//! The Tokio runtime. //! //! Unlike other Rust programs, asynchronous applications require runtime //! support. In particular, the following runtime services are necessary: //! //! * An **I/O event loop**, called the driver, which drives I/O resources and //! dispatches I/O events to tasks that depend on them. //! * A **scheduler** to execute [tasks] that use these I/O resources. //! * A **timer** for scheduling work to run after a set period of time. //! //! Tokio's [`Runtime`] bundles all of these services as a single type, allowing //! them to be started, shut down, and configured together. However, often it is //! not required to configure a [`Runtime`] manually, and a user may just use the //! [`tokio::main`] attribute macro, which creates a [`Runtime`] under the hood. //! //! # Usage //! //! When no fine tuning is required, the [`tokio::main`] attribute macro can be //! used. //! //! ```no_run //! use tokio::net::TcpListener; //! use tokio::io::{AsyncReadExt, AsyncWriteExt}; //! //! #[tokio::main] //! async fn main() -> Result<(), Box> { //! let listener = TcpListener::bind("127.0.0.1:8080").await?; //! //! loop { //! let (mut socket, _) = listener.accept().await?; //! //! tokio::spawn(async move { //! let mut buf = [0; 1024]; //! //! // In a loop, read data from the socket and write the data back. //! loop { //! let n = match socket.read(&mut buf).await { //! // socket closed //! Ok(n) if n == 0 => return, //! Ok(n) => n, //! Err(e) => { //! println!("failed to read from socket; err = {:?}", e); //! return; //! } //! }; //! //! // Write the data back //! if let Err(e) = socket.write_all(&buf[0..n]).await { //! println!("failed to write to socket; err = {:?}", e); //! return; //! } //! } //! }); //! } //! } //! ``` //! //! From within the context of the runtime, additional tasks are spawned using //! the [`tokio::spawn`] function. Futures spawned using this function will be //! executed on the same thread pool used by the [`Runtime`]. //! //! A [`Runtime`] instance can also be used directly. //! //! ```no_run //! use tokio::net::TcpListener; //! use tokio::io::{AsyncReadExt, AsyncWriteExt}; //! use tokio::runtime::Runtime; //! //! fn main() -> Result<(), Box> { //! // Create the runtime //! let rt = Runtime::new()?; //! //! // Spawn the root task //! rt.block_on(async { //! let listener = TcpListener::bind("127.0.0.1:8080").await?; //! //! loop { //! let (mut socket, _) = listener.accept().await?; //! //! tokio::spawn(async move { //! let mut buf = [0; 1024]; //! //! // In a loop, read data from the socket and write the data back. //! loop { //! let n = match socket.read(&mut buf).await { //! // socket closed //! Ok(n) if n == 0 => return, //! Ok(n) => n, //! Err(e) => { //! println!("failed to read from socket; err = {:?}", e); //! return; //! } //! }; //! //! // Write the data back //! if let Err(e) = socket.write_all(&buf[0..n]).await { //! println!("failed to write to socket; err = {:?}", e); //! return; //! } //! } //! }); //! } //! }) //! } //! ``` //! //! ## Runtime Configurations //! //! Tokio provides multiple task scheduling strategies, suitable for different //! applications. The [runtime builder] or `#[tokio::main]` attribute may be //! used to select which scheduler to use. //! //! #### Multi-Thread Scheduler //! //! The multi-thread scheduler executes futures on a _thread pool_, using a //! work-stealing strategy. By default, it will start a worker thread for each //! CPU core available on the system. This tends to be the ideal configuration //! for most applications. The multi-thread scheduler requires the `rt-multi-thread` //! feature flag, and is selected by default: //! ``` //! use tokio::runtime; //! //! # fn main() -> Result<(), Box> { //! let threaded_rt = runtime::Runtime::new()?; //! # Ok(()) } //! ``` //! //! Most applications should use the multi-thread scheduler, except in some //! niche use-cases, such as when running only a single thread is required. //! //! #### Current-Thread Scheduler //! //! The current-thread scheduler provides a _single-threaded_ future executor. //! All tasks will be created and executed on the current thread. This requires //! the `rt` feature flag. //! ``` //! use tokio::runtime; //! //! # fn main() -> Result<(), Box> { //! let rt = runtime::Builder::new_current_thread() //! .build()?; //! # Ok(()) } //! ``` //! //! #### Resource drivers //! //! When configuring a runtime by hand, no resource drivers are enabled by //! default. In this case, attempting to use networking types or time types will //! fail. In order to enable these types, the resource drivers must be enabled. //! This is done with [`Builder::enable_io`] and [`Builder::enable_time`]. As a //! shorthand, [`Builder::enable_all`] enables both resource drivers. //! //! ## Lifetime of spawned threads //! //! The runtime may spawn threads depending on its configuration and usage. The //! multi-thread scheduler spawns threads to schedule tasks and for `spawn_blocking` //! calls. //! //! While the `Runtime` is active, threads may shut down after periods of being //! idle. Once `Runtime` is dropped, all runtime threads have usually been //! terminated, but in the presence of unstoppable spawned work are not //! guaranteed to have been terminated. See the //! [struct level documentation](Runtime#shutdown) for more details. //! //! [tasks]: crate::task //! [`Runtime`]: Runtime //! [`tokio::spawn`]: crate::spawn //! [`tokio::main`]: ../attr.main.html //! [runtime builder]: crate::runtime::Builder //! [`Runtime::new`]: crate::runtime::Runtime::new //! [`Builder::threaded_scheduler`]: crate::runtime::Builder::threaded_scheduler //! [`Builder::enable_io`]: crate::runtime::Builder::enable_io //! [`Builder::enable_time`]: crate::runtime::Builder::enable_time //! [`Builder::enable_all`]: crate::runtime::Builder::enable_all // At the top due to macros #[cfg(test)] #[cfg(not(tokio_wasm))] #[macro_use] mod tests; pub(crate) mod context; pub(crate) mod coop; pub(crate) mod park; mod driver; pub(crate) mod scheduler; cfg_io_driver_impl! { pub(crate) mod io; } cfg_process_driver! { mod process; } cfg_time! { pub(crate) mod time; } cfg_signal_internal_and_unix! { pub(crate) mod signal; } cfg_rt! { pub(crate) mod task; mod config; use config::Config; mod blocking; #[cfg_attr(tokio_wasi, allow(unused_imports))] pub(crate) use blocking::spawn_blocking; cfg_trace! { pub(crate) use blocking::Mandatory; } cfg_fs! { pub(crate) use blocking::spawn_mandatory_blocking; } mod builder; pub use self::builder::Builder; cfg_unstable! { pub use self::builder::UnhandledPanic; pub use crate::util::rand::RngSeed; } cfg_taskdump! { pub mod dump; pub use dump::Dump; } mod handle; pub use handle::{EnterGuard, Handle, TryCurrentError}; mod runtime; pub use runtime::{Runtime, RuntimeFlavor}; mod thread_id; pub(crate) use thread_id::ThreadId; cfg_metrics! { mod metrics; pub use metrics::{RuntimeMetrics, HistogramScale}; pub(crate) use metrics::{MetricsBatch, SchedulerMetrics, WorkerMetrics, HistogramBuilder}; cfg_net! { pub(crate) use metrics::IoDriverMetrics; } } cfg_not_metrics! { pub(crate) mod metrics; pub(crate) use metrics::{SchedulerMetrics, WorkerMetrics, MetricsBatch, HistogramBuilder}; } /// After thread starts / before thread stops type Callback = std::sync::Arc; }