summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/core/SkVM.h
blob: 89fe090252a399358764c6ec763bbbf436feeffe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
/*
 * Copyright 2019 Google LLC
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkVM_DEFINED
#define SkVM_DEFINED

#include "include/core/SkBlendMode.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorType.h"
#include "include/core/SkSpan.h"
#include "include/private/base/SkMacros.h"
#include "include/private/base/SkTArray.h"
#include "src/core/SkTHash.h"
#include "src/core/SkVM_fwd.h"
#include <vector>      // std::vector

class SkWStream;

#if defined(SKVM_JIT_WHEN_POSSIBLE) && !defined(SK_BUILD_FOR_IOS)
    #if defined(__x86_64__) || defined(_M_X64)
        #if defined(_WIN32) || defined(__linux) || defined(__APPLE__)
            #define SKVM_JIT
        #endif
    #endif
    #if defined(__aarch64__)
        #if defined(__ANDROID__) || defined(__APPLE__)
            #define SKVM_JIT
        #endif
    #endif
#endif

#if 0
    #undef SKVM_JIT
#endif

namespace SkSL {
class TraceHook;
}

namespace skvm {

    namespace viz {
        class Visualizer;
    }

    class Assembler {
    public:
        explicit Assembler(void* buf);

        size_t size() const;

        // Order matters... GP64, Xmm, Ymm values match 4-bit register encoding for each.
        enum GP64 {
            rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi,
            r8 , r9 , r10, r11, r12, r13, r14, r15,
        };
        enum Xmm {
            xmm0, xmm1, xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , xmm7 ,
            xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15,
        };
        enum Ymm {
            ymm0, ymm1, ymm2 , ymm3 , ymm4 , ymm5 , ymm6 , ymm7 ,
            ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15,
        };

        // X and V values match 5-bit encoding for each (nothing tricky).
        enum X {
            x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 ,
            x8 , x9 , x10, x11, x12, x13, x14, x15,
            x16, x17, x18, x19, x20, x21, x22, x23,
            x24, x25, x26, x27, x28, x29, x30, xzr, sp=xzr,
        };
        enum V {
            v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 ,
            v8 , v9 , v10, v11, v12, v13, v14, v15,
            v16, v17, v18, v19, v20, v21, v22, v23,
            v24, v25, v26, v27, v28, v29, v30, v31,
        };

        void bytes(const void*, int);
        void byte(uint8_t);
        void word(uint32_t);

        struct Label {
            int                                      offset = 0;
            enum { NotYetSet, ARMDisp19, X86Disp32 } kind = NotYetSet;
            SkSTArray<2, int>                        references;
        };

        // x86-64

        void align(int mod);

        void int3();
        void vzeroupper();
        void ret();

        // Mem represents a value at base + disp + scale*index,
        // or simply at base + disp if index=rsp.
        enum Scale { ONE, TWO, FOUR, EIGHT };
        struct Mem {
            GP64  base;
            int   disp  = 0;
            GP64  index = rsp;
            Scale scale = ONE;
        };

        struct Operand {
            union {
                int    reg;
                Mem    mem;
                Label* label;
            };
            enum { REG, MEM, LABEL } kind;

            Operand(GP64   r) : reg  (r), kind(REG  ) {}
            Operand(Xmm    r) : reg  (r), kind(REG  ) {}
            Operand(Ymm    r) : reg  (r), kind(REG  ) {}
            Operand(Mem    m) : mem  (m), kind(MEM  ) {}
            Operand(Label* l) : label(l), kind(LABEL) {}
        };

        void vpand (Ymm dst, Ymm x, Operand y);
        void vpandn(Ymm dst, Ymm x, Operand y);
        void vpor  (Ymm dst, Ymm x, Operand y);
        void vpxor (Ymm dst, Ymm x, Operand y);

        void vpaddd (Ymm dst, Ymm x, Operand y);
        void vpsubd (Ymm dst, Ymm x, Operand y);
        void vpmulld(Ymm dst, Ymm x, Operand y);

        void vpaddw   (Ymm dst, Ymm x, Operand y);
        void vpsubw   (Ymm dst, Ymm x, Operand y);
        void vpmullw  (Ymm dst, Ymm x, Operand y);

