1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/AnimationEffect.h"
#include "mozilla/dom/AnimationEffectBinding.h"
#include "mozilla/dom/Animation.h"
#include "mozilla/dom/KeyframeEffect.h"
#include "mozilla/dom/MutationObservers.h"
#include "mozilla/AnimationUtils.h"
#include "mozilla/FloatingPoint.h"
#include "nsDOMMutationObserver.h"
namespace mozilla::dom {
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE_CLASS(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_UNLINK(mDocument, mAnimation)
NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mDocument, mAnimation)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(AnimationEffect)
NS_IMPL_CYCLE_COLLECTING_RELEASE(AnimationEffect)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(AnimationEffect)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
AnimationEffect::AnimationEffect(Document* aDocument, TimingParams&& aTiming)
: mDocument(aDocument), mTiming(std::move(aTiming)) {
mRTPCallerType = mDocument->GetScopeObject()->GetRTPCallerType();
}
AnimationEffect::~AnimationEffect() = default;
nsISupports* AnimationEffect::GetParentObject() const {
return ToSupports(mDocument);
}
// https://drafts.csswg.org/web-animations/#current
bool AnimationEffect::IsCurrent() const {
if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
if (computedTiming.mPhase == ComputedTiming::AnimationPhase::Active) {
return true;
}
return (mAnimation->PlaybackRate() > 0 &&
computedTiming.mPhase == ComputedTiming::AnimationPhase::Before) ||
(mAnimation->PlaybackRate() < 0 &&
computedTiming.mPhase == ComputedTiming::AnimationPhase::After);
}
// https://drafts.csswg.org/web-animations/#in-effect
bool AnimationEffect::IsInEffect() const {
ComputedTiming computedTiming = GetComputedTiming();
return !computedTiming.mProgress.IsNull();
}
void AnimationEffect::SetSpecifiedTiming(TimingParams&& aTiming) {
if (mTiming == aTiming) {
return;
}
mTiming = aTiming;
UpdateNormalizedTiming();
if (mAnimation) {
Maybe<nsAutoAnimationMutationBatch> mb;
if (AsKeyframeEffect() && AsKeyframeEffect()->GetAnimationTarget()) {
mb.emplace(AsKeyframeEffect()->GetAnimationTarget().mElement->OwnerDoc());
}
mAnimation->NotifyEffectTimingUpdated();
if (mAnimation->IsRelevant()) {
MutationObservers::NotifyAnimationChanged(mAnimation);
}
if (AsKeyframeEffect()) {
AsKeyframeEffect()->RequestRestyle(EffectCompositor::RestyleType::Layer);
}
}
// For keyframe effects, NotifyEffectTimingUpdated above will eventually
// cause KeyframeEffect::NotifyAnimationTimingUpdated to be called so it can
// update its registration with the target element as necessary.
}
ComputedTiming AnimationEffect::GetComputedTimingAt(
const Nullable<TimeDuration>& aLocalTime, const TimingParams& aTiming,
double aPlaybackRate,
Animation::ProgressTimelinePosition aProgressTimelinePosition) {
static const StickyTimeDuration zeroDuration;
// Always return the same object to benefit from return-value optimization.
ComputedTiming result;
if (aTiming.Duration()) {
MOZ_ASSERT(aTiming.Duration().ref() >= zeroDuration,
"Iteration duration should be positive");
result.mDuration = aTiming.Duration().ref();
}
MOZ_ASSERT(aTiming.Iterations() >= 0.0 && !std::isnan(aTiming.Iterations()),
"mIterations should be nonnegative & finite, as ensured by "
"ValidateIterations or CSSParser");
result.mIterations = aTiming.Iterations();
MOZ_ASSERT(aTiming.IterationStart() >= 0.0,
"mIterationStart should be nonnegative, as ensured by "
"ValidateIterationStart");
result.mIterationStart = aTiming.IterationStart();
result.mActiveDuration = aTiming.ActiveDuration();
result.mEndTime = aTiming.EndTime();
result.mFill = aTiming.Fill() == dom::FillMode::Auto ? dom::FillMode::None
: aTiming.Fill();
// The default constructor for ComputedTiming sets all other members to
// values consistent with an animation that has not been sampled.
