summaryrefslogtreecommitdiffstats
path: root/dom/indexedDB/Key.cpp
blob: 6f96023a54eec8da72111c07861e1557b5ff07ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Key.h"

#include <algorithm>
#include <cstdint>
#include <stdint.h>          // for UINT32_MAX, uintptr_t
#include "js/Array.h"        // JS::NewArrayObject
#include "js/ArrayBuffer.h"  // JS::{IsArrayBufferObject,NewArrayBuffer{,WithContents},GetArrayBufferLengthAndData}
#include "js/Date.h"
#include "js/experimental/TypedData.h"  // JS_IsArrayBufferViewObject, JS_GetObjectAsArrayBufferView
#include "js/MemoryFunctions.h"
#include "js/Object.h"              // JS::GetBuiltinClass
#include "js/PropertyAndElement.h"  // JS_DefineElement, JS_GetProperty, JS_GetPropertyById, JS_HasOwnProperty, JS_HasOwnPropertyById
#include "js/Value.h"
#include "jsfriendapi.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/intl/Collator.h"
#include "mozilla/ResultExtensions.h"
#include "mozilla/ReverseIterator.h"
#include "mozilla/dom/indexedDB/IDBResult.h"
#include "mozilla/dom/indexedDB/Key.h"
#include "mozilla/dom/quota/QuotaCommon.h"
#include "mozilla/dom/quota/ResultExtensions.h"
#include "mozIStorageStatement.h"
#include "mozIStorageValueArray.h"
#include "nsJSUtils.h"
#include "nsTStringRepr.h"
#include "ReportInternalError.h"
#include "xpcpublic.h"

namespace mozilla::dom::indexedDB {

namespace {
// Implementation of the array branch of step 3 of
// https://w3c.github.io/IndexedDB/#convert-value-to-key
template <typename ArrayConversionPolicy>
IDBResult<Ok, IDBSpecialValue::Invalid> ConvertArrayValueToKey(
    JSContext* const aCx, JS::Handle<JSObject*> aObject,
    ArrayConversionPolicy&& aPolicy) {
  // 1. Let `len` be ? ToLength( ? Get(`input`, "length")).
  uint32_t len;
  if (!JS::GetArrayLength(aCx, aObject, &len)) {
    return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
  }

  // 2. Add `input` to `seen`.
  aPolicy.AddToSeenSet(aCx, aObject);

  // 3. Let `keys` be a new empty list.
  aPolicy.BeginSubkeyList();

  // 4. Let `index` be 0.
  uint32_t index = 0;

  // 5. While `index` is less than `len`:
  while (index < len) {
    JS::Rooted<JS::PropertyKey> indexId(aCx);
    if (!JS_IndexToId(aCx, index, &indexId)) {
      return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
    }

    // 1. Let `hop` be ? HasOwnProperty(`input`, `index`).
    bool hop;
    if (!JS_HasOwnPropertyById(aCx, aObject, indexId, &hop)) {
      return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
    }

    // 2. If `hop` is false, return invalid.
    if (!hop) {
      return Err(IDBError(SpecialValues::Invalid));
    }

    // 3. Let `entry` be ? Get(`input`, `index`).
    JS::Rooted<JS::Value> entry(aCx);
    if (!JS_GetPropertyById(aCx, aObject, indexId, &entry)) {
      return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
    }

    // 4. Let `key` be the result of running the steps to convert a value to a
    //    key with arguments `entry` and `seen`.
    // 5. ReturnIfAbrupt(`key`).
    // 6. If `key` is invalid abort these steps and return invalid.
    // 7. Append `key` to `keys`.
    auto result = aPolicy.ConvertSubkey(aCx, entry, index);
    if (result.isErr()) {
      return result;
    }

    // 8. Increase `index` by 1.
    index += 1;
  }

  // 6. Return a new array key with value `keys`.
  aPolicy.EndSubkeyList();
  return Ok();
}
}  // namespace

/*
 Here's how we encode keys:

 Basic strategy is the following

 Numbers:  0x10 n n n n n n n n    ("n"s are encoded 64bit float)
 Dates:    0x20 n n n n n n n n    ("n"s are encoded 64bit float)
 Strings:  0x30 s s s ... 0        ("s"s are encoded unicode bytes)
 Binaries: 0x40 s s s ... 0        ("s"s are encoded unicode bytes)
 Arrays:   0x50 i i i ... 0        ("i"s are encoded array items)


 When encoding floats, 64bit IEEE 754 are almost sortable, except that
 positive sort lower than negative, and negative sort descending. So we use
 the following encoding:

 value < 0 ?
   (-to64bitInt(value)) :
   (to64bitInt(value) | 0x8000000000000000)


