/* * Copyright 2017 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "wabt/leb128.h" #include #include "wabt/stream.h" #define MAX_U32_LEB128_BYTES 5 #define MAX_U64_LEB128_BYTES 10 namespace wabt { Offset U32Leb128Length(uint32_t value) { uint32_t size = 0; do { value >>= 7; size++; } while (value != 0); return size; } #define LEB128_LOOP_UNTIL(end_cond) \ do { \ uint8_t byte = value & 0x7f; \ value >>= 7; \ if (end_cond) { \ data[length++] = byte; \ break; \ } else { \ data[length++] = byte | 0x80; \ } \ } while (1) Offset WriteFixedU32Leb128At(Stream* stream, Offset offset, uint32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = WriteFixedU32Leb128Raw(data, data + MAX_U32_LEB128_BYTES, value); stream->WriteDataAt(offset, data, length, desc); return length; } void WriteU32Leb128(Stream* stream, uint32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = 0; LEB128_LOOP_UNTIL(value == 0); stream->WriteData(data, length, desc); } void WriteFixedU32Leb128(Stream* stream, uint32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = WriteFixedU32Leb128Raw(data, data + MAX_U32_LEB128_BYTES, value); stream->WriteData(data, length, desc); } // returns the length of the leb128. Offset WriteU32Leb128At(Stream* stream, Offset offset, uint32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = 0; LEB128_LOOP_UNTIL(value == 0); stream->WriteDataAt(offset, data, length, desc); return length; } Offset WriteU32Leb128Raw(uint8_t* dest, uint8_t* dest_end, uint32_t value) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = 0; LEB128_LOOP_UNTIL(value == 0); if (static_cast(dest_end - dest) < length) { return 0; } memcpy(dest, data, length); return length; } Offset WriteFixedU32Leb128Raw(uint8_t* data, uint8_t* end, uint32_t value) { if (end - data < MAX_U32_LEB128_BYTES) { return 0; } data[0] = (value & 0x7f) | 0x80; data[1] = ((value >> 7) & 0x7f) | 0x80; data[2] = ((value >> 14) & 0x7f) | 0x80; data[3] = ((value >> 21) & 0x7f) | 0x80; data[4] = ((value >> 28) & 0x0f); return MAX_U32_LEB128_BYTES; } static void WriteS32Leb128(Stream* stream, int32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; Offset length = 0; if (value < 0) { LEB128_LOOP_UNTIL(value == -1 && (byte & 0x40)); } else { LEB128_LOOP_UNTIL(value == 0 && !(byte & 0x40)); } stream->WriteData(data, length, desc); } static void WriteS64Leb128(Stream* stream, int64_t value, const char* desc) { uint8_t data[MAX_U64_LEB128_BYTES]; Offset length = 0; if (value < 0) { LEB128_LOOP_UNTIL(value == -1 && (byte & 0x40)); } else { LEB128_LOOP_UNTIL(value == 0 && !(byte & 0x40)); } stream->WriteData(data, length, desc); } void WriteS32Leb128(Stream* stream, uint32_t value, const char* desc) { WriteS32Leb128(stream, Bitcast(value), desc); } void WriteU64Leb128(Stream* stream, uint64_t value, const char* desc) { uint8_t data[MAX_U64_LEB128_BYTES]; Offset length = 0; LEB128_LOOP_UNTIL(value == 0); stream->WriteData(data, length, desc); } void WriteS64Leb128(Stream* stream, uint64_t value, const char* desc) { WriteS64Leb128(stream, Bitcast(value), desc); } void WriteFixedS32Leb128(Stream* stream, uint32_t value, const char* desc) { uint8_t data[MAX_U32_LEB128_BYTES]; data[0] = (value & 0x7f) | 0x80; data[1] = ((value >> 7) & 0x7f) | 0x80; data[2] = ((value >> 14) & 0x7f) | 0x80; data[3] = ((value >> 21) & 0x7f) | 0x80; // The last byte needs to be sign-extended. data[4] = ((value >> 28) & 0x0f); if (static_cast(value) < 0) { data[4] |= 0x70; } stream->WriteData(data, MAX_U32_LEB128_BYTES, desc); } #undef LEB128_LOOP_UNTIL #define BYTE_AT(type, i, shift) ((static_cast(p[i]) & 0x7f) << (shift)) #define LEB128_1(type) (BYTE_AT(type, 0, 0)) #define LEB128_2(type) (BYTE_AT(type, 1, 7) | LEB128_1(type)) #define LEB128_3(type) (BYTE_AT(type, 2, 14) | LEB128_2(type)) #define LEB128_4(type) (BYTE_AT(type, 3, 21) | LEB128_3(type)) #define LEB128_5(type) (BYTE_AT(type, 4, 28) | LEB128_4(type)) #define LEB128_6(type) (BYTE_AT(type, 5, 35) | LEB128_5(type)) #define LEB128_7(type) (BYTE_AT(type, 6, 42) | LEB128_6(type)) #define LEB128_8(type) (BYTE_AT(type, 7, 49) | LEB128_7(type)) #define LEB128_9(type) (BYTE_AT(type, 8, 56) | LEB128_8(type)) #define LEB128_10(type) (BYTE_AT(type, 9, 63) | LEB128_9(type)) #define SHIFT_AMOUNT(type, sign_bit) (sizeof(type) * 8 - 1 - (sign_bit)) #define SIGN_EXTEND(type, value, sign_bit) \ (static_cast((value) << SHIFT_AMOUNT(type, sign_bit)) >> \ SHIFT_AMOUNT(type, sign_bit)) size_t ReadU32Leb128(const uint8_t* p, const uint8_t* end, uint32_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { *out_value = LEB128_1(uint32_t); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { *out_value = LEB128_2(uint32_t); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { *out_value = LEB128_3(uint32_t); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { *out_value = LEB128_4(uint32_t); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { // The top bits set represent values > 32 bits. if (p[4] & 0xf0) { return 0; } *out_value = LEB128_5(uint32_t); return 5; } else { // past the end. *out_value = 0; return 0; } } size_t ReadU64Leb128(const uint8_t* p, const uint8_t* end, uint64_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { *out_value = LEB128_1(uint64_t); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { *out_value = LEB128_2(uint64_t); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { *out_value = LEB128_3(uint64_t); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { *out_value = LEB128_4(uint64_t); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { *out_value = LEB128_5(uint64_t); return 5; } else if (p + 5 < end && (p[5] & 0x80) == 0) { *out_value = LEB128_6(uint64_t); return 6; } else if (p + 6 < end && (p[6] & 0x80) == 0) { *out_value = LEB128_7(uint64_t); return 7; } else if (p + 7 < end && (p[7] & 0x80) == 0) { *out_value = LEB128_8(uint64_t); return 8; } else if (p + 8 < end && (p[8] & 0x80) == 0) { *out_value = LEB128_9(uint64_t); return 9; } else if (p + 9 < end && (p[9] & 0x80) == 0) { // The top bits set represent values > 32 bits. if (p[9] & 0xf0) { return 0; } *out_value = LEB128_10(uint64_t); return 10; } else { // past the end. *out_value = 0; return 0; } } size_t ReadS32Leb128(const uint8_t* p, const uint8_t* end, uint32_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { uint32_t result = LEB128_1(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 6); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { uint32_t result = LEB128_2(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 13); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { uint32_t result = LEB128_3(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 20); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { uint32_t result = LEB128_4(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 27); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { // The top bits should be a sign-extension of the sign bit. bool sign_bit_set = (p[4] & 0x8); int top_bits = p[4] & 0xf0; if ((sign_bit_set && top_bits != 0x70) || (!sign_bit_set && top_bits != 0)) { return 0; } uint32_t result = LEB128_5(uint32_t); *out_value = result; return 5; } else { // Past the end. return 0; } } size_t ReadS64Leb128(const uint8_t* p, const uint8_t* end, uint64_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { uint64_t result = LEB128_1(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 6); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { uint64_t result = LEB128_2(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 13); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { uint64_t result = LEB128_3(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 20); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { uint64_t result = LEB128_4(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 27); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { uint64_t result = LEB128_5(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 34); return 5; } else if (p + 5 < end && (p[5] & 0x80) == 0) { uint64_t result = LEB128_6(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 41); return 6; } else if (p + 6 < end && (p[6] & 0x80) == 0) { uint64_t result = LEB128_7(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 48); return 7; } else if (p + 7 < end && (p[7] & 0x80) == 0) { uint64_t result = LEB128_8(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 55); return 8; } else if (p + 8 < end && (p[8] & 0x80) == 0) { uint64_t result = LEB128_9(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 62); return 9; } else if (p + 9 < end && (p[9] & 0x80) == 0) { // The top bits should be a sign-extension of the sign bit. bool sign_bit_set = (p[9] & 0x1); int top_bits = p[9] & 0xfe; if ((sign_bit_set && top_bits != 0x7e) || (!sign_bit_set && top_bits != 0)) { return 0; } uint64_t result = LEB128_10(uint64_t); *out_value = result; return 10; } else { // Past the end. return 0; } } #undef BYTE_AT #undef LEB128_1 #undef LEB128_2 #undef LEB128_3 #undef LEB128_4 #undef LEB128_5 #undef LEB128_6 #undef LEB128_7 #undef LEB128_8 #undef LEB128_9 #undef LEB128_10 #undef SHIFT_AMOUNT #undef SIGN_EXTEND } // namespace wabt