if (aLocalTime.IsNull()) {
return result;
}
const TimeDuration& localTime = aLocalTime.Value();
const bool atProgressTimelineBoundary =
aProgressTimelinePosition ==
Animation::ProgressTimelinePosition::Boundary;
StickyTimeDuration beforeActiveBoundary = aTiming.CalcBeforeActiveBoundary();
StickyTimeDuration activeAfterBoundary = aTiming.CalcActiveAfterBoundary();
if (localTime > activeAfterBoundary ||
(aPlaybackRate >= 0 && localTime == activeAfterBoundary &&
!atProgressTimelineBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::After;
if (!result.FillsForwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime =
std::max(std::min(StickyTimeDuration(localTime - aTiming.Delay()),
result.mActiveDuration),
zeroDuration);
} else if (localTime < beforeActiveBoundary ||
(aPlaybackRate < 0 && localTime == beforeActiveBoundary &&
!atProgressTimelineBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::Before;
if (!result.FillsBackwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime =
std::max(StickyTimeDuration(localTime - aTiming.Delay()), zeroDuration);
} else {
// Note: For progress-based timeline, it's possible to have a zero active
// duration with active phase.
result.mPhase = ComputedTiming::AnimationPhase::Active;
result.mActiveTime = localTime - aTiming.Delay();
}
// Convert active time to a multiple of iterations.
// https://drafts.csswg.org/web-animations/#overall-progress
double overallProgress;
if (!result.mDuration) {
overallProgress = result.mPhase == ComputedTiming::AnimationPhase::Before
? 0.0
: result.mIterations;
} else {
overallProgress = result.mActiveTime / result.mDuration;
}
// Factor in iteration start offset.
if (std::isfinite(overallProgress)) {
overallProgress += result.mIterationStart;
}
// Determine the 0-based index of the current iteration.
// https://drafts.csswg.org/web-animations/#current-iteration
result.mCurrentIteration =
(result.mIterations >= double(UINT64_MAX) &&
result.mPhase == ComputedTiming::AnimationPhase::After) ||
overallProgress >= double(UINT64_MAX)
? UINT64_MAX // In GetComputedTimingDictionary(),
// we will convert this into Infinity
: static_cast<uint64_t>(std::max(overallProgress, 0.0));
// Convert the overall progress to a fraction of a single iteration--the
// simply iteration progress.
// https://drafts.csswg.org/web-animations/#simple-iteration-progress
double progress = std::isfinite(overallProgress)
? fmod(overallProgress, 1.0)
: fmod(result.mIterationStart, 1.0);
// When we are at the end of the active interval and the end of an iteration
// we need to report the end of the final iteration and not the start of the
// next iteration. We *don't* want to do this, however, when we have
// a zero-iteration animation.
if (progress == 0.0 &&
(result.mPhase == ComputedTiming::AnimationPhase::After ||
result.mPhase == ComputedTiming::AnimationPhase::Active) &&
result.mActiveTime == result.mActiveDuration &&
result.mIterations != 0.0) {
// The only way we can reach the end of the active interval and have
// a progress of zero and a current iteration of zero, is if we have a
// zero iteration count -- something we should have detected above.
MOZ_ASSERT(result.mCurrentIteration != 0,
"Should not have zero current iteration");
progress = 1.0;
if (result.mCurrentIteration != UINT64_MAX) {
result.mCurrentIteration--;
}
}
// Factor in the direction.
bool thisIterationReverse = false;
switch (aTiming.Direction()) {
case PlaybackDirection::Normal:
thisIterationReverse = false;
break;
case PlaybackDirection::Reverse:
thisIterationReverse = true;
break;
case PlaybackDirection::Alternate:
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
break;
case PlaybackDirection::Alternate_reverse:
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown PlaybackDirection type");
}
if (thisIterationReverse) {
progress = 1.0 - progress;
}
// Calculate the 'before flag' which we use when applying step timing
// functions.
if ((result.mPhase == ComputedTiming::AnimationPhase::After &&
thisIterationReverse) ||
(result.mPhase == ComputedTiming::AnimationPhase::Before &&
!thisIterationReverse)) {
result.mBeforeFlag = true;
}
// Apply the easing.
