/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef nsTObserverArray_h___ #define nsTObserverArray_h___ #include "mozilla/MemoryReporting.h" #include "mozilla/ReverseIterator.h" #include "nsTArray.h" #include "nsCycleCollectionNoteChild.h" /** * An array of observers. Like a normal array, but supports iterators that are * stable even if the array is modified during iteration. * The template parameter T is the observer type the array will hold; * N is the number of built-in storage slots that come with the array. * NOTE: You probably want to use nsTObserverArray, unless you specifically * want built-in storage. See below. * @see nsTObserverArray, nsTArray */ class nsTObserverArray_base { public: typedef size_t index_type; typedef size_t size_type; typedef ptrdiff_t diff_type; protected: class Iterator_base { public: Iterator_base(const Iterator_base&) = delete; protected: friend class nsTObserverArray_base; Iterator_base(index_type aPosition, Iterator_base* aNext) : mPosition(aPosition), mNext(aNext) {} // The current position of the iterator. Its exact meaning differs // depending on iterator. See nsTObserverArray::ForwardIterator. index_type mPosition; // The next iterator currently iterating the same array Iterator_base* mNext; }; nsTObserverArray_base() : mIterators(nullptr) {} ~nsTObserverArray_base() { NS_ASSERTION(mIterators == nullptr, "iterators outlasting array"); } /** * Adjusts iterators after an element has been inserted or removed * from the array. * @param aModPos Position where elements were added or removed. * @param aAdjustment -1 if an element was removed, 1 if an element was * added. */ void AdjustIterators(index_type aModPos, diff_type aAdjustment); /** * Clears iterators when the array is destroyed. */ void ClearIterators(); mutable Iterator_base* mIterators; }; template class nsAutoTObserverArray : protected nsTObserverArray_base { public: typedef T value_type; typedef nsTArray array_type; nsAutoTObserverArray() = default; // // Accessor methods // // @return The number of elements in the array. size_type Length() const { return mArray.Length(); } // @return True if the array is empty or false otherwise. bool IsEmpty() const { return mArray.IsEmpty(); } // This method provides direct, readonly access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. const value_type* Elements() const { return mArray.Elements(); } value_type* Elements() { return mArray.Elements(); } // This method provides direct access to an element of the array. The given // index must be within the array bounds. If the underlying array may change // during iteration, use an iterator instead of this function. // @param aIndex The index of an element in the array. // @return A reference to the i'th element of the array. value_type& ElementAt(index_type aIndex) { return mArray.ElementAt(aIndex); } // Same as above, but readonly. const value_type& ElementAt(index_type aIndex) const { return mArray.ElementAt(aIndex); } // This method provides direct access to an element of the array in a bounds // safe manner. If the requested index is out of bounds the provided default // value is returned. // @param aIndex The index of an element in the array. // @param aDef The value to return if the index is out of bounds. value_type& SafeElementAt(index_type aIndex, value_type& aDef) { return mArray.SafeElementAt(aIndex, aDef); } // Same as above, but readonly. const value_type& SafeElementAt(index_type aIndex, const value_type& aDef) const { return mArray.SafeElementAt(aIndex, aDef); } // No operator[] is provided because the point of this class is to support // allow modifying the array during iteration, and ElementAt() is not safe // in those conditions. // // Search methods // // This method searches, starting from the beginning of the array, // for the first element in this array that is equal to the given element. // 'operator==' must be defined for value_type. // @param aItem The item to search for. // @return true if the element was found. template bool Contains(const Item& aItem) const { return IndexOf(aItem) != array_type::NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. // 'operator==' must be defined for value_type. // @param aItem The item to search for. // @param aStart The index to start from. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& aItem, index_type aStart = 0) const { return mArray.IndexOf(aItem, aStart); } // // Mutation methods // // Insert a given element at the given index. // @param aIndex The index at which to insert item. // @param aItem The item to insert, template void InsertElementAt(index_type aIndex, const Item& aItem) { mArray.InsertElementAt(aIndex, aItem); AdjustIterators(aIndex, 1); } // Same as above but without copy constructing. // This is useful to avoid temporaries. value_type* InsertElementAt(index_type aIndex) { value_type* item = mArray.InsertElementAt(aIndex); AdjustIterators(aIndex, 1); return item; } // Prepend an element to the array unless it already exists in the array. // 'operator==' must be defined for value_type. // @param aItem The item to prepend. template void PrependElementUnlessExists(const Item& aItem) { if (!Contains(aItem)) { mArray.InsertElementAt(0, aItem); AdjustIterators(0, 1); } } // Append an element to the array. // @param aItem The item to append. template void AppendElement(Item&& aItem) { mArray.AppendElement(std::forward(aItem)); } // Same as above, but without copy-constructing. This is useful to avoid // temporaries. value_type* AppendElement() { return mArray.AppendElement(); } // Append an element to the array unless it already exists in the array. // 'operator==' must be defined for value_type. // @param aItem The item to append. template void AppendElementUnlessExists(const Item& aItem) { if (!Contains(aItem)) { mArray.AppendElement(aItem); } } // Remove an element from the array. // @param aIndex The index of the item to remove. void RemoveElementAt(index_type aIndex) { NS_ASSERTION(aIndex < mArray.Length(), "invalid index"); mArray.RemoveElementAt(aIndex); AdjustIterators(aIndex, -1); } // This helper function combines IndexOf with RemoveElementAt to "search // and destroy" the first element that is equal to the given element. // 'operator==' must be defined for value_type. // @param aItem The item to search for. // @return true if the element was found and removed. template bool RemoveElement(const Item& aItem) { index_type index = mArray.IndexOf(aItem, 0); if (index == array_type::NoIndex) { return false; } mArray.RemoveElementAt(index); AdjustIterators(index, -1); return true; } // See nsTArray::RemoveElementsBy. Neither the predicate nor the removal of // elements from the array must have any side effects that modify the array. template void NonObservingRemoveElementsBy(Predicate aPredicate) { index_type i = 0; mArray.RemoveElementsBy([&](const value_type& aItem) { if (aPredicate(aItem)) { // This element is going to be removed. AdjustIterators(i, -1); return true; } ++i; return false; }); } // Removes all observers and collapses all iterators to the beginning of // the array. The result is that forward iterators will see all elements // in the array. void Clear() { mArray.Clear(); ClearIterators(); } // Compact the array to minimize the memory it uses void Compact() { mArray.Compact(); } // Returns the number of bytes on the heap taken up by this object, not // including sizeof(*this). If you want to measure anything hanging off the // array, you must iterate over the elements and measure them individually; // hence the "Shallow" prefix. size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { return mArray.ShallowSizeOfExcludingThis(aMallocSizeOf); } // // Iterators // // Base class for iterators. Do not use this directly. class Iterator : public Iterator_base { protected: friend class nsAutoTObserverArray; typedef nsAutoTObserverArray array_type; Iterator(const Iterator& aOther) : Iterator(aOther.mPosition, aOther.mArray) {} Iterator(index_type aPosition, const array_type& aArray) : Iterator_base(aPosition, aArray.mIterators), mArray(const_cast(aArray)) { aArray.mIterators = this; } ~Iterator() { NS_ASSERTION(mArray.mIterators == this, "Iterators must currently be destroyed in opposite order " "from the construction order. It is suggested that you " "simply put them on the stack"); mArray.mIterators = mNext; } // The array we're iterating array_type& mArray; }; // Iterates the array forward from beginning to end. mPosition points // to the element that will be