to C-style null terminators. Be careful. #[derive(Debug, Copy, Clone)] pub enum StrCtx { Delimiter(u8), DelimiterUntil(u8, usize), Length(usize), } /// A C-style, null terminator based delimiter pub const NULL: u8 = 0; /// A space-based delimiter pub const SPACE: u8 = 0x20; /// A newline-based delimiter pub const RET: u8 = 0x0a; /// A tab-based delimiter pub const TAB: u8 = 0x09; impl Default for StrCtx { #[inline] fn default() -> Self { StrCtx::Delimiter(NULL) } } impl StrCtx { pub fn len(&self) -> usize { match *self { StrCtx::Delimiter(_) | StrCtx::DelimiterUntil(_, _) => 1, StrCtx::Length(_) => 0, } } pub fn is_empty(&self) -> bool { if let StrCtx::Length(_) = *self { true } else { false } } } /// Reads `Self` from `This` using the context `Ctx`; must _not_ fail pub trait FromCtx { fn from_ctx(this: &This, ctx: Ctx) -> Self; } /// Tries to read `Self` from `This` using the context `Ctx` /// /// # Implementing Your Own Reader /// If you want to implement your own reader for a type `Foo` from some kind of buffer (say /// `[u8]`), then you need to implement this trait /// /// ```rust /// use scroll::{self, ctx, Pread}; /// #[derive(Debug, PartialEq, Eq)] /// pub struct Foo(u16); /// /// impl<'a> ctx::TryFromCtx<'a, scroll::Endian> for Foo { /// type Error = scroll::Error; /// fn try_from_ctx(this: &'a [u8], le: scroll::Endian) -> Result<(Self, usize), Self::Error> { /// if this.len() < 2 { return Err((scroll::Error::Custom("whatever".to_string())).into()) } /// let n = this.pread_with(0, le)?; /// Ok((Foo(n), 2)) /// } /// } /// /// let bytes: [u8; 4] = [0xde, 0xad, 0, 0]; /// let foo = bytes.pread_with::(0, scroll::LE).unwrap(); /// assert_eq!(Foo(0xadde), foo); /// /// let foo2 = bytes.pread_with::(0, scroll::BE).unwrap(); /// assert_eq!(Foo(0xdeadu16), foo2); /// ``` /// /// # Advanced: Using Your Own Error in `TryFromCtx` /// ```rust /// use scroll::{self, ctx, Pread}; /// use std::error; /// use std::fmt::{self, Display}; /// // make some kind of normal error which also can transformed from a scroll error /// #[derive(Debug)] /// pub struct ExternalError {} /// /// impl Display for ExternalError { /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { /// write!(fmt, "ExternalError") /// } /// } /// /// impl error::Error for ExternalError { /// fn description(&self) -> &str { /// "ExternalError" /// } /// fn cause(&self) -> Option<&dyn error::Error> { None} /// } /// /// impl From for ExternalError { /// fn from(err: scroll::Error) -> Self { /// match err { /// _ => ExternalError{}, /// } /// } /// } /// #[derive(Debug, PartialEq, Eq)] /// pub struct Foo(u16); /// /// impl<'a> ctx::TryFromCtx<'a, scroll::Endian> for Foo { /// type Error = ExternalError; /// fn try_from_ctx(this: &'a [u8], le: scroll::Endian) -> Result<(Self, usize), Self::Error> { /// if this.len() <= 2 { return Err((ExternalError {}).into()) } /// let offset = &mut 0; /// let n = this.gread_with(offset, le)?; /// Ok((Foo(n), *offset)) /// } /// } /// /// let bytes: [u8; 4] = [0xde, 0xad, 0, 0]; /// let foo: Result = bytes.pread(0); /// ``` pub trait TryFromCtx<'a, Ctx: Copy = (), This: ?Sized = [u8]> where Self: 'a + Sized, { type Error; fn try_from_ctx(from: &'a This, ctx: Ctx) -> Result<(Self, usize), Self::Error>; } /// Writes `Self` into `This` using the context `Ctx` pub trait IntoCtx: Sized { fn into_ctx(self, _: &mut This, ctx: Ctx); } /// Tries to write `Self` into `This` using the context `Ctx` /// To implement writing into an arbitrary byte buffer, implement `TryIntoCtx` /// # Example /// ```rust /// use scroll::{self, ctx, LE, Endian, Pwrite}; /// #[derive(Debug, PartialEq, Eq)] /// pub struct Foo(u16); /// /// // this will use the default `DefaultCtx = scroll::Endian` /// impl ctx::TryIntoCtx