1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=4 sw=2 sts=2 et cindent: */
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FFTBlock.h"
#include "FFVPXRuntimeLinker.h"
#include <complex>
namespace mozilla {
FFmpegFFTFuncs FFTBlock::sFFTFuncs = {};
using Complex = std::complex<double>;
static double fdlibm_cabs(const Complex& z) {
return fdlibm_hypot(real(z), imag(z));
}
static double fdlibm_carg(const Complex& z) {
return fdlibm_atan2(imag(z), real(z));
}
FFTBlock* FFTBlock::CreateInterpolatedBlock(const FFTBlock& block0,
const FFTBlock& block1,
double interp) {
uint32_t fftSize = block0.FFTSize();
FFTBlock* newBlock =
new FFTBlock(fftSize, 1.0f / AssertedCast<float>(fftSize));
newBlock->InterpolateFrequencyComponents(block0, block1, interp);
// In the time-domain, the 2nd half of the response must be zero, to avoid
// circular convolution aliasing...
AlignedTArray<float> buffer(fftSize);
newBlock->GetInverse(buffer.Elements());
PodZero(buffer.Elements() + fftSize / 2, fftSize / 2);
// Put back into frequency domain.
newBlock->PerformFFT(buffer.Elements());
return newBlock;
}
void FFTBlock::InterpolateFrequencyComponents(const FFTBlock& block0,
const FFTBlock& block1,
double interp) {
// FIXME : with some work, this method could be optimized
ComplexU* dft = mOutputBuffer.Elements();
const ComplexU* dft1 = block0.mOutputBuffer.Elements();
const ComplexU* dft2 = block1.mOutputBuffer.Elements();
MOZ_ASSERT(mFFTSize == block0.FFTSize());
MOZ_ASSERT(mFFTSize == block1.FFTSize());
double s1base = (1.0 - interp);
double s2base = interp;
double phaseAccum = 0.0;
double lastPhase1 = 0.0;
double lastPhase2 = 0.0;
int n = mFFTSize / 2;
dft[0].r = static_cast<float>(s1base * dft1[0].r + s2base * dft2[0].r);
dft[n].r = static_cast<float>(s1base * dft1[n].r + s2base * dft2[n].r);
for (int i = 1; i < n; ++i) {
Complex c1(dft1[i].r, dft1[i].i);
Complex c2(dft2[i].r, dft2[i].i);
double mag1 = fdlibm_cabs(c1);
double mag2 = fdlibm_cabs(c2);
// Interpolate magnitudes in decibels
double mag1db = 20.0 * fdlibm_log10(mag1);
double mag2db = 20.0 * fdlibm_log10(mag2);
double s1 = s1base;
double s2 = s2base;
double magdbdiff = mag1db - mag2db;
// Empirical tweak to retain higher-frequency zeroes
double threshold = (i > 16) ? 5.0 : 2.0;
if (magdbdiff < -threshold && mag1db < 0.0) {
s1 = fdlibm_pow(s1, 0.75);
s2 = 1.0 - s1;
} else if (magdbdiff > threshold && mag2db < 0.0) {
s2 = fdlibm_pow(s2, 0.75);
s1 = 1.0 - s2;
}
// Average magnitude by decibels instead of linearly
double magdb = s1 * mag1db + s2 * mag2db;
double mag = fdlibm_pow(10.0, 0.05 * magdb);
// Now, deal with phase
double phase1 = fdlibm_carg(c1);
double phase2 = fdlibm_carg(c2);
double deltaPhase1 = phase1 - lastPhase1;
double deltaPhase2 = phase2 - lastPhase2;
lastPhase1 = phase1;
lastPhase2 = phase2;
// Unwrap phase deltas
if (deltaPhase1 > M_PI) deltaPhase1 -= 2.0 * M_PI;
if (deltaPhase1 < -M_PI) deltaPhase1 += 2.0 * M_PI;
if (deltaPhase2 > M_PI) deltaPhase2 -= 2.0 * M_PI;
if (deltaPhase2 < -M_PI) deltaPhase2 += 2.0 * M_PI;
// Blend group-delays
double deltaPhaseBlend;
if (deltaPhase1 - deltaPhase2 > M_PI)
deltaPhaseBlend = s1 * deltaPhase1 + s2 * (2.0 * M_PI + deltaPhase2);
else if (deltaPhase2 - deltaPhase1 > M_PI)
deltaPhaseBlend = s1 * (2.0 * M_PI + deltaPhase1) + s2 * deltaPhase2;
else
deltaPhaseBlend = s1 * deltaPhase1 + s2 * deltaPhase2;
phaseAccum += deltaPhaseBlend;
// Unwrap
if (phaseAccum > M_PI) phaseAccum -= 2.0 * M_PI;
if (phaseAccum < -M_PI) phaseAccum += 2.0 * M_PI;
dft[i].r = static_cast<float>(mag * fdlibm_cos(phaseAccum));
dft[i].i = static_cast<float>(mag * fdlibm_sin(phaseAccum));
}
}
double FFTBlock::ExtractAverageGroupDelay() {
ComplexU* dft = mOutputBuffer.Elements();
double aveSum = 0.0;
double weightSum = 0.0;
double lastPhase = 0.0;
int halfSize = FFTSize() / 2;
const double kSamplePhaseDelay = (2.0 * M_PI) / double(FFTSize());
// Remove DC offset
dft[0].r = 0.0f;
// Calculate weighted average group delay
for (int i = 1; i < halfSize; i++) {
Complex c(dft[i].r, dft[i].i);
double mag = fdlibm_cabs(c);
double phase = fdlibm_carg(c);
double deltaPhase = phase - lastPhase;
lastPhase = phase;
// Unwrap
if (deltaPhase < -M_PI) deltaPhase += 2.0 * M_PI;
if (deltaPhase > M_PI) deltaPhase -= 2.0 * M_PI;
aveSum += mag * deltaPhase;
weightSum += mag;
}
// Note how we invert the phase delta wrt frequency since this is how group
// delay is defined
double ave = aveSum / weightSum;
double aveSampleDelay = -ave / kSamplePhaseDelay;
// Leave 20 sample headroom (for leading edge of impulse)
aveSampleDelay -= 20.0;
if (aveSampleDelay <= 0.0) return 0.0;
// Remove average group delay (minus 20 samples for headroom)
AddConstantGroupDelay(-aveSampleDelay);
return aveSampleDelay;
}
void FFTBlock::AddConstantGroupDelay(double sampleFrameDelay) {
int halfSize = FFTSize() / 2;
ComplexU* dft = mOutputBuffer.Elements();
const double kSamplePhaseDelay = (2.0 * M_PI) / double(FFTSize());
double phaseAdj = -sampleFrameDelay * kSamplePhaseDelay;
// Add constant group delay
for (int i = 1; i < halfSize; i++) {
Complex c(dft[i].r, dft[i].i);
double mag = fdlibm_cabs(c);
double phase = fdlibm_carg(c);
phase += i * phaseAdj;
dft[i].r = static_cast<float>(mag * fdlibm_cos(phase));
dft[i].i = static_cast<float>(mag * fdlibm_sin(phase));
}
}
} // namespace mozilla
|