returned on next call to GetNext. // Elements: // - prepended to the array during iteration *will not* be traversed // - appended during iteration *will* be traversed // - removed during iteration *will not* be traversed. // @see EndLimitedIterator class ForwardIterator : protected Iterator { public: typedef nsAutoTObserverArray array_type; typedef Iterator base_type; explicit ForwardIterator(const array_type& aArray) : Iterator(0, aArray) {} ForwardIterator(const array_type& aArray, index_type aPos) : Iterator(aPos, aArray) {} bool operator<(const ForwardIterator& aOther) const { NS_ASSERTION(&this->mArray == &aOther.mArray, "not iterating the same array"); return base_type::mPosition < aOther.mPosition; } // Returns true if there are more elements to iterate. // This must precede a call to GetNext(). If false is // returned, GetNext() must not be called. bool HasMore() const { return base_type::mPosition < base_type::mArray.Length(); } // Returns the next element and steps one step. This must // be preceded by a call to HasMore(). // @return The next observer. value_type& GetNext() { NS_ASSERTION(HasMore(), "iterating beyond end of array"); return base_type::mArray.Elements()[base_type::mPosition++]; } // Removes the element at the current iterator position. // (the last element returned from |GetNext()|) // This will not affect the next call to |GetNext()| void Remove() { return base_type::mArray.RemoveElementAt(base_type::mPosition - 1); } }; // EndLimitedIterator works like ForwardIterator, but will not iterate new // observers appended to the array after the iterator was created. class EndLimitedIterator : protected ForwardIterator { public: typedef nsAutoTObserverArray array_type; typedef Iterator base_type; explicit EndLimitedIterator(const array_type& aArray) : ForwardIterator(aArray), mEnd(aArray, aArray.Length()) {} // Returns true if there are more elements to iterate. // This must precede a call to GetNext(). If false is // returned, GetNext() must not be called. bool HasMore() const { return *this < mEnd; } // Returns the next element and steps one step. This must // be preceded by a call to HasMore(). // @return The next observer. value_type& GetNext() { NS_ASSERTION(HasMore(), "iterating beyond end of array"); return base_type::mArray.Elements()[base_type::mPosition++]; } // Removes the element at the current iterator position. // (the last element returned from |GetNext()|) // This will not affect the next call to |GetNext()| void Remove() { return base_type::mArray.RemoveElementAt(base_type::mPosition - 1); } private: ForwardIterator mEnd; }; // Iterates the array backward from end to start. mPosition points // to the element that was returned last. // Elements: // - prepended to the array during iteration *will* be traversed, // unless the iteration already arrived at the first element // - appended during iteration *will not* be traversed // - removed during iteration *will not* be traversed. class BackwardIterator : protected Iterator { public: typedef nsAutoTObserverArray array_type; typedef Iterator base_type; explicit BackwardIterator(const array_type& aArray) : Iterator(aArray.Length(), aArray) {} // Returns true if there are more elements to iterate. // This must precede a call to GetNext(). If false is // returned, GetNext() must not be called. bool HasMore() const { return base_type::mPosition > 0; } // Returns the next element and steps one step. This must // be preceded by a call to HasMore(). // @return The next observer. value_type& GetNext() { NS_ASSERTION(HasMore(), "iterating beyond start of array"); return base_type::mArray.Elements()[--base_type::mPosition]; } // Removes the element at the current iterator position. // (the last element returned from |GetNext()|) // This will not affect the next call to |GetNext()| void Remove() { return base_type::mArray.RemoveElementAt(base_type::mPosition); } }; struct EndSentinel {}; // Internal type, do not use directly, see // ForwardRange()/EndLimitedRange()/BackwardRange(). template struct STLIterator { using value_type = std::remove_reference_t; explicit STLIterator(const nsAutoTObserverArray& aArray) : mIterator{aArray} { operator++(); } bool operator!