summaryrefslogtreecommitdiffstats
path: root/gfx/2d/ImageScalingSSE2.cpp
blob: f901641eaf9389f59fb7a6aa273d7169180bd49e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ImageScaling.h"
#include "mozilla/Attributes.h"

#include "SSEHelpers.h"

/* The functions below use the following system for averaging 4 pixels:
 *
 * The first observation is that a half-adder is implemented as follows:
 * R = S + 2C or in the case of a and b (a ^ b) + ((a & b) << 1);
 *
 * This can be trivially extended to three pixels by observaring that when
 * doing (a ^ b ^ c) as the sum, the carry is simply the bitwise-or of the
 * carries of the individual numbers, since the sum of 3 bits can only ever
 * have a carry of one.
 *
 * We then observe that the average is then ((carry << 1) + sum) >> 1, or,
 * assuming eliminating overflows and underflows, carry + (sum >> 1).
 *
 * We now average our existing sum with the fourth number, so we get:
 * sum2 = (sum + d) >> 1 or (sum >> 1) + (d >> 1).
 *
 * We now observe that our sum has been moved into place relative to the
 * carry, so we can now average with the carry to get the final 4 input
 * average: avg = (sum2 + carry) >> 1;
 *
 * Or to reverse the proof:
 * avg = ((sum >> 1) + carry + d >> 1) >> 1
 * avg = ((a + b + c) >> 1 + d >> 1) >> 1
 * avg = ((a + b + c + d) >> 2)
 *
 * An additional fact used in the SSE versions is the concept that we can
 * trivially convert a rounded average to a truncated average:
 *
 * We have:
 * f(a, b) = (a + b + 1) >> 1
 *
 * And want:
 * g(a, b) = (a + b) >> 1
 *
 * Observe:
 * ~f(~a, ~b) == ~((~a + ~b + 1) >> 1)
 *            == ~((-a - 1 + -b - 1 + 1) >> 1)
 *            == ~((-a - 1 + -b) >> 1)
 *            == ~((-(a + b) - 1) >> 1)
 *            == ~((~(a + b)) >> 1)
 *            == (a + b) >> 1
 *            == g(a, b)
 */

MOZ_ALWAYS_INLINE __m128i _mm_not_si128(__m128i arg) {
  __m128i minusone = _mm_set1_epi32(0xffffffff);
  return _mm_xor_si128(arg, minusone);
}

/* We have to pass pointers here, MSVC does not allow passing more than 3
 * __m128i arguments on the stack. And it does not allow 16-byte aligned
 * stack variables. This inlines properly on MSVC 2010. It does -not- inline
 * with just the inline directive.
 */
MOZ_ALWAYS_INLINE __m128i avg_sse2_8x2(__m128i* a, __m128i* b, __m128i* c,
                                       __m128i* d) {
#define shuf1 _MM_SHUFFLE(2, 0, 2, 0)
#define shuf2 _MM_SHUFFLE(3, 1, 3, 1)

// This cannot be an inline function as the __Imm argument to _mm_shuffle_ps
// needs to be a compile time constant.
#define shuffle_si128(arga, argb, imm)                      \
  _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps((arga)), \
                                  _mm_castsi128_ps((argb)), (imm)));

  __m128i t = shuffle_si128(*a, *b, shuf1);
  *b = shuffle_si128(*a, *b, shuf2);
  *a = t;
  t = shuffle_si128(*c, *d, shuf1);
  *d = shuffle_si128(*c, *d, shuf2);
  *c = t;

#undef shuf1
#undef shuf2
#undef shuffle_si128

  __m128i sum = _mm_xor_si128(*a, _mm_xor_si128(*b, *c));

  __m128i carry =
      _mm_or_si128(_mm_and_si128(*a, *b),
                   _mm_or_si128(_mm_and_si128(*a, *c), _mm_and_si128(*b, *c)));

  sum = _mm_avg_epu8(_mm_not_si128(sum), _mm_not_si128(*d));

  return _mm_not_si128(_mm_avg_epu8(sum, _mm_not_si128(carry)));
}

MOZ_ALWAYS_INLINE __m128i avg_sse2_4x2_4x1(__m128i a, __m128i b) {
  return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b)));
}

MOZ_ALWAYS_INLINE __m128i avg_sse2_8x1_4x1(__m128i a, __m128i b) {
  __m128i t = _mm_castps_si128(_mm_shuffle_ps(
      _mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(3, 1, 3, 1)));
  b = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b),
                                      _MM_SHUFFLE(2, 0, 2, 0)));
  a = t;

  return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b)));
}

MOZ_ALWAYS_INLINE uint32_t Avg2x2(uint32_t a, uint32_t b, uint32_t c,
                                  uint32_t d) {
  uint32_t sum = a ^ b ^ c;
  uint32_t carry = (a & b) | (a & c) | (b & c);

  uint32_t mask = 0xfefefefe;