        void vpabsw   (Ymm dst, Operand x);
        void vpavgw   (Ymm dst, Ymm x, Operand y);  // dst = (x+y+1)>>1, unsigned.
        void vpmulhrsw(Ymm dst, Ymm x, Operand y);  // dst = (x*y + (1<<14)) >> 15, signed.
        void vpminsw  (Ymm dst, Ymm x, Operand y);
        void vpminuw  (Ymm dst, Ymm x, Operand y);
        void vpmaxsw  (Ymm dst, Ymm x, Operand y);
        void vpmaxuw  (Ymm dst, Ymm x, Operand y);

        void vaddps(Ymm dst, Ymm x, Operand y);
        void vsubps(Ymm dst, Ymm x, Operand y);
        void vmulps(Ymm dst, Ymm x, Operand y);
        void vdivps(Ymm dst, Ymm x, Operand y);
        void vminps(Ymm dst, Ymm x, Operand y);
        void vmaxps(Ymm dst, Ymm x, Operand y);

        void vsqrtps(Ymm dst, Operand x);

        void vfmadd132ps(Ymm dst, Ymm x, Operand y);
        void vfmadd213ps(Ymm dst, Ymm x, Operand y);
        void vfmadd231ps(Ymm dst, Ymm x, Operand y);

        void vfmsub132ps(Ymm dst, Ymm x, Operand y);
        void vfmsub213ps(Ymm dst, Ymm x, Operand y);
        void vfmsub231ps(Ymm dst, Ymm x, Operand y);

        void vfnmadd132ps(Ymm dst, Ymm x, Operand y);
        void vfnmadd213ps(Ymm dst, Ymm x, Operand y);
        void vfnmadd231ps(Ymm dst, Ymm x, Operand y);

        void vpackusdw(Ymm dst, Ymm x, Operand y);
        void vpackuswb(Ymm dst, Ymm x, Operand y);

        void vpunpckldq(Ymm dst, Ymm x, Operand y);
        void vpunpckhdq(Ymm dst, Ymm x, Operand y);

        void vpcmpeqd(Ymm dst, Ymm x, Operand y);
        void vpcmpgtd(Ymm dst, Ymm x, Operand y);
        void vpcmpeqw(Ymm dst, Ymm x, Operand y);
        void vpcmpgtw(Ymm dst, Ymm x, Operand y);

        void vcmpps   (Ymm dst, Ymm x, Operand y, int imm);
        void vcmpeqps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,0); }
        void vcmpltps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,1); }
        void vcmpleps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,2); }
        void vcmpneqps(Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,4); }

        // Sadly, the x parameter cannot be a general Operand for these shifts.
        void vpslld(Ymm dst, Ymm x, int imm);
        void vpsrld(Ymm dst, Ymm x, int imm);
        void vpsrad(Ymm dst, Ymm x, int imm);

        void vpsllw(Ymm dst, Ymm x, int imm);
        void vpsrlw(Ymm dst, Ymm x, int imm);
        void vpsraw(Ymm dst, Ymm x, int imm);

        void vpermq    (Ymm dst, Operand x, int imm);
        void vperm2f128(Ymm dst, Ymm x, Operand y, int imm);
        void vpermps   (Ymm dst, Ymm ix, Operand src);        // dst[i] = src[ix[i]]

        enum Rounding { NEAREST, FLOOR, CEIL, TRUNC, CURRENT };
        void vroundps(Ymm dst, Operand x, Rounding);

        void vmovdqa(Ymm dst, Operand x);
        void vmovups(Ymm dst, Operand x);
        void vmovups(Xmm dst, Operand x);
        void vmovups(Operand dst, Ymm x);
        void vmovups(Operand dst, Xmm x);

        void vcvtdq2ps (Ymm dst, Operand x);
        void vcvttps2dq(Ymm dst, Operand x);
        void vcvtps2dq (Ymm dst, Operand x);

        void vcvtps2ph(Operand dst, Ymm x, Rounding);
        void vcvtph2ps(Ymm dst, Operand x);

        void vpblendvb(Ymm dst, Ymm x, Operand y, Ymm z);

