1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef ThreeDPoint_h_
#define ThreeDPoint_h_
#include <cmath>
#include <algorithm>
namespace mozilla::dom {
struct ThreeDPoint final {
ThreeDPoint() : x(0.), y(0.), z(0.) {}
ThreeDPoint(double aX, double aY, double aZ) : x(aX), y(aY), z(aZ) {}
double Magnitude() const { return sqrt(x * x + y * y + z * z); }
void Normalize() {
// Zero vectors cannot be normalized. For our purpose, normalizing a zero
// vector results in a zero vector.
if (IsZero()) {
return;
}
// Normalize with the maximum norm first to avoid overflow and underflow.
double invMax = 1 / MaxNorm();
x *= invMax;
y *= invMax;
z *= invMax;
double invDistance = 1 / Magnitude();
x *= invDistance;
y *= invDistance;
z *= invDistance;
}
ThreeDPoint CrossProduct(const ThreeDPoint& rhs) const {
return ThreeDPoint(y * rhs.z - z * rhs.y, z * rhs.x - x * rhs.z,
x * rhs.y - y * rhs.x);
}
double DotProduct(const ThreeDPoint& rhs) {
return x * rhs.x + y * rhs.y + z * rhs.z;
}
bool IsZero() const { return x == 0 && y == 0 && z == 0; }
// For comparing two vectors of close to unit magnitude.
bool FuzzyEqual(const ThreeDPoint& other);
double x, y, z;
private:
double MaxNorm() const {
return std::max(fabs(x), std::max(fabs(y), fabs(z)));
}
};
ThreeDPoint operator-(const ThreeDPoint& lhs, const ThreeDPoint& rhs);
ThreeDPoint operator*(const ThreeDPoint& lhs, const ThreeDPoint& rhs);
ThreeDPoint operator*(const ThreeDPoint& lhs, const double rhs);
bool operator==(const ThreeDPoint& lhs, const ThreeDPoint& rhs);
} // namespace mozilla::dom
#endif
|