 When encoding strings, we use variable-size encoding per the following table

 Chars 0         - 7E           are encoded as 0xxxxxxx with 1 added
 Chars 7F        - (3FFF+7F)    are encoded as 10xxxxxx xxxxxxxx with 7F
                                subtracted
 Chars (3FFF+80) - FFFF         are encoded as 11xxxxxx xxxxxxxx xx000000

 This ensures that the first byte is never encoded as 0, which means that the
 string terminator (per basic-strategy table) sorts before any character.
 The reason that (3FFF+80) - FFFF is encoded "shifted up" 6 bits is to maximize
 the chance that the last character is 0. See below for why.

 When encoding binaries, the algorithm is the same to how strings are encoded.
 Since each octet in binary is in the range of [0-255], it'll take 1 to 2
 encoded unicode bytes.

 When encoding Arrays, we use an additional trick. Rather than adding a byte
 containing the value 0x50 to indicate type, we instead add 0x50 to the next
 byte. This is usually the byte containing the type of the first item in the
 array. So simple examples are

 ["foo"]      0x80 s s s 0 0                              // 0x80 is 0x30 + 0x50
 [1, 2]       0x60 n n n n n n n n 1 n n n n n n n n 0    // 0x60 is 0x10 + 0x50

 Whe do this iteratively if the first item in the array is also an array

 [["foo"]]    0xA0 s s s 0 0 0

 However, to avoid overflow in the byte, we only do this 3 times. If the first
 item in an array is an array, and that array also has an array as first item,
 we simply write out the total value accumulated so far and then follow the
 "normal" rules.

 [[["foo"]]]  0xF0 0x30 s s s 0 0 0 0

 There is another edge case that can happen though, which is that the array
 doesn't have a first item to which we can add 0x50 to the type. Instead the
 next byte would normally be the array terminator (per basic-strategy table)
 so we simply add the 0x50 there.

 [[]]         0xA0 0                // 0xA0 is 0x50 + 0x50 + 0
 []           0x50                  // 0x50 is 0x50 + 0
 [[], "foo"]  0xA0 0x30 s s s 0 0   // 0xA0 is 0x50 + 0x50 + 0

 Note that the max-3-times rule kicks in before we get a chance to add to the
 array terminator

 [[[]]]       0xF0 0 0 0        // 0xF0 is 0x50 + 0x50 + 0x50

 As a final optimization we do a post-encoding step which drops all 0s at the
 end of the encoded buffer.

 "foo"         // 0x30 s s s
 1             // 0x10 bf f0
 ["a", "b"]    // 0x80 s 0 0x30 s
 [1, 2]        // 0x60 bf f0 0 0 0 0 0 0 0x10 c0
 [[]]          // 0x80
*/

Result<Ok, nsresult> Key::SetFromString(const nsAString& aString) {
  mBuffer.Truncate();
  auto result = EncodeString(aString, 0);
  if (result.isOk()) {
    TrimBuffer();
  }
  return result;
}

// |aPos| should point to the type indicator.
// The returned length doesn't include the type indicator
// or the terminator.
// static
uint32_t Key::LengthOfEncodedBinary(const EncodedDataType* aPos,
                                    const EncodedDataType* aEnd) {
  MOZ_ASSERT(*aPos % Key::eMaxType == Key::eBinary, "Don't call me!");

  const auto* iter = aPos + 1;
  for (; iter < aEnd && *iter != eTerminator; ++iter) {
    if (*iter & 0x80) {
      ++iter;
      // XXX if iter == aEnd now, we got a bad enconding, should we report that
      // also in non-debug builds?
      MOZ_ASSERT(iter < aEnd);
    }
  }

  return iter - aPos - 1;
}

Result<Key, nsresult> Key::ToLocaleAwareKey(const nsCString& aLocale) const {
  Key res;

  if (IsUnset()) {
    return res;
  }

  if (IsFloat() || IsDate() || IsBinary()) {
    res.mBuffer = mBuffer;
    return res;
  }

  auto* it = BufferStart();
  auto* const end = BufferEnd();