for Foo { /// // you can use your own error here too, but you will then need to specify it in fn generic parameters /// type Error = scroll::Error; /// // you can write using your own context type, see `leb128.rs` /// fn try_into_ctx(self, this: &mut [u8], le: Endian) -> Result { /// if this.len() < 2 { return Err((scroll::Error::Custom("whatever".to_string())).into()) } /// this.pwrite_with(self.0, 0, le)?; /// Ok(2) /// } /// } /// // now we can write a `Foo` into some buffer (in this case, a byte buffer, because that's what we implemented it for above) /// /// let mut bytes: [u8; 4] = [0, 0, 0, 0]; /// bytes.pwrite_with(Foo(0x7f), 1, LE).unwrap(); /// ``` pub trait TryIntoCtx: Sized { type Error; fn try_into_ctx(self, _: &mut This, ctx: Ctx) -> Result; } /// Gets the size of `Self` with a `Ctx`, and in `Self::Units`. Implementors can then call `Gread` related functions /// /// The rationale behind this trait is to: /// /// 1. Prevent `gread` from being used, and the offset being modified based on simply the sizeof the value, which can be a misnomer, e.g., for Leb128, etc. /// 2. Allow a context based size, which is useful for 32/64 bit variants for various containers, etc. pub trait SizeWith { fn size_with(ctx: &Ctx) -> usize; } #[rustfmt::skip] macro_rules! signed_to_unsigned { (i8) => {u8 }; (u8) => {u8 }; (i16) => {u16}; (u16) => {u16}; (i32) => {u32}; (u32) => {u32}; (i64) => {u64}; (u64) => {u64}; (i128) => {u128}; (u128) => {u128}; (f32) => {u32}; (f64) => {u64}; } macro_rules! write_into { ($typ:ty, $size:expr, $n:expr, $dst:expr, $endian:expr) => {{ unsafe { assert!($dst.len() >= $size); let bytes = transmute::<$typ, [u8; $size]>(if $endian.is_little() { $n.to_le() } else { $n.to_be() }); copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); } }}; } macro_rules! into_ctx_impl { ($typ:tt, $size:expr) => { impl IntoCtx for $typ { #[inline] fn into_ctx(self, dst: &mut [u8], le: Endian) { assert!(dst.len() >= $size); write_into!($typ, $size, self, dst, le); } } impl<'a> IntoCtx for &'a $typ { #[inline] fn into_ctx(self, dst: &mut [u8], le: Endian) { (*self).into_ctx(dst, le) } } impl TryIntoCtx for $typ where $typ: IntoCtx, { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result { if $size > dst.len() { Err(error::Error::TooBig { size: $size, len: dst.len(), }) } else { <$typ as IntoCtx>::into_ctx(self, dst, le); Ok($size) } } } impl<'a> TryIntoCtx for &'a $typ { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result { (*self).try_into_ctx(dst, le) } } }; } macro_rules! from_ctx_impl { ($typ:tt, $size:expr) => { impl<'a> FromCtx for $typ { #[inline] fn from_ctx(src: &[u8], le: Endian) -> Self { assert!(src.len() >= $size); let mut data: signed_to_unsigned!($typ) = 0; unsafe { copy_nonoverlapping( src.as_ptr(), &mut data as *mut signed_to_unsigned!($typ) as *mut u8, $size, ); } (if le.is_little() { data.to_le() } else { data.to_be() }) as $typ } } impl<'a> TryFromCtx<'a, Endian> for $typ where $typ: FromCtx, { type Error = error::Error; #[inline] fn try_from_ctx( src: &'a [u8], le: Endian, ) -> result::Result<(Self, usize), Self::Error> { if $size > src.len() { Err(error::Error::TooBig { size: $size, len: src.len(), }) } else { Ok((FromCtx::from_ctx(&src, le), $size)) } } } // as ref impl<'a, T> FromCtx for $typ where T: AsRef<[u8]>, { #[inline] fn from_ctx(src: &T, le: Endian) -> Self { let src = src.as_ref(); assert!(src.len() >= $size); let mut data: signed_to_unsigned!($typ) = 0; unsafe { copy_nonoverlapping( src.as_ptr(), &mut data as *mut signed_to_unsigned!