// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Author: dsites@google.com (Dick Sites) // #include "cldutil_shared.h" #include #include "cld2tablesummary.h" #include "integral_types.h" #include "port.h" #include "utf8statetable.h" namespace CLD2 { // Runtime routines for hashing, looking up, and scoring // unigrams (CJK), bigrams (CJK), quadgrams, and octagrams. // Unigrams and bigrams are for CJK languages only, including simplified/ // traditional Chinese, Japanese, Korean, Vietnamese Han characters, and // Zhuang Han characters. Surrounding spaces are not considered. // Quadgrams and octagrams for for non-CJK and include two bits indicating // preceding and trailing spaces (word boundaries). // Indicator bits for leading/trailing space around quad/octagram // NOTE: 4444 bits are chosen to flip constant bits in hash of four chars of // 1-, 2-, or 3-bytes each. static const uint32 kPreSpaceIndicator = 0x00004444; static const uint32 kPostSpaceIndicator = 0x44440000; // Little-endian masks for 0..24 bytes picked up as uint32's static const uint32 kWordMask0[4] = { 0xFFFFFFFF, 0x000000FF, 0x0000FFFF, 0x00FFFFFF }; static const int kMinCJKUTF8CharBytes = 3; static const int kMinGramCount = 3; static const int kMaxGramCount = 16; static const int UTFmax = 4; // Max number of bytes in a UTF-8 character // Routines to access a hash table of pairs // Buckets have 4-byte wordhash for sizes < 32K buckets, but only // 2-byte wordhash for sizes >= 32K buckets, with other wordhash bits used as // bucket subscript. // Probs is a packed: three languages plus a subscript for probability table // Buckets have all the keys together, then all the values.Key array never // crosses a cache-line boundary, so no-match case takes exactly one cache miss. // Match case may sometimes take an additional cache miss on value access. // // Other possibilites include 5 or 10 6-byte entries plus pad to make 32 or 64 // byte buckets with single cache miss. // Or 2-byte key and 6-byte value, allowing 5 languages instead of three. //----------------------------------------------------------------------------// // Hashing groups of 1/2/4/8 letters, perhaps with spaces or underscores // //----------------------------------------------------------------------------// // Design principles for these hash functions // - Few operations // - Handle 1-, 2-, and 3-byte UTF-8 scripts, ignoring intermixing except in // Latin script expect 1- and 2-byte mixtures. // - Last byte of each character has about 5 bits of information // - Spread good bits around so they can interact in at least two ways // with other characters // - Use add for additional mixing thorugh carries // CJK Three-byte bigram // ....dddd..cccccc..bbbbbb....aaaa // ..................ffffff..eeeeee // make // ....dddd..cccccc..bbbbbb....aaaa // 000....dddd..cccccc..bbbbbb....a // ..................ffffff..eeeeee // ffffff..eeeeee000000000000000000 // // CJK Four-byte bigram // ..dddddd..cccccc....bbbb....aaaa // ..hhhhhh..gggggg....ffff....eeee // make // ..dddddd..cccccc....bbbb....aaaa // 000..dddddd..cccccc....bbbb....a // ..hhhhhh..gggggg....ffff....eeee // ..ffff....eeee000000000000000000 // BIGRAM // Pick up 1..8 bytes and hash them via mask/shift/add. NO pre/post // OVERSHOOTS up to 3 bytes // For runtime use of tables // Does X86 unaligned loads uint32 BiHashV2(const char* word_ptr, int bytecount) { if (bytecount == 0) {return 0;} const uint32* word_ptr32 = reinterpret_cast(word_ptr); uint32 word0, word1; if (bytecount <= 4) { word0 = UNALIGNED_LOAD32(word_ptr32) & kWordMask0[bytecount & 3]; word0 = word0 ^ (word0 >> 3); return word0; } // Else do 8 bytes word0 = UNALIGNED_LOAD32(word_ptr32); word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1) & kWordMask0[bytecount & 3]; word1 = word1 ^ (word1 << 18); return word0 + word1; } // // Ascii-7 One-byte chars // ...ddddd...ccccc...bbbbb...aaaaa // make // ...ddddd...ccccc...bbbbb...aaaaa // 000...ddddd...ccccc...bbbbb...aa // // Latin 1- and 2-byte chars // ...ddddd...ccccc...bbbbb...aaaaa // ...................fffff...eeeee // make // ...ddddd...ccccc...bbbbb...aaaaa // 000...ddddd...ccccc...bbbbb...aa // ...................fffff...eeeee // ...............fffff...eeeee0000 // // Non-CJK Two-byte chars // ...ddddd...........bbbbb........ // ...hhhhh...........fffff........ // make // ...ddddd...........bbbbb........ // 000...ddddd...........bbbbb..... // ...hhhhh...........fffff........ // hhhh...........fffff........0000 // // Non-CJK Three-byte chars // ...........ccccc................ // ...................fffff........ // ...lllll...................iiiii // make // ...........ccccc................ // 000...........ccccc............. // ...................fffff........ // ...............fffff........0000 // ...lllll...................iiiii // .lllll...................iiiii00 // // QUADGRAM // Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add // OVERSHOOTS up to 3 bytes // For runtime use of tables // Does X86 unaligned loads uint32 QuadHashV2Mix(const char* word_ptr, int bytecount, uint32 prepost) { const uint32* word_ptr32 = reinterpret_cast(word_ptr); uint32 word0, word1, word2; if (bytecount <= 4) { word0 = UNALIGNED_LOAD32(word_ptr32) & kWordMask0[bytecount & 3]; word0 = word0 ^ (word0 >> 3); return word0 ^ prepost; } else if (bytecount <= 8) { word0 = UNALIGNED_LOAD32(word_ptr32); word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1) & kWordMask0[bytecount & 3]; word1 = word1 ^ (word1 << 4); return (word0 ^ prepost) + word1; } // else do 12 bytes word0 = UNALIGNED_LOAD32(word_ptr32); word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1); word1 = word1 ^ (word1 << 4); word2 = UNALIGNED_LOAD32(word_ptr32 + 2) & kWordMask0[bytecount & 3]; word2 = word2 ^ (word2 << 2); return (word0 ^ prepost) + word1 + word2; } // QUADGRAM wrapper with surrounding spaces // Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add // UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes // For runtime use of tables uint32 QuadHashV2(const char* word_ptr, int bytecount) { if (bytecount == 0) {return 0;} uint32 prepost = 0; if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;} if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;} return QuadHashV2Mix(word_ptr, bytecount, prepost); } // QUADGRAM wrapper with surrounding underscores (offline use) // Pick up 1..12 bytes plus pre/post '_' and hash them via mask/shift/add // OVERSHOOTS up to 3 bytes // For offline construction of tables uint32 QuadHashV2Underscore(const char* word_ptr, int bytecount) { if (bytecount == 0) {return 0;} const char* local_word_ptr = word_ptr; int local_bytecount = bytecount; uint32 prepost = 0; if (local_word_ptr[0] == '_') { prepost |= kPreSpaceIndicator; ++local_word_ptr; --local_bytecount; } if (local_word_ptr[local_bytecount - 1] == '_') { prepost |= kPostSpaceIndicator; --local_bytecount; } return QuadHashV2Mix(local_word_ptr, local_bytecount, prepost); } // OCTAGRAM // Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add // UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes // // The low 32 bits follow the pattern from above, tuned to different scripts // The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each // For runtime use of tables V3 // Does X86 unaligned loads uint64 OctaHash40Mix(const char* word_ptr, int bytecount, uint64 prepost) { const uint32* word_ptr32 = reinterpret_cast(word_ptr); uint64 word0; uint64 word1; uint64 sum; if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;} if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;} switch ((bytecount - 1) >> 2) { case 0: // 1..4 bytes word0 = UNALIGNED_LOAD32(word_ptr32) & kWordMask0[bytecount & 3]; sum = word0; word0 = word0 ^ (word0 >> 3); break; case 1: // 5..8 bytes word0 = UNALIGNED_LOAD32(word_ptr32); sum = word0; word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1) & kWordMask0[bytecount & 3]; sum += word1; word1 = word1 ^ (word1 << 4); word0 += word1; break; case 2: // 9..12 bytes word0 = UNALIGNED_LOAD32(word_ptr32); sum = word0; word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1); sum += word1; word1 = word1 ^ (word1 << 4); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 2) & kWordMask0[bytecount & 3]; sum += word1; word1 = word1 ^ (word1 << 2); word0 += word1; break; case 3: // 13..16 bytes word0 =UNALIGNED_LOAD32(word_ptr32); sum = word0; word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1); sum += word1; word1 = word1 ^ (word1 << 4); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 2); sum += word1; word1 = word1 ^ (word1 << 2); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 3) & kWordMask0[bytecount & 3]; sum += word1; word1 = word1 ^ (word1 >> 8); word0 += word1; break; case 4: // 17..20 bytes word0 = UNALIGNED_LOAD32(word_ptr32); sum = word0; word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1); sum += word1; word1 = word1 ^ (word1 << 4); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 2); sum += word1; word1 = word1 ^ (word1 << 2); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 3); sum += word1; word1 = word1 ^ (word1 >> 8); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 4) & kWordMask0[bytecount & 3]; sum += word1; word1 = word1 ^ (word1 >> 4); word0 += word1; break; default: // 21..24 bytes and higher (ignores beyond 24) word0 = UNALIGNED_LOAD32(word_ptr32); sum = word0; word0 = word0 ^ (word0 >> 3); word1 = UNALIGNED_LOAD32(word_ptr32 + 1); sum += word1; word1 = word1 ^ (word1 << 4); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 2); sum += word1; word1 = word1 ^ (word1 << 2); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 3); sum += word1; word1 = word1 ^ (word1 >> 8); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 4); sum += word1; word1 = word1 ^ (word1 >> 4); word0 += word1; word1 = UNALIGNED_LOAD32(word_ptr32 + 5) & kWordMask0[bytecount & 3]; sum += word1; word1 = word1 ^ (word1 >> 6); word0 += word1; break; } sum += (sum >> 17); // extra 1-bit shift for bytes 2 & 3 sum += (sum >> 9); // extra 1-bit shift for bytes 1 & 3 sum = (sum & 0xff) << 32; return (word0 ^ prepost) + sum; } // OCTAGRAM wrapper with surrounding spaces // Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add // UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes // // The low 32 bits follow the pattern from above, tuned to different scripts // The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each // For runtime use of tables V3 uint64 OctaHash40(const char* word_ptr, int bytecount) { if (bytecount == 0) {return 0;} uint64 prepost = 0; if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;} if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;} return OctaHash40Mix(word_ptr, bytecount, prepost); } // OCTAGRAM wrapper with surrounding underscores (offline use) // Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add // UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes // // The low 32 bits follow the pattern from above, tuned to different scripts // The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each // For offline construction of tables uint64 OctaHash40underscore(const char* word_ptr, int bytecount) { if (bytecount == 0) {return 0;} const char* local_word_ptr = word_ptr; int local_bytecount = bytecount; uint64 prepost = 0; if (local_word_ptr[0] == '_') { prepost |= kPreSpaceIndicator; ++local_word_ptr; --local_bytecount; } if (local_word_ptr[local_bytecount - 1] == '_') { prepost |= kPostSpaceIndicator; --local_bytecount; } return OctaHash40Mix(local_word_ptr, local_bytecount, prepost); } // Hash a consecutive pair of tokens/words A B // Old: hash is B - A, which gives too many false hits on one-char diffs // Now: rotate(A,13) + B uint64 PairHash(uint64 worda_hash, uint64 wordb_hash) { return ((worda_hash >> 13) | (worda_hash << (64 - 13))) + wordb_hash; } //----------------------------------------------------------------------------// // Finding groups of 1/2/4/8 letters // //----------------------------------------------------------------------------// // src points to a letter. Find the byte length of a unigram starting there. int UniLen(const char* src) { const char* src_end = src; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; return src_end - src; } // src points to a letter. Find the byte length of a bigram starting there. int BiLen(const char* src) { const char* src_end = src; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; return src_end - src; } // src points to a letter. Find the byte length of a quadgram starting there. int QuadLen(const char* src) { const char* src_end = src; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]]; return src_end - src; } // src points to a letter. Find the byte length of an octagram starting there. int OctaLen(const char* src) { const char* src_end = src; int charcount = 0; while (src_end[0] != ' ') { src_end += UTF8OneCharLen(src); ++charcount; if (charcount == 8) {break;} } return src_end - src; } } // End namespace CLD2