  // First we do a pass and see if there are any strings in this key. We only
  // want to copy/decode when necessary.
  bool canShareBuffers = true;
  while (it < end) {
    const auto type = *it % eMaxType;
    if (type == eTerminator) {
      it++;
    } else if (type == eFloat || type == eDate) {
      it++;
      it += std::min(sizeof(uint64_t), size_t(end - it));
    } else if (type == eBinary) {
      // skip all binary data
      const auto binaryLength = LengthOfEncodedBinary(it, end);
      it++;
      it += binaryLength;
    } else {
      // We have a string!
      canShareBuffers = false;
      break;
    }
  }

  if (canShareBuffers) {
    MOZ_ASSERT(it == end);
    res.mBuffer = mBuffer;
    return res;
  }

  if (!res.mBuffer.SetCapacity(mBuffer.Length(), fallible)) {
    return Err(NS_ERROR_OUT_OF_MEMORY);
  }

  // A string was found, so we need to copy the data we've read so far
  auto* const start = BufferStart();
  if (it > start) {
    char* buffer;
    MOZ_ALWAYS_TRUE(res.mBuffer.GetMutableData(&buffer, it - start));
    std::copy(start, it, buffer);
  }

  // Now continue decoding
  while (it < end) {
    char* buffer;
    const size_t oldLen = res.mBuffer.Length();
    const auto type = *it % eMaxType;

    // Note: Do not modify |it| before calling |updateBufferAndIter|;
    // |byteCount| doesn't include the type indicator
    const auto updateBufferAndIter = [&](size_t byteCount) -> bool {
      if (!res.mBuffer.GetMutableData(&buffer, oldLen + 1 + byteCount)) {
        return false;
      }
      buffer += oldLen;

      // should also copy the type indicator at the begining
      std::copy_n(it, byteCount + 1, buffer);
      it += (byteCount + 1);
      return true;
    };

    if (type == eTerminator) {
      // Copy array TypeID and terminator from raw key
      if (!updateBufferAndIter(0)) {
        return Err(NS_ERROR_OUT_OF_MEMORY);
      }
    } else if (type == eFloat || type == eDate) {
      // Copy number from raw key
      const size_t byteCount = std::min(sizeof(uint64_t), size_t(end - it - 1));

      if (!updateBufferAndIter(byteCount)) {
        return Err(NS_ERROR_OUT_OF_MEMORY);
      }
    } else if (type == eBinary) {
      // skip all binary data
      const auto binaryLength = LengthOfEncodedBinary(it, end);

      if (!updateBufferAndIter(binaryLength)) {
        return Err(NS_ERROR_OUT_OF_MEMORY);
      }
    } else {
      // Decode string and reencode
      const uint8_t typeOffset = *it - eString;
      MOZ_ASSERT((typeOffset % eArray == 0) && (typeOffset / eArray <= 2));

      auto str = DecodeString(it, end);
      auto result = res.EncodeLocaleString(str, typeOffset, aLocale);
      if (NS_WARN_IF(result.isErr())) {
        return result.propagateErr();
      }
    }
  }
  res.TrimBuffer();
  return res;
}

class MOZ_STACK_CLASS Key::ArrayValueEncoder final {
 public:
  ArrayValueEncoder(Key& aKey, const uint8_t aTypeOffset,
                    const uint16_t aRecursionDepth)
      : mKey(aKey),
        mTypeOffset(aTypeOffset),
        mRecursionDepth(aRecursionDepth) {}

  void AddToSeenSet(JSContext* const aCx, JS::Handle<JSObject*>) {
    ++mRecursionDepth;
  }

  void BeginSubkeyList() {
    mTypeOffset += Key::eMaxType;
    if (mTypeOffset == eMaxType * kMaxArrayCollapse) {
      mKey.mBuffer.Append(mTypeOffset);
      mTypeOffset = 0;
    }
    MOZ_ASSERT(mTypeOffset % eMaxType == 0,
               "Current type offset must indicate beginning of array");
    MOZ_ASSERT(mTypeOffset < eMaxType * kMaxArrayCollapse);
  }

  IDBResult<Ok, IDBSpecialValue::Invalid> ConvertSubkey(
      JSContext* const aCx, JS::Handle<JS::Value> aEntry,
      const uint32_t aIndex) {
    auto result =
        mKey.EncodeJSValInternal(aCx, aEntry, mTypeOffset, mRecursionDepth);
    mTypeOffset = 0;
    return result;
  }

  void EndSubkeyList() const { mKey.mBuffer.Append(eTerminator + mTypeOffset); }

 private:
  Key& mKey;
  uint8_t mTypeOffset;
  uint16_t mRecursionDepth;
};

// Implements the following algorithm:
// https://w3c.github.io/IndexedDB/#convert-a-value-to-a-key
IDBResult<Ok, IDBSpecialValue::Invalid> Key::EncodeJSValInternal(
    JSContext* const aCx, JS::Handle<JS::Value> aVal, uint8_t aTypeOffset,
    const uint16_t aRecursionDepth) {
  static_assert(eMaxType * kMaxArrayCollapse < 256, "Unable to encode jsvals.");

  // 1. If `seen` was not given, let `seen` be a new empty set.
  // 2. If `input` is in `seen` return invalid.
  // Note: we replace this check with a simple recursion depth check.
  if (NS_WARN_IF(aRecursionDepth == kMaxRecursionDepth)) {
    return Err(IDBError(SpecialValues::Invalid));
  }

  // 3. Jump to the appropriate step below:
  // Note: some cases appear out of order to make the implementation more
  //       straightforward. This shouldn't affect observable behavior.