=(const EndSentinel&) const { // We are a non-end-sentinel and the other is an end-sentinel, so we are // still valid if mCurrent is valid. return mCurrent; } STLIterator& operator++() { mCurrent = mIterator.HasMore() ? &mIterator.GetNext() : nullptr; return *this; } value_type* operator->() { return mCurrent; } U& operator*() { return *mCurrent; } private: Iterator mIterator; value_type* mCurrent; }; // Internal type, do not use directly, see // ForwardRange()/EndLimitedRange()/BackwardRange(). template class STLIteratorRange { public: using iterator = STLIterator; explicit STLIteratorRange(const nsAutoTObserverArray& aArray) : mArray{aArray} {} STLIteratorRange(const STLIteratorRange& aOther) = delete; iterator begin() const { return iterator{mArray}; } EndSentinel end() const { return {}; } private: const nsAutoTObserverArray& mArray; }; template using STLForwardIteratorRange = STLIteratorRange; template using STLEndLimitedIteratorRange = STLIteratorRange; template using STLBackwardIteratorRange = STLIteratorRange; // Constructs a range (usable with range-based for) based on the // ForwardIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto ForwardRange() { return STLForwardIteratorRange{*this}; } // Constructs a const range (usable with range-based for) based on the // ForwardIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto ForwardRange() const { return STLForwardIteratorRange{*this}; } // Constructs a range (usable with range-based for) based on the // EndLimitedIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto EndLimitedRange() { return STLEndLimitedIteratorRange{*this}; } // Constructs a const range (usable with range-based for) based on the // EndLimitedIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto EndLimitedRange() const { return STLEndLimitedIteratorRange{*this}; } // Constructs a range (usable with range-based for) based on the // BackwardIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto BackwardRange() { return STLBackwardIteratorRange{*this}; } // Constructs a const range (usable with range-based for) based on the // BackwardIterator semantics. Note that this range does not provide // full-feature STL-style iterators usable with STL-style algorithms. auto BackwardRange() const { return STLBackwardIteratorRange{*this}; } // Constructs a const range (usable with range-based for and STL-style // algorithms) based on a non-observing iterator. The array must not be // modified during iteration. auto NonObservingRange() const { return mozilla::detail::IteratorRange< typename AutoTArray::const_iterator, typename AutoTArray::const_reverse_iterator>{mArray.cbegin(), mArray.cend()}; } protected: AutoTArray mArray; }; template class nsTObserverArray : public nsAutoTObserverArray { public: typedef nsAutoTObserverArray base_type; typedef nsTObserverArray_base::size_type size_type; // // Initialization methods // nsTObserverArray() = default; // Initialize this array and pre-allocate some number of elements. explicit nsTObserverArray(size_type aCapacity) { base_type::mArray.SetCapacity(aCapacity); } nsTObserverArray Clone() const { auto result = nsTObserverArray{}; result.mArray.Assign(this->mArray); return result; } }; template auto MakeBackInserter(nsAutoTObserverArray& aArray) { return mozilla::nsTArrayBackInserter>{aArray}; } template inline void ImplCycleCollectionUnlink(nsAutoTObserverArray& aField) { aField.Clear(); } template inline void ImplCycleCollectionTraverse( nsCycleCollectionTraversalCallback& aCallback, nsAutoTObserverArray& aField, const char* aName, uint32_t aFlags = 0) { aFlags |= CycleCollectionEdgeNameArrayFlag; size_t length = aField.Length(); for (size_t i = 0; i < length; ++i) { ImplCycleCollectionTraverse(aCallback, aField.ElementAt(i), aName, aFlags); } } // Note that this macro only works if the array holds pointers to XPCOM objects. #define NS_OBSERVER_ARRAY_NOTIFY_XPCOM_OBSERVERS(array_, func_, params_) \ do { \ for (RefPtr obs_ : (array_).ForwardRange()) { \ obs_->func_ params_; \ } \ } while (0) // Note that this macro only works if the array holds pointers to XPCOM objects. #define NS_OBSERVER_ARRAY_NOTIFY_OBSERVERS(array_, func_, params_) \ do { \ for (auto* obs_ : (array_).ForwardRange()) { \ obs_->func_ params_; \ } \ } while (0) #endif // nsTObserverArray_h___