        void vpshufb(Ymm dst, Ymm x, Operand y);

        void vptest(Ymm x, Operand y);

        void vbroadcastss(Ymm dst, Operand y);

        void vpmovzxwd(Ymm dst, Operand src);   // dst = src, 128-bit, uint16_t -> int
        void vpmovzxbd(Ymm dst, Operand src);   // dst = src,  64-bit, uint8_t  -> int

        void vmovq(Operand dst, Xmm src);  // dst = src,  64-bit
        void vmovd(Operand dst, Xmm src);  // dst = src,  32-bit
        void vmovd(Xmm dst, Operand src);  // dst = src,  32-bit

        void vpinsrd(Xmm dst, Xmm src, Operand y, int imm);  // dst = src; dst[imm] = y, 32-bit
        void vpinsrw(Xmm dst, Xmm src, Operand y, int imm);  // dst = src; dst[imm] = y, 16-bit
        void vpinsrb(Xmm dst, Xmm src, Operand y, int imm);  // dst = src; dst[imm] = y,  8-bit

        void vextracti128(Operand dst, Ymm src, int imm);    // dst = src[imm], 128-bit
        void vpextrd     (Operand dst, Xmm src, int imm);    // dst = src[imm],  32-bit
        void vpextrw     (Operand dst, Xmm src, int imm);    // dst = src[imm],  16-bit
        void vpextrb     (Operand dst, Xmm src, int imm);    // dst = src[imm],   8-bit

        // if (mask & 0x8000'0000) {
        //     dst = base[scale*ix];
        // }
        // mask = 0;
        void vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask);


        void label(Label*);

        void jmp(Label*);
        void je (Label*);
        void jne(Label*);
        void jl (Label*);
        void jc (Label*);

        void add (Operand dst, int imm);
        void sub (Operand dst, int imm);
        void cmp (Operand dst, int imm);
        void mov (Operand dst, int imm);
        void movb(Operand dst, int imm);

        void add (Operand dst, GP64 x);
        void sub (Operand dst, GP64 x);
        void cmp (Operand dst, GP64 x);
        void mov (Operand dst, GP64 x);
        void movb(Operand dst, GP64 x);

        void add (GP64 dst, Operand x);
        void sub (GP64 dst, Operand x);
        void cmp (GP64 dst, Operand x);
        void mov (GP64 dst, Operand x);
        void movb(GP64 dst, Operand x);

        // Disambiguators... choice is arbitrary (but generates different code!).
        void add (GP64 dst, GP64 x) { this->add (Operand(dst), x); }
        void sub (GP64 dst, GP64 x) { this->sub (Operand(dst), x); }
        void cmp (GP64 dst, GP64 x) { this->cmp (Operand(dst), x); }
        void mov (GP64 dst, GP64 x) { this->mov (Operand(dst), x); }
        void movb(GP64 dst, GP64 x) { this->movb(Operand(dst), x); }

        void movzbq(GP64 dst, Operand x);  // dst = x, uint8_t  -> int
        void movzwq(GP64 dst, Operand x);  // dst = x, uint16_t -> int

        // aarch64

        // d = op(n,m)
        using DOpNM = void(V d, V n, V m);
        DOpNM  and16b, orr16b, eor16b, bic16b, bsl16b,
               add4s,  sub4s,  mul4s,
              cmeq4s, cmgt4s,
                       sub8h,  mul8h,
              fadd4s, fsub4s, fmul4s, fdiv4s, fmin4s, fmax4s,
              fcmeq4s, fcmgt4s, fcmge4s,
              tbl,
              uzp14s, uzp24s,
              zip14s, zip24s;

        // TODO: there are also float ==,<,<=,>,>= instructions with an immediate 0.0f,
        // and the register comparison > and >= can also compare absolute values.  Interesting.