  // If Type(`input`) is Number
  if (aVal.isNumber()) {
    const auto number = aVal.toNumber();

    // 1. If `input` is NaN then return invalid.
    if (std::isnan(number)) {
      return Err(IDBError(SpecialValues::Invalid));
    }

    // 2. Otherwise, return a new key with type `number` and value `input`.
    return EncodeNumber(number, eFloat + aTypeOffset);
  }

  // If Type(`input`) is String
  if (aVal.isString()) {
    // 1. Return a new key with type `string` and value `input`.
    nsAutoJSString string;
    if (!string.init(aCx, aVal)) {
      IDB_REPORT_INTERNAL_ERR();
      return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
    }
    return EncodeString(string, aTypeOffset);
  }

  if (aVal.isObject()) {
    JS::Rooted<JSObject*> object(aCx, &aVal.toObject());

    js::ESClass builtinClass;
    if (!JS::GetBuiltinClass(aCx, object, &builtinClass)) {
      IDB_REPORT_INTERNAL_ERR();
      return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
    }

    // If `input` is a Date (has a [[DateValue]] internal slot)
    if (builtinClass == js::ESClass::Date) {
      // 1. Let `ms` be the value of `input`’s [[DateValue]] internal slot.
      double ms;
      if (!js::DateGetMsecSinceEpoch(aCx, object, &ms)) {
        IDB_REPORT_INTERNAL_ERR();
        return Err(IDBException(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR));
      }

      // 2. If `ms` is NaN then return invalid.
      if (std::isnan(ms)) {
        return Err(IDBError(SpecialValues::Invalid));
      }

      // 3. Otherwise, return a new key with type `date` and value `ms`.
      return EncodeNumber(ms, eDate + aTypeOffset);
    }

    // If `input` is a buffer source type
    if (JS::IsArrayBufferObject(object) || JS_IsArrayBufferViewObject(object)) {
      const bool isViewObject = JS_IsArrayBufferViewObject(object);
      return EncodeBinary(object, isViewObject, aTypeOffset);
    }

    // If IsArray(`input`)
    if (builtinClass == js::ESClass::Array) {
      return ConvertArrayValueToKey(
          aCx, object, ArrayValueEncoder{*this, aTypeOffset, aRecursionDepth});
    }
  }

  // Otherwise
  // Return invalid.
  return Err(IDBError(SpecialValues::Invalid));
}

// static
nsresult Key::DecodeJSValInternal(const EncodedDataType*& aPos,
                                  const EncodedDataType* aEnd, JSContext* aCx,
                                  uint8_t aTypeOffset,
                                  JS::MutableHandle<JS::Value> aVal,
                                  uint16_t aRecursionDepth) {
  if (NS_WARN_IF(aRecursionDepth == kMaxRecursionDepth)) {
    return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
  }

  if (*aPos - aTypeOffset >= eArray) {
    JS::Rooted<JSObject*> array(aCx, JS::NewArrayObject(aCx, 0));
    if (!array) {
      NS_WARNING("Failed to make array!");
      IDB_REPORT_INTERNAL_ERR();
      return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
    }

    aTypeOffset += eMaxType;

    if (aTypeOffset == eMaxType * kMaxArrayCollapse) {
      ++aPos;
      aTypeOffset = 0;
    }

    uint32_t index = 0;
    JS::Rooted<JS::Value> val(aCx);
    while (aPos < aEnd && *aPos - aTypeOffset != eTerminator) {
      QM_TRY(MOZ_TO_RESULT(DecodeJSValInternal(aPos, aEnd, aCx, aTypeOffset,
                                               &val, aRecursionDepth + 1)));

      aTypeOffset = 0;

      if (!JS_DefineElement(aCx, array, index++, val, JSPROP_ENUMERATE)) {
        NS_WARNING("Failed to set array element!");
        IDB_REPORT_INTERNAL_ERR();
        return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
      }
    }