  // Not having a byte based average instruction means we should mask to avoid
  // underflow.
  sum = (((sum ^ d) & mask) >> 1) + (sum & d);

  return (((sum ^ carry) & mask) >> 1) + (sum & carry);
}

// Simple 2 pixel average version of the function above.
MOZ_ALWAYS_INLINE uint32_t Avg2(uint32_t a, uint32_t b) {
  uint32_t sum = a ^ b;
  uint32_t carry = (a & b);

  uint32_t mask = 0xfefefefe;

  return ((sum & mask) >> 1) + carry;
}

namespace mozilla::gfx {

void ImageHalfScaler::HalfImage2D_SSE2(uint8_t* aSource, int32_t aSourceStride,
                                       const IntSize& aSourceSize,
                                       uint8_t* aDest, uint32_t aDestStride) {
  const int Bpp = 4;

  for (int y = 0; y < aSourceSize.height; y += 2) {
    __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride);
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) &&
        !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = _mm_load_si128(upperRow);
        __m128i b = _mm_load_si128(upperRow + 1);
        __m128i c = _mm_load_si128(lowerRow);
        __m128i d = _mm_load_si128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = _mm_load_si128(upperRow);
        __m128i b = _mm_load_si128(upperRow + 1);
        __m128i c = loadUnaligned128(lowerRow);
        __m128i d = loadUnaligned128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)upperRow + 1);
        __m128i c = _mm_load_si128((__m128i*)lowerRow);
        __m128i d = _mm_load_si128((__m128i*)lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    } else {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp));
        __m128i* lowerRow =
            (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp));

        __m128i a = loadUnaligned128(upperRow);
        __m128i b = loadUnaligned128(upperRow + 1);
        __m128i c = loadUnaligned128(lowerRow);
        __m128i d = loadUnaligned128(lowerRow + 1);

        *storage++ = avg_sse2_8x2(&a, &b, &c, &d);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle. We use a 2x2 'simd' implementation for this.
    //
    // Potentially we only have to do this in the last row since overflowing
    // 8 pixels in an earlier row would appear to be harmless as it doesn't
    // touch invalid memory. Even when reading and writing to the same surface.
    // in practice we only do this when doing an additional downscale pass, and
    // in this situation we have unused stride to write into harmlessly.
    // I do not believe the additional code complexity would be worth it though.
    for (; x < aSourceSize.width; x += 2) {
      uint8_t* upperRow = aSource + (y * aSourceStride + x * Bpp);
      uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * Bpp);

      *unalignedStorage++ =
          Avg2x2(*(uint32_t*)upperRow, *((uint32_t*)upperRow + 1),
                 *(uint32_t*)lowerRow, *((uint32_t*)lowerRow + 1));
    }
  }
}

void ImageHalfScaler::HalfImageVertical_SSE2(uint8_t* aSource,
                                             int32_t aSourceStride,
                                             const IntSize& aSourceSize,
                                             uint8_t* aDest,
                                             uint32_t aDestStride) {
  for (int y = 0; y < aSourceSize.height; y += 2) {
    __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride);
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) &&
        !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = _mm_load_si128((__m128i*)upperRow);
        __m128i b = _mm_load_si128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      // This line doesn't align well.
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = _mm_load_si128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = _mm_load_si128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    } else {
      for (; x < (aSourceSize.width - 3); x += 4) {
        uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
        uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

        __m128i a = loadUnaligned128((__m128i*)upperRow);
        __m128i b = loadUnaligned128((__m128i*)lowerRow);

        *storage++ = avg_sse2_4x2_4x1(a, b);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle.
    //
    // Similar overflow considerations are valid as in the previous function.
    for (; x < aSourceSize.width; x++) {
      uint8_t* upperRow = aSource + (y * aSourceStride + x * 4);
      uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4);

      *unalignedStorage++ = Avg2(*(uint32_t*)upperRow, *(uint32_t*)lowerRow);
    }
  }
}

void ImageHalfScaler::HalfImageHorizontal_SSE2(uint8_t* aSource,
                                               int32_t aSourceStride,
                                               const IntSize& aSourceSize,
                                               uint8_t* aDest,
                                               uint32_t aDestStride) {
  for (int y = 0; y < aSourceSize.height; y++) {
    __m128i* storage = (__m128i*)(aDest + (y * aDestStride));
    int x = 0;
    // Run a loop depending on alignment.
    if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4));

        __m128i a = _mm_load_si128(pixels);
        __m128i b = _mm_load_si128(pixels + 1);

        *storage++ = avg_sse2_8x1_4x1(a, b);
      }
    } else {
      for (; x < (aSourceSize.width - 7); x += 8) {
        __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4));

        __m128i a = loadUnaligned128(pixels);
        __m128i b = loadUnaligned128(pixels + 1);

        *storage++ = avg_sse2_8x1_4x1(a, b);
      }
    }

    uint32_t* unalignedStorage = (uint32_t*)storage;
    // Take care of the final pixels, we know there's an even number of pixels
    // in the source rectangle.
    //
    // Similar overflow considerations are valid as in the previous function.
    for (; x < aSourceSize.width; x += 2) {
      uint32_t* pixels = (uint32_t*)(aSource + (y * aSourceStride + x * 4));

      *unalignedStorage++ = Avg2(*pixels, *(pixels + 1));
    }
  }
}

}  // namespace mozilla::gfx