summaryrefslogtreecommitdiffstats
path: root/dom/crypto/CryptoKey.h
blob: d09d2cd66ceecc0bced83e57ab5801190699ea03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_dom_CryptoKey_h
#define mozilla_dom_CryptoKey_h

#include <cstdint>
#include "ErrorList.h"
#include "ScopedNSSTypes.h"
#include "js/RootingAPI.h"
#include "keythi.h"
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Assertions.h"
#include "mozilla/RefPtr.h"
#include "mozilla/dom/BindingDeclarations.h"
#include "mozilla/dom/CryptoBuffer.h"
#include "mozilla/dom/KeyAlgorithmProxy.h"
#include "nsCycleCollectionParticipant.h"
#include "nsIGlobalObject.h"
#include "nsISupports.h"
#include "nsStringFwd.h"
#include "nsTArrayForwardDeclare.h"
#include "nsWrapperCache.h"

#define CRYPTOKEY_SC_VERSION 0x00000001

class JSObject;
class nsIGlobalObject;
struct JSContext;
struct JSStructuredCloneReader;
struct JSStructuredCloneWriter;

namespace mozilla {

class ErrorResult;

namespace dom {

/*

The internal structure of keys is dictated by the need for cloning.
We store everything besides the key data itself in a 32-bit bitmask,
with the following structure (byte-aligned for simplicity, in order
from least to most significant):

Bits  Usage
0     Extractable
1-7   [reserved]
8-15  KeyType
16-23 KeyUsage
24-31 [reserved]

In the order of a hex value for a uint32_t

   3                   2                   1                   0
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|~~~~~~~~~~~~~~~|     Usage     |     Type      |~~~~~~~~~~~~~|E|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Thus, internally, a key has the following fields:
* uint32_t - flags for extractable, usage, type
* KeyAlgorithm - the algorithm (which must serialize/deserialize itself)
* The actual keys (which the CryptoKey must serialize)

*/

struct JsonWebKey;

class CryptoKey final : public nsISupports, public nsWrapperCache {
 public:
  NS_DECL_CYCLE_COLLECTING_ISUPPORTS
  NS_DECL_CYCLE_COLLECTION_WRAPPERCACHE_CLASS(CryptoKey)

  static const uint32_t CLEAR_EXTRACTABLE = 0xFFFFFFE;
  static const uint32_t EXTRACTABLE = 0x00000001;

  static const uint32_t CLEAR_TYPE = 0xFFFF00FF;
  static const uint32_t TYPE_MASK = 0x0000FF00;
  enum KeyType {
    UNKNOWN = 0x00000000,
    SECRET = 0x00000100,
    PUBLIC = 0x00000200,
    PRIVATE = 0x00000300
  };

  static const uint32_t CLEAR_USAGES = 0xFF00FFFF;
  static const uint32_t USAGES_MASK = 0x00FF0000;
  enum KeyUsage {
    ENCRYPT = 0x00010000,
    DECRYPT = 0x00020000,
    SIGN = 0x00040000,
    VERIFY = 0x00080000,
    DERIVEKEY = 0x00100000,
    DERIVEBITS = 0x00200000,
    WRAPKEY = 0x00400000,
    UNWRAPKEY = 0x00800000
  };

  explicit CryptoKey(nsIGlobalObject* aWindow);

  nsIGlobalObject* GetParentObject() const { return mGlobal; }

  virtual JSObject* WrapObject(JSContext* aCx,
                               JS::Handle<JSObject*> aGivenProto) override;

  // WebIDL methods
  void GetType(nsString& aRetVal) const;
  bool Extractable() const;
  void GetAlgorithm(JSContext* cx, JS::MutableHandle<JSObject*> aRetVal,
                    ErrorResult& aRv) const;
  void GetUsages(nsTArray<nsString>& aRetVal) const;

  // The below methods are not exposed to JS, but C++ can use
  // them to manipulate the object