    NS_ASSERTION(aPos >= aEnd || (*aPos % eMaxType) == eTerminator,
                 "Should have found end-of-array marker");
    ++aPos;

    aVal.setObject(*array);
  } else if (*aPos - aTypeOffset == eString) {
    auto key = DecodeString(aPos, aEnd);
    if (!xpc::StringToJsval(aCx, key, aVal)) {
      IDB_REPORT_INTERNAL_ERR();
      return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
    }
  } else if (*aPos - aTypeOffset == eDate) {
    double msec = static_cast<double>(DecodeNumber(aPos, aEnd));
    JS::ClippedTime time = JS::TimeClip(msec);
    MOZ_ASSERT(msec == time.toDouble(),
               "encoding from a Date object not containing an invalid date "
               "means we should always have clipped values");
    JSObject* date = JS::NewDateObject(aCx, time);
    if (!date) {
      IDB_WARNING("Failed to make date!");
      return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
    }

    aVal.setObject(*date);
  } else if (*aPos - aTypeOffset == eFloat) {
    aVal.setDouble(DecodeNumber(aPos, aEnd));
  } else if (*aPos - aTypeOffset == eBinary) {
    JSObject* binary = DecodeBinary(aPos, aEnd, aCx);
    if (!binary) {
      IDB_REPORT_INTERNAL_ERR();
      return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
    }

    aVal.setObject(*binary);
  } else {
    MOZ_ASSERT_UNREACHABLE("Unknown key type!");
  }

  return NS_OK;
}

#define ONE_BYTE_LIMIT 0x7E
#define TWO_BYTE_LIMIT (0x3FFF + 0x7F)

#define ONE_BYTE_ADJUST 1
#define TWO_BYTE_ADJUST (-0x7F)
#define THREE_BYTE_SHIFT 6

IDBResult<Ok, IDBSpecialValue::Invalid> Key::EncodeJSVal(
    JSContext* aCx, JS::Handle<JS::Value> aVal, uint8_t aTypeOffset) {
  return EncodeJSValInternal(aCx, aVal, aTypeOffset, 0);
}

Result<Ok, nsresult> Key::EncodeString(const nsAString& aString,
                                       uint8_t aTypeOffset) {
  return EncodeString(Span{aString}, aTypeOffset);
}

template <typename T>
Result<Ok, nsresult> Key::EncodeString(const Span<const T> aInput,
                                       uint8_t aTypeOffset) {
  return EncodeAsString(aInput, eString + aTypeOffset);
}

// nsCString maximum length is limited by INT32_MAX.
// XXX: We probably want to enforce even shorter keys, though.
#define KEY_MAXIMUM_BUFFER_LENGTH \
  ::mozilla::detail::nsTStringLengthStorage<char>::kMax

template <typename T>
Result<Ok, nsresult> Key::EncodeAsString(const Span<const T> aInput,
                                         uint8_t aType) {
  // Please note that the input buffer can either be based on two-byte UTF-16
  // values or on arbitrary single byte binary values. Only the first case
  // needs to account for the TWO_BYTE_LIMIT of UTF-8.
  // First we measure how long the encoded string will be.

  // The 2 is for initial aType and trailing 0. We'll compensate for multi-byte
  // chars below.
  size_t size = 2;

  // We construct a range over the raw pointers here because this loop is
  // time-critical.
  // XXX It might be good to encapsulate this in some function to make it less
  // error-prone and more expressive.
  const auto inputRange = mozilla::detail::IteratorRange(
      aInput.Elements(), aInput.Elements() + aInput.Length());

  size_t payloadSize = aInput.Length();
  bool anyMultibyte = false;
  for (const T val : inputRange) {
    if (val > ONE_BYTE_LIMIT) {
      anyMultibyte = true;
      payloadSize += char16_t(val) > TWO_BYTE_LIMIT ? 2 : 1;
      if (payloadSize > KEY_MAXIMUM_BUFFER_LENGTH) {
        return Err(NS_ERROR_DOM_INDEXEDDB_KEY_ERR);
      }
    }
  }

  size += payloadSize;

  // Now we allocate memory for the new size
  size_t oldLen = mBuffer.Length();
  size += oldLen;

  if (size > KEY_MAXIMUM_BUFFER_LENGTH) {
    return Err(NS_ERROR_DOM_INDEXEDDB_KEY_ERR);
  }

  char* buffer;
  if (!mBuffer.GetMutableData(&buffer, size)) {
    IDB_REPORT_INTERNAL_ERR();
    return Err(NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR);
  }
  buffer += oldLen;