($typ) as *mut u8, $size, ); } (if le.is_little() { data.to_le() } else { data.to_be() }) as $typ } } impl<'a, T> TryFromCtx<'a, Endian, T> for $typ where $typ: FromCtx, T: AsRef<[u8]>, { type Error = error::Error; #[inline] fn try_from_ctx(src: &'a T, le: Endian) -> result::Result<(Self, usize), Self::Error> { let src = src.as_ref(); Self::try_from_ctx(src, le) } } }; } macro_rules! ctx_impl { ($typ:tt, $size:expr) => { from_ctx_impl!($typ, $size); }; } ctx_impl!(u8, 1); ctx_impl!(i8, 1); ctx_impl!(u16, 2); ctx_impl!(i16, 2); ctx_impl!(u32, 4); ctx_impl!(i32, 4); ctx_impl!(u64, 8); ctx_impl!(i64, 8); ctx_impl!(u128, 16); ctx_impl!(i128, 16); macro_rules! from_ctx_float_impl { ($typ:tt, $size:expr) => { impl<'a> FromCtx for $typ { #[inline] fn from_ctx(src: &[u8], le: Endian) -> Self { assert!(src.len() >= ::core::mem::size_of::()); let mut data: signed_to_unsigned!($typ) = 0; unsafe { copy_nonoverlapping( src.as_ptr(), &mut data as *mut signed_to_unsigned!($typ) as *mut u8, $size, ); transmute(if le.is_little() { data.to_le() } else { data.to_be() }) } } } impl<'a> TryFromCtx<'a, Endian> for $typ where $typ: FromCtx, { type Error = error::Error; #[inline] fn try_from_ctx( src: &'a [u8], le: Endian, ) -> result::Result<(Self, usize), Self::Error> { if $size > src.len() { Err(error::Error::TooBig { size: $size, len: src.len(), }) } else { Ok((FromCtx::from_ctx(src, le), $size)) } } } }; } from_ctx_float_impl!(f32, 4); from_ctx_float_impl!(f64, 8); into_ctx_impl!(u8, 1); into_ctx_impl!(i8, 1); into_ctx_impl!(u16, 2); into_ctx_impl!(i16, 2); into_ctx_impl!(u32, 4); into_ctx_impl!(i32, 4); into_ctx_impl!(u64, 8); into_ctx_impl!(i64, 8); into_ctx_impl!(u128, 16); into_ctx_impl!(i128, 16); macro_rules! into_ctx_float_impl { ($typ:tt, $size:expr) => { impl IntoCtx for $typ { #[inline] fn into_ctx(self, dst: &mut [u8], le: Endian) { assert!(dst.len() >= $size); write_into!( signed_to_unsigned!($typ), $size, transmute::<$typ, signed_to_unsigned!($typ)>(self), dst, le ); } } impl<'a> IntoCtx for &'a $typ { #[inline] fn into_ctx(self, dst: &mut [u8], le: Endian) { (*self).into_ctx(dst, le) } } impl TryIntoCtx for $typ where $typ: IntoCtx, { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result { if $size > dst.len() { Err(error::Error::TooBig { size: $size, len: dst.len(), }) } else { <$typ as IntoCtx>::into_ctx(self, dst, le); Ok($size) } } } impl<'a> TryIntoCtx for &'a $typ { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], le: Endian) -> error::Result { (*self).try_into_ctx(dst, le) } } }; } into_ctx_float_impl!(f32, 4); into_ctx_float_impl!(f64, 8); impl<'a> TryFromCtx<'a, StrCtx> for &'a str { type Error = error::Error; #[inline] /// Read a `&str` from `src` using `delimiter` fn try_from_ctx(src: &'a [u8], ctx: StrCtx) -> Result<(Self, usize), Self::Error> { let len = match ctx { StrCtx::Length(len) => len, StrCtx::Delimiter(delimiter) => src.iter().take_while(|c| **c != delimiter).count(), StrCtx::DelimiterUntil(delimiter, len) => { if len > src.len() { return Err(error::Error::TooBig { size: len, len: src.len(), }); }; src.iter() .take_while(|c| **c != delimiter) .take(len) .count() } }; if len > src.len() { return Err(error::Error::TooBig { size: len, len: src.len(), }); }; match str::from_utf8(&src[..len]) { Ok(res) => Ok((res, len + ctx.len())), Err(_) => Err(error::Error::BadInput { size: src.len(), msg: "invalid utf8", }), } } } impl<'a, T> TryFromCtx<'a, StrCtx, T> for &'a str where T: AsRef<[u8]>, { type Error = error::Error; #[inline] fn try_from_ctx(src: &'a T, ctx: StrCtx) -> result::Result<(Self, usize), Self::Error> { let src = src.as_ref(); TryFromCtx::try_from_ctx(src, ctx) } } impl<'a> TryIntoCtx for &'a [u8] { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result { let src_len = self.len() as isize; let dst_len = dst.len() as isize; // if src_len < 0 || dst_len < 0 || offset < 0 { // return Err(error::Error::BadOffset(format!