  KeyAlgorithmProxy& Algorithm();
  const KeyAlgorithmProxy& Algorithm() const;
  KeyType GetKeyType() const;
  nsresult SetType(const nsString& aType);
  void SetType(KeyType aType);
  void SetExtractable(bool aExtractable);
  nsresult AddPublicKeyData(SECKEYPublicKey* point);
  void ClearUsages();
  nsresult AddUsage(const nsString& aUsage);
  nsresult AddAllowedUsage(const nsString& aUsage, const nsString& aAlgorithm);
  nsresult AddAllowedUsageIntersecting(const nsString& aUsage,
                                       const nsString& aAlgorithm,
                                       uint32_t aUsageMask = USAGES_MASK);
  void AddUsage(KeyUsage aUsage);
  bool HasAnyUsage();
  bool HasUsage(KeyUsage aUsage);
  bool HasUsageOtherThan(uint32_t aUsages);
  static bool IsRecognizedUsage(const nsString& aUsage);
  static bool AllUsagesRecognized(const Sequence<nsString>& aUsages);
  static uint32_t GetAllowedUsagesForAlgorithm(const nsString& aAlgorithm);

  nsresult SetSymKey(const CryptoBuffer& aSymKey);
  nsresult SetPrivateKey(SECKEYPrivateKey* aPrivateKey);
  nsresult SetPublicKey(SECKEYPublicKey* aPublicKey);

  // Accessors for the keys themselves
  const CryptoBuffer& GetSymKey() const;
  UniqueSECKEYPrivateKey GetPrivateKey() const;
  UniqueSECKEYPublicKey GetPublicKey() const;

  // Serialization and deserialization convenience methods
  // Note:
  // 1. The inputs aKeyData are non-const only because the NSS import
  //    functions lack the const modifier.  They should not be modified.
  // 2. All of the NSS key objects returned need to be freed by the caller.
  static UniqueSECKEYPrivateKey PrivateKeyFromPkcs8(CryptoBuffer& aKeyData);
  static nsresult PrivateKeyToPkcs8(SECKEYPrivateKey* aPrivKey,
                                    CryptoBuffer& aRetVal);

  static UniqueSECKEYPublicKey PublicKeyFromSpki(CryptoBuffer& aKeyData);
  static nsresult PublicKeyToSpki(SECKEYPublicKey* aPubKey,
                                  CryptoBuffer& aRetVal);

  static UniqueSECKEYPrivateKey PrivateKeyFromJwk(const JsonWebKey& aJwk);
  static nsresult PrivateKeyToJwk(SECKEYPrivateKey* aPrivKey,
                                  JsonWebKey& aRetVal);

  static UniqueSECKEYPublicKey PublicKeyFromJwk(const JsonWebKey& aKeyData);
  static nsresult PublicKeyToJwk(SECKEYPublicKey* aPubKey, JsonWebKey& aRetVal);

  static UniqueSECKEYPublicKey PublicECKeyFromRaw(CryptoBuffer& aKeyData,
                                                  const nsString& aNamedCurve);
  static nsresult PublicECKeyToRaw(SECKEYPublicKey* aPubKey,
                                   CryptoBuffer& aRetVal);

  static bool PublicKeyValid(SECKEYPublicKey* aPubKey);

  // Structured clone methods use these to clone keys
  bool WriteStructuredClone(JSContext* aCx,
                            JSStructuredCloneWriter* aWriter) const;
  static already_AddRefed<CryptoKey> ReadStructuredClone(
      JSContext* aCx, nsIGlobalObject* aGlobal,
      JSStructuredCloneReader* aReader);

 private:
  ~CryptoKey() = default;

  RefPtr<nsIGlobalObject> mGlobal;
  uint32_t mAttributes;  // see above
  KeyAlgorithmProxy mAlgorithm;

  // Only one key handle should be set, according to the KeyType
  CryptoBuffer mSymKey;
  UniqueSECKEYPrivateKey mPrivateKey;
  UniqueSECKEYPublicKey mPublicKey;
};

}  // namespace dom
}  // namespace mozilla

#endif  // mozilla_dom_CryptoKey_h