  // Write type marker
  *(buffer++) = aType;

  // Encode string
  if (anyMultibyte) {
    for (const auto val : inputRange) {
      if (val <= ONE_BYTE_LIMIT) {
        *(buffer++) = val + ONE_BYTE_ADJUST;
      } else if (char16_t(val) <= TWO_BYTE_LIMIT) {
        char16_t c = char16_t(val) + TWO_BYTE_ADJUST + 0x8000;
        *(buffer++) = (char)(c >> 8);
        *(buffer++) = (char)(c & 0xFF);
      } else {
        uint32_t c = (uint32_t(val) << THREE_BYTE_SHIFT) | 0x00C00000;
        *(buffer++) = (char)(c >> 16);
        *(buffer++) = (char)(c >> 8);
        *(buffer++) = (char)c;
      }
    }
  } else {
    // Optimization for the case where there are no multibyte characters.
    // This is ca. 13 resp. 5.8 times faster than the non-optimized version in
    // an -O2 build: https://quick-bench.com/q/v1oBpLGifs-3w_pkZG8alVSWVAw, for
    // the T==uint8_t resp. T==char16_t cases (for the char16_t case, copying
    // and then adjusting could even be slightly faster, but then we would need
    // another case distinction here)
    size_t inputLen = std::distance(inputRange.cbegin(), inputRange.cend());
    MOZ_ASSERT(inputLen == payloadSize);
    std::transform(inputRange.cbegin(), inputRange.cend(), buffer,
                   [](auto value) { return value + ONE_BYTE_ADJUST; });
    buffer += inputLen;
  }

  // Write end marker
  *(buffer++) = eTerminator;

  NS_ASSERTION(buffer == mBuffer.EndReading(), "Wrote wrong number of bytes");

  return Ok();
}

Result<Ok, nsresult> Key::EncodeLocaleString(const nsAString& aString,
                                             uint8_t aTypeOffset,
                                             const nsCString& aLocale) {
  const int length = aString.Length();
  if (length == 0) {
    return Ok();
  }

  auto collResult = intl::Collator::TryCreate(aLocale.get());
  if (collResult.isErr()) {
    return Err(NS_ERROR_FAILURE);
  }
  auto collator = collResult.unwrap();
  MOZ_ASSERT(collator);

  AutoTArray<uint8_t, 128> keyBuffer;
  MOZ_TRY(collator->GetSortKey(Span{aString}, keyBuffer)
              .mapErr([](intl::ICUError icuError) {
                return icuError == intl::ICUError::OutOfMemory
                           ? NS_ERROR_OUT_OF_MEMORY
                           : NS_ERROR_FAILURE;
              }));

  size_t sortKeyLength = keyBuffer.Length();
  return EncodeString(Span{keyBuffer}.AsConst().First(sortKeyLength),
                      aTypeOffset);
}

// static
nsresult Key::DecodeJSVal(const EncodedDataType*& aPos,
                          const EncodedDataType* aEnd, JSContext* aCx,
                          JS::MutableHandle<JS::Value> aVal) {
  return DecodeJSValInternal(aPos, aEnd, aCx, 0, aVal, 0);
}

// static
template <typename T>
uint32_t Key::CalcDecodedStringySize(
    const EncodedDataType* const aBegin, const EncodedDataType* const aEnd,
    const EncodedDataType** aOutEncodedSectionEnd) {
  static_assert(sizeof(T) <= 2,
                "Only implemented for 1 and 2 byte decoded types");
  uint32_t decodedSize = 0;
  auto* iter = aBegin;
  for (; iter < aEnd && *iter != eTerminator; ++iter) {
    if (*iter & 0x80) {
      iter += (sizeof(T) > 1 && (*iter & 0x40)) ? 2 : 1;
    }
    ++decodedSize;
  }
  *aOutEncodedSectionEnd = std::min(aEnd, iter);
  return decodedSize;
}