if (const auto& fn = aTiming.TimingFunction()) {
progress = fn->At(progress, result.mBeforeFlag);
}
MOZ_ASSERT(std::isfinite(progress), "Progress value should be finite");
result.mProgress.SetValue(progress);
return result;
}
ComputedTiming AnimationEffect::GetComputedTiming(
const TimingParams* aTiming) const {
const double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
const auto progressTimelinePosition =
mAnimation ? mAnimation->AtProgressTimelineBoundary()
: Animation::ProgressTimelinePosition::NotBoundary;
return GetComputedTimingAt(GetLocalTime(),
aTiming ? *aTiming : NormalizedTiming(),
playbackRate, progressTimelinePosition);
}
// Helper function for generating an (Computed)EffectTiming dictionary
static void GetEffectTimingDictionary(const TimingParams& aTiming,
EffectTiming& aRetVal) {
aRetVal.mDelay = aTiming.Delay().ToMilliseconds();
aRetVal.mEndDelay = aTiming.EndDelay().ToMilliseconds();
aRetVal.mFill = aTiming.Fill();
aRetVal.mIterationStart = aTiming.IterationStart();
aRetVal.mIterations = aTiming.Iterations();
if (aTiming.Duration()) {
aRetVal.mDuration.SetAsUnrestrictedDouble() =
aTiming.Duration()->ToMilliseconds();
}
aRetVal.mDirection = aTiming.Direction();
if (aTiming.TimingFunction()) {
aRetVal.mEasing.Truncate();
aTiming.TimingFunction()->AppendToString(aRetVal.mEasing);
}
}
void AnimationEffect::GetTiming(EffectTiming& aRetVal) const {
GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
}
void AnimationEffect::GetComputedTimingAsDict(
ComputedEffectTiming& aRetVal) const {
// Specified timing
GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
// Computed timing
double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
const Nullable<TimeDuration> currentTime = GetLocalTime();
const auto progressTimelinePosition =
mAnimation ? mAnimation->AtProgressTimelineBoundary()
: Animation::ProgressTimelinePosition::NotBoundary;
ComputedTiming computedTiming = GetComputedTimingAt(
currentTime, SpecifiedTiming(), playbackRate, progressTimelinePosition);
aRetVal.mDuration.SetAsUnrestrictedDouble() =
computedTiming.mDuration.ToMilliseconds();
aRetVal.mFill = computedTiming.mFill;
aRetVal.mActiveDuration = computedTiming.mActiveDuration.ToMilliseconds();
aRetVal.mEndTime = computedTiming.mEndTime.ToMilliseconds();
aRetVal.mLocalTime =
AnimationUtils::TimeDurationToDouble(currentTime, mRTPCallerType);
aRetVal.mProgress = computedTiming.mProgress;
if (!aRetVal.mProgress.IsNull()) {
// Convert the returned currentIteration into Infinity if we set
// (uint64_t) computedTiming.mCurrentIteration to UINT64_MAX
double iteration =
computedTiming.mCurrentIteration == UINT64_MAX
? PositiveInfinity<double>()
: static_cast<double>(computedTiming.mCurrentIteration);
aRetVal.mCurrentIteration.SetValue(iteration);
}
}
void AnimationEffect::UpdateTiming(const OptionalEffectTiming& aTiming,
ErrorResult& aRv) {
TimingParams timing =
TimingParams::MergeOptionalEffectTiming(mTiming, aTiming, aRv);
if (aRv.Failed()) {
return;
}
SetSpecifiedTiming(std::move(timing));
}
void AnimationEffect::UpdateNormalizedTiming() {
mNormalizedTiming.reset();
if (!mAnimation || !mAnimation->UsingScrollTimeline()) {
return;
}
// Since `mAnimation` has a scroll timeline, we can be sure `GetTimeline()`
// and `TimelineDuration()` will not return null.
mNormalizedTiming.emplace(
mTiming.Normalize(mAnimation->GetTimeline()->TimelineDuration().Value()));
}
Nullable<TimeDuration> AnimationEffect::GetLocalTime() const {
// Since the *animation* start time is currently always zero, the local
// time is equal to the parent time.
Nullable<TimeDuration> result;
if (mAnimation) {
result = mAnimation->GetCurrentTimeAsDuration();
}
return result;
}
} // namespace mozilla::dom
|