1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioDriftCorrection.h"
#include <cmath>
#include "AudioResampler.h"
#include "DriftController.h"
namespace mozilla {
extern LazyLogModule gMediaTrackGraphLog;
#define LOG_CONTROLLER(level, controller, format, ...) \
MOZ_LOG(gMediaTrackGraphLog, level, \
("DriftController %p: (plot-id %u) " format, controller, \
(controller)->mPlotId, ##__VA_ARGS__))
static media::TimeUnit DesiredBuffering(media::TimeUnit aSourceLatency) {
constexpr media::TimeUnit kMinBuffer(10, MSECS_PER_S);
constexpr media::TimeUnit kMaxBuffer(2500, MSECS_PER_S);
const auto clamped = std::clamp(aSourceLatency, kMinBuffer, kMaxBuffer);
// Ensure the base is the source's sampling rate.
return clamped.ToBase(aSourceLatency);
}
AudioDriftCorrection::AudioDriftCorrection(
uint32_t aSourceRate, uint32_t aTargetRate,
const PrincipalHandle& aPrincipalHandle)
: mTargetRate(aTargetRate),
mDriftController(MakeUnique<DriftController>(aSourceRate, aTargetRate,
mDesiredBuffering)),
mResampler(MakeUnique<AudioResampler>(aSourceRate, aTargetRate, 0,
aPrincipalHandle)) {}
AudioDriftCorrection::~AudioDriftCorrection() = default;
AudioSegment AudioDriftCorrection::RequestFrames(const AudioSegment& aInput,
uint32_t aOutputFrames) {
const media::TimeUnit inputDuration(aInput.GetDuration(),
mDriftController->mSourceRate);
const media::TimeUnit outputDuration(aOutputFrames, mTargetRate);
if (inputDuration.IsPositive()) {
if (mDesiredBuffering.IsZero()) {
// Start with the desired buffering at at least 50ms, since the drift is
// still unknown. It may be adjust downward later on, when we have adapted
// to the drift more.
const media::TimeUnit desiredBuffering = DesiredBuffering(std::max(
inputDuration * 11 / 10, media::TimeUnit::FromSeconds(0.05)));
LOG_CONTROLLER(LogLevel::Info, mDriftController.get(),
"Initial desired buffering %.2fms",
desiredBuffering.ToSeconds() * 1000.0);
SetDesiredBuffering(desiredBuffering);
} else if (inputDuration > mDesiredBuffering) {
// Input latency is higher than the desired buffering. Increase the
// desired buffering to try to avoid underruns.
if (inputDuration > mSourceLatency) {
const media::TimeUnit desiredBuffering =
DesiredBuffering(inputDuration * 11 / 10);
LOG_CONTROLLER(
LogLevel::Info, mDriftController.get(),
"High observed input latency %.2fms (%" PRId64
" frames). Increasing desired buffering %.2fms->%.2fms frames",
inputDuration.ToSeconds() * 1000.0, aInput.GetDuration(),
mDesiredBuffering.ToSeconds() * 1000.0,
desiredBuffering.ToSeconds() * 1000.0);
SetDesiredBuffering(desiredBuffering);
} else {
const media::TimeUnit desiredBuffering =
DesiredBuffering(mSourceLatency * 11 / 10);
LOG_CONTROLLER(LogLevel::Info, mDriftController.get(),
"Increasing desired buffering %.2fms->%.2fms, "
"based on reported input-latency %.2fms.",
mDesiredBuffering.ToSeconds() * 1000.0,
desiredBuffering.ToSeconds() * 1000.0,
mSourceLatency.ToSeconds() * 1000.0);
SetDesiredBuffering(desiredBuffering);
}
}
mIsHandlingUnderrun = false;
// Very important to go first since DynamicResampler will get the sample
// format from the chunk.
mResampler->AppendInput(aInput);
}
bool hasUnderrun = false;
AudioSegment output = mResampler->Resample(aOutputFrames, &hasUnderrun);
mDriftController->UpdateClock(inputDuration, outputDuration,
CurrentBuffering(), BufferSize());
// Update resampler's rate if there is a new correction.
mResampler->UpdateInRate(mDriftController->GetCorrectedSourceRate());
if (hasUnderrun) {
if (!mIsHandlingUnderrun) {
NS_WARNING("Drift-correction: Underrun");
LOG_CONTROLLER(LogLevel::Info, mDriftController.get(),
"Underrun. Doubling the desired buffering %.2fms->%.2fms",
mDesiredBuffering.ToSeconds() * 1000.0,
(mDesiredBuffering * 2).ToSeconds() * 1000.0);
mIsHandlingUnderrun = true;
++mNumUnderruns;
SetDesiredBuffering(DesiredBuffering(mDesiredBuffering * 2));
mDriftController->ResetAfterUnderrun();
}
}
if (mDriftController->DurationWithinHysteresis() >
mLatencyReductionTimeLimit &&
mDriftController->DurationSinceDesiredBufferingChange() >
mLatencyReductionTimeLimit) {
// We have been stable within hysteresis for a while. Let's reduce the
// desired buffering if we can.
const media::TimeUnit sourceLatency =
mDriftController->MeasuredSourceLatency();
// We target 30% over the measured source latency, a bit higher than how we
// adapt to high source latency.
const media::TimeUnit targetDesiredBuffering =
DesiredBuffering(sourceLatency * 13 / 10);
if (targetDesiredBuffering < mDesiredBuffering) {
// The new target is lower than the current desired buffering. Proceed by
// reducing the difference by 10%, but do it in 10ms-steps so there is a
// chance of reaching the target (by truncation).
const media::TimeUnit diff =
(mDesiredBuffering - targetDesiredBuffering) / 10;
// Apply the 10%-diff and 2ms-steps, but don't go lower than the
// already-decided desired target.
const media::TimeUnit target = std::max(
targetDesiredBuffering, (mDesiredBuffering - diff).ToBase(500));
if (target < mDesiredBuffering) {
LOG_CONTROLLER(
LogLevel::Info, mDriftController.get(),
"Reducing desired buffering because the buffering level is stable. "
"%.2fms->%.2fms. Measured source latency is %.2fms, ideal target "
"is %.2fms.",
mDesiredBuffering.ToSeconds() * 1000.0, target.ToSeconds() * 1000.0,
sourceLatency.ToSeconds() * 1000.0,
targetDesiredBuffering.ToSeconds() * 1000.0);
SetDesiredBuffering(target);
}
}
}
return output;
}
uint32_t AudioDriftCorrection::CurrentBuffering() const {
return mResampler->InputReadableFrames();
}
uint32_t AudioDriftCorrection::BufferSize() const {
return mResampler->InputCapacityFrames();
}
uint32_t AudioDriftCorrection::NumCorrectionChanges() const {
return mDriftController->NumCorrectionChanges();
}
void AudioDriftCorrection::SetSourceLatency(media::TimeUnit aSourceLatency) {
LOG_CONTROLLER(
LogLevel::Info, mDriftController.get(), "SetSourceLatency %.2fms->%.2fms",
mSourceLatency.ToSeconds() * 1000.0, aSourceLatency.ToSeconds() * 1000.0);
mSourceLatency = aSourceLatency;
}
void AudioDriftCorrection::SetDesiredBuffering(
media::TimeUnit aDesiredBuffering) {
mDesiredBuffering = aDesiredBuffering;
mDriftController->SetDesiredBuffering(mDesiredBuffering);
mResampler->SetInputPreBufferFrameCount(
mDesiredBuffering.ToTicksAtRate(mDriftController->mSourceRate));
}
} // namespace mozilla
#undef LOG_CONTROLLER
|