// static
template <typename T>
void Key::DecodeAsStringy(const EncodedDataType* const aEncodedSectionBegin,
                          const EncodedDataType* const aEncodedSectionEnd,
                          const uint32_t aDecodedLength, T* const aOut) {
  static_assert(sizeof(T) <= 2,
                "Only implemented for 1 and 2 byte decoded types");
  T* decodedPos = aOut;
  for (const EncodedDataType* iter = aEncodedSectionBegin;
       iter < aEncodedSectionEnd;) {
    if (!(*iter & 0x80)) {
      *decodedPos = *(iter++) - ONE_BYTE_ADJUST;
    } else if (sizeof(T) == 1 || !(*iter & 0x40)) {
      auto c = static_cast<uint16_t>(*(iter++)) << 8;
      if (iter < aEncodedSectionEnd) {
        c |= *(iter++);
      }
      *decodedPos = static_cast<T>(c - TWO_BYTE_ADJUST - 0x8000);
    } else if (sizeof(T) > 1) {
      auto c = static_cast<uint32_t>(*(iter++)) << (16 - THREE_BYTE_SHIFT);
      if (iter < aEncodedSectionEnd) {
        c |= static_cast<uint32_t>(*(iter++)) << (8 - THREE_BYTE_SHIFT);
      }
      if (iter < aEncodedSectionEnd) {
        c |= *(iter++) >> THREE_BYTE_SHIFT;
      }
      *decodedPos = static_cast<T>(c);
    }
    ++decodedPos;
  }

  MOZ_ASSERT(static_cast<uint32_t>(decodedPos - aOut) == aDecodedLength,
             "Should have written the whole decoded area");
}

// static
template <Key::EncodedDataType TypeMask, typename T, typename AcquireBuffer,
          typename AcquireEmpty>
void Key::DecodeStringy(const EncodedDataType*& aPos,
                        const EncodedDataType* aEnd,
                        const AcquireBuffer& acquireBuffer,
                        const AcquireEmpty& acquireEmpty) {
  NS_ASSERTION(*aPos % eMaxType == TypeMask, "Don't call me!");

  // First measure how big the decoded stringy data will be.
  const EncodedDataType* const encodedSectionBegin = aPos + 1;
  const EncodedDataType* encodedSectionEnd;
  // decodedLength does not include the terminating 0 (in case of a string)
  const uint32_t decodedLength =
      CalcDecodedStringySize<T>(encodedSectionBegin, aEnd, &encodedSectionEnd);
  aPos = encodedSectionEnd + 1;

  if (!decodedLength) {
    acquireEmpty();
    return;
  }

  T* out;
  if (!acquireBuffer(&out, decodedLength)) {
    return;
  }

  DecodeAsStringy(encodedSectionBegin, encodedSectionEnd, decodedLength, out);
}

// static
nsAutoString Key::DecodeString(const EncodedDataType*& aPos,
                               const EncodedDataType* const aEnd) {
  nsAutoString res;
  DecodeStringy<eString, char16_t>(
      aPos, aEnd,
      [&res](char16_t** out, uint32_t decodedLength) {
        return 0 != res.GetMutableData(out, decodedLength);
      },
      [] {});
  return res;
}

Result<Ok, nsresult> Key::EncodeNumber(double aFloat, uint8_t aType) {
  // Allocate memory for the new size
  size_t oldLen = mBuffer.Length();
  size_t newLen = oldLen + 1 + sizeof(double);
  if (newLen > KEY_MAXIMUM_BUFFER_LENGTH) {
    return Err(NS_ERROR_DOM_INDEXEDDB_KEY_ERR);
  }

  char* buffer;
  if (!mBuffer.GetMutableData(&buffer, newLen)) {
    return Err(NS_ERROR_DOM_INDEXEDDB_KEY_ERR);
  }
  buffer += oldLen;

  *(buffer++) = aType;

  uint64_t bits = BitwiseCast<uint64_t>(aFloat);
  // Note: The subtraction from 0 below is necessary to fix
  // MSVC build warning C4146 (negating an unsigned value).
  const uint64_t signbit = FloatingPoint<double>::kSignBit;
  uint64_t number = bits & signbit ? (0 - bits) : (bits | signbit);

  mozilla::BigEndian::writeUint64(buffer, number);
  return Ok();
}

// static
double Key::DecodeNumber(const EncodedDataType*& aPos,
                         const EncodedDataType* aEnd) {
  NS_ASSERTION(*aPos % eMaxType == eFloat || *aPos % eMaxType == eDate,
               "Don't call me!");

  ++aPos;

  uint64_t number = 0;
  memcpy(&number, aPos, std::min<size_t>(sizeof(number), aEnd - aPos));
  number = mozilla::NativeEndian::swapFromBigEndian(number);

  aPos += sizeof(number);

  // Note: The subtraction from 0 below is necessary to fix
  // MSVC build warning C4146 (negating an unsigned value).
  const uint64_t signbit = FloatingPoint<double>::kSignBit;
  uint64_t bits = number & signbit ? (number & ~signbit) : (0 - number);

  return BitwiseCast<double>(bits);
}

Result<Ok, nsresult> Key::EncodeBinary(JSObject* aObject, bool aIsViewObject,
                                       uint8_t aTypeOffset) {
  uint8_t* bufferData;
  size_t bufferLength;