("requested operation has negative casts: src len: {} dst len: {} offset: {}", src_len, dst_len, offset)).into()) // } if src_len > dst_len { Err(error::Error::TooBig { size: self.len(), len: dst.len(), }) } else { unsafe { copy_nonoverlapping(self.as_ptr(), dst.as_mut_ptr(), src_len as usize) }; Ok(self.len()) } } } // TODO: make TryIntoCtx use StrCtx for awesomeness impl<'a> TryIntoCtx for &'a str { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result { let bytes = self.as_bytes(); TryIntoCtx::try_into_ctx(bytes, dst, ()) } } // TODO: we can make this compile time without size_of call, but compiler probably does that anyway macro_rules! sizeof_impl { ($ty:ty) => { impl SizeWith for $ty { #[inline] fn size_with(_ctx: &Endian) -> usize { size_of::<$ty>() } } }; } sizeof_impl!(u8); sizeof_impl!(i8); sizeof_impl!(u16); sizeof_impl!(i16); sizeof_impl!(u32); sizeof_impl!(i32); sizeof_impl!(u64); sizeof_impl!(i64); sizeof_impl!(u128); sizeof_impl!(i128); sizeof_impl!(f32); sizeof_impl!(f64); impl<'a> TryFromCtx<'a, usize> for &'a [u8] { type Error = error::Error; #[inline] fn try_from_ctx(src: &'a [u8], size: usize) -> result::Result<(Self, usize), Self::Error> { if size > src.len() { Err(error::Error::TooBig { size, len: src.len(), }) } else { Ok((&src[..size], size)) } } } #[cfg(feature = "std")] impl<'a> TryFromCtx<'a> for &'a CStr { type Error = error::Error; #[inline] fn try_from_ctx(src: &'a [u8], _ctx: ()) -> result::Result<(Self, usize), Self::Error> { let null_byte = match src.iter().position(|b| *b == 0) { Some(ix) => ix, None => { return Err(error::Error::BadInput { size: 0, msg: "The input doesn't contain a null byte", }) } }; let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(&src[..=null_byte]) }; Ok((cstr, null_byte + 1)) } } #[cfg(feature = "std")] impl<'a> TryFromCtx<'a> for CString { type Error = error::Error; #[inline] fn try_from_ctx(src: &'a [u8], _ctx: ()) -> result::Result<(Self, usize), Self::Error> { let (raw, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(src, _ctx)?; Ok((raw.to_owned(), bytes_read)) } } #[cfg(feature = "std")] impl<'a> TryIntoCtx for &'a CStr { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result { let data = self.to_bytes_with_nul(); if dst.len() < data.len() { Err(error::Error::TooBig { size: dst.len(), len: data.len(), }) } else { unsafe { copy_nonoverlapping(data.as_ptr(), dst.as_mut_ptr(), data.len()); } Ok(data.len()) } } } #[cfg(feature = "std")] impl TryIntoCtx for CString { type Error = error::Error; #[inline] fn try_into_ctx(self, dst: &mut [u8], _ctx: ()) -> error::Result { self.as_c_str().try_into_ctx(dst, ()) } } // example of marshalling to bytes, let's wait until const is an option // impl FromCtx for [u8; 10] { // fn from_ctx(bytes: &[u8], _ctx: Endian) -> Self { // let mut dst: Self = [0; 10]; // assert!(bytes.len() >= dst.len()); // unsafe { // copy_nonoverlapping(bytes.as_ptr(), dst.as_mut_ptr(), dst.len()); // } // dst // } // } #[cfg(test)] mod tests { use super::*; #[test] #[cfg(feature = "std")] fn parse_a_cstr() { let src = CString::new("Hello World").unwrap(); let as_bytes = src.as_bytes_with_nul(); let (got, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(as_bytes, ()).unwrap(); assert_eq!(bytes_read, as_bytes.len()); assert_eq!(got, src.as_c_str()); } #[test] #[cfg(feature = "std")] fn round_trip_a_c_str() { let src = CString::new("Hello World").unwrap(); let src = src.as_c_str(); let as_bytes = src.to_bytes_with_nul(); let mut buffer = vec![0; as_bytes.len()]; let bytes_written = src.try_into_ctx(&mut buffer, ()).unwrap(); assert_eq!(bytes_written, as_bytes.len()); let (got, bytes_read) = <&CStr as TryFromCtx>::try_from_ctx(&buffer, ()).unwrap(); assert_eq!(bytes_read, as_bytes.len()); assert_eq!(got, src); } }