  // We must use JS::GetObjectAsArrayBuffer()/JS_GetObjectAsArrayBufferView()
  // instead of js::GetArrayBufferLengthAndData(). The object might be wrapped,
  // the former will handle the wrapped case, the later won't.
  if (aIsViewObject) {
    bool unused;
    JS_GetObjectAsArrayBufferView(aObject, &bufferLength, &unused, &bufferData);
  } else {
    JS::GetObjectAsArrayBuffer(aObject, &bufferLength, &bufferData);
  }

  return EncodeAsString(Span{bufferData, bufferLength}.AsConst(),
                        eBinary + aTypeOffset);
}

// static
JSObject* Key::DecodeBinary(const EncodedDataType*& aPos,
                            const EncodedDataType* aEnd, JSContext* aCx) {
  JS::Rooted<JSObject*> rv(aCx);
  DecodeStringy<eBinary, uint8_t>(
      aPos, aEnd,
      [&rv, aCx](uint8_t** out, uint32_t decodedSize) {
        UniquePtr<void, JS::FreePolicy> ptr{JS_malloc(aCx, decodedSize)};
        if (NS_WARN_IF(!ptr)) {
          *out = nullptr;
          rv = nullptr;
          return false;
        }

        *out = static_cast<uint8_t*>(ptr.get());
        rv = JS::NewArrayBufferWithContents(aCx, decodedSize, std::move(ptr));
        if (NS_WARN_IF(!rv)) {
          *out = nullptr;
          return false;
        }
        return true;
      },
      [&rv, aCx] { rv = JS::NewArrayBuffer(aCx, 0); });
  return rv;
}

nsresult Key::BindToStatement(mozIStorageStatement* aStatement,
                              const nsACString& aParamName) const {
  nsresult rv;
  if (IsUnset()) {
    rv = aStatement->BindNullByName(aParamName);
  } else {
    rv = aStatement->BindBlobByName(
        aParamName, reinterpret_cast<const uint8_t*>(mBuffer.get()),
        mBuffer.Length());
  }

  return NS_SUCCEEDED(rv) ? NS_OK : NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}

nsresult Key::SetFromStatement(mozIStorageStatement* aStatement,
                               uint32_t aIndex) {
  return SetFromSource(aStatement, aIndex);
}

nsresult Key::SetFromValueArray(mozIStorageValueArray* aValues,
                                uint32_t aIndex) {
  return SetFromSource(aValues, aIndex);
}

IDBResult<Ok, IDBSpecialValue::Invalid> Key::SetFromJSVal(
    JSContext* aCx, JS::Handle<JS::Value> aVal) {
  mBuffer.Truncate();

  if (aVal.isNull() || aVal.isUndefined()) {
    Unset();
    return Ok();
  }

  auto result = EncodeJSVal(aCx, aVal, 0);
  if (result.isErr()) {
    Unset();
    return result;
  }
  TrimBuffer();
  return Ok();
}

nsresult Key::ToJSVal(JSContext* aCx, JS::MutableHandle<JS::Value> aVal) const {
  if (IsUnset()) {
    aVal.setUndefined();
    return NS_OK;
  }

  const EncodedDataType* pos = BufferStart();
  nsresult rv = DecodeJSVal(pos, BufferEnd(), aCx, aVal);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return rv;
  }

  MOZ_ASSERT(pos >= BufferEnd());

  return NS_OK;
}

nsresult Key::ToJSVal(JSContext* aCx, JS::Heap<JS::Value>& aVal) const {
  JS::Rooted<JS::Value> value(aCx);
  nsresult rv = ToJSVal(aCx, &value);
  if (NS_SUCCEEDED(rv)) {
    aVal = value;
  }
  return rv;
}

IDBResult<Ok, IDBSpecialValue::Invalid> Key::AppendItem(
    JSContext* aCx, bool aFirstOfArray, JS::Handle<JS::Value> aVal) {
  auto result = EncodeJSVal(aCx, aVal, aFirstOfArray ? eMaxType : 0);
  if (result.isErr()) {
    Unset();
  }
  return result;
}

template <typename T>
nsresult Key::SetFromSource(T* aSource, uint32_t aIndex) {
  const uint8_t* data;
  uint32_t dataLength = 0;

  nsresult rv = aSource->GetSharedBlob(aIndex, &dataLength, &data);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
  }

  mBuffer.Assign(reinterpret_cast<const char*>(data), dataLength);

  return NS_OK;
}

}  // namespace mozilla::dom::indexedDB