        // d += n*m
        void fmla4s(V d, V n, V m);

        // d -= n*m
        void fmls4s(V d, V n, V m);

        // d = op(n,imm)
        using DOpNImm = void(V d, V n, int imm);
        DOpNImm sli4s,
                shl4s, sshr4s, ushr4s,
                               ushr8h;

        // d = op(n)
        using DOpN = void(V d, V n);
        DOpN not16b,    // d = ~n
             fneg4s,    // d = -n
             fsqrt4s,   // d = sqrtf(n)
             scvtf4s,   // int -> float
             fcvtzs4s,  // truncate float -> int
             fcvtns4s,  // round float -> int  (nearest even)
             frintp4s,  // round float -> int as float, toward plus infinity  (ceil)
             frintm4s,  // round float -> int as float, toward minus infinity (floor)
             fcvtn,     // f32 -> f16 in low half
             fcvtl,     // f16 in low half -> f32
             xtns2h,    // u32 -> u16
             xtnh2b,    // u16 -> u8
             uxtlb2h,   // u8 -> u16    (TODO: this is a special case of ushll.8h)
             uxtlh2s,   // u16 -> u32   (TODO: this is a special case of ushll.4s)
             uminv4s;   // dst[0] = min(n[0],n[1],n[2],n[3]), n as unsigned

        void brk (int imm16);
        void ret (X);
        void add (X d, X n, int imm12);
        void sub (X d, X n, int imm12);
        void subs(X d, X n, int imm12);  // subtract setting condition flags

        enum Shift { LSL,LSR,ASR,ROR };
        void add (X d, X n, X m, Shift=LSL, int imm6=0);  // d=n+Shift(m,imm6), for Shift != ROR.

        // There's another encoding for unconditional branches that can jump further,
        // but this one encoded as b.al is simple to implement and should be fine.
        void b  (Label* l) { this->b(Condition::al, l); }
        void bne(Label* l) { this->b(Condition::ne, l); }
        void blt(Label* l) { this->b(Condition::lt, l); }

        // "cmp ..." is just an assembler mnemonic for "subs xzr, ..."!
        void cmp(X n, int imm12) { this->subs(xzr, n, imm12); }

        // Compare and branch if zero/non-zero, as if
        //      cmp(t,0)
        //      beq/bne(l)
        // but without setting condition flags.
        void cbz (X t, Label* l);
        void cbnz(X t, Label* l);

        // TODO: there are ldur variants with unscaled imm, useful?
        void ldrd(X dst, X src, int imm12=0);  // 64-bit dst = *(src+imm12*8)
        void ldrs(X dst, X src, int imm12=0);  // 32-bit dst = *(src+imm12*4)
        void ldrh(X dst, X src, int imm12=0);  // 16-bit dst = *(src+imm12*2)
        void ldrb(X dst, X src, int imm12=0);  //  8-bit dst = *(src+imm12)

        void ldrq(V dst, Label*);  // 128-bit PC-relative load

        void ldrq(V dst, X src, int imm12=0);  // 128-bit dst = *(src+imm12*16)
        void ldrd(V dst, X src, int imm12=0);  //  64-bit dst = *(src+imm12*8)
        void ldrs(V dst, X src, int imm12=0);  //  32-bit dst = *(src+imm12*4)
        void ldrh(V dst, X src, int imm12=0);  //  16-bit dst = *(src+imm12*2)
        void ldrb(V dst, X src, int imm12=0);  //   8-bit dst = *(src+imm12)

        void strs(X src, X dst, int imm12=0);  // 32-bit *(dst+imm12*4) = src

        void strq(V src, X dst, int imm12=0);  // 128-bit *(dst+imm12*16) = src
        void strd(V src, X dst, int imm12=0);  //  64-bit *(dst+imm12*8)  = src
        void strs(V src, X dst, int imm12=0);  //  32-bit *(dst+imm12*4)  = src
        void strh(V src, X dst, int imm12=0);  //  16-bit *(dst+imm12*2)  = src
        void strb(V src, X dst, int imm12=0);  //   8-bit *(dst+imm12)    = src

        void movs(X dst, V src, int lane);  // dst = 32-bit src[lane]
        void inss(V dst, X src, int lane);  // dst[lane] = 32-bit src

        void dup4s  (V dst, X src);  // Each 32-bit lane = src

        void ld1r4s (V dst, X src);  // Each 32-bit lane = *src
        void ld1r8h (V dst, X src);  // Each 16-bit lane = *src
        void ld1r16b(V dst, X src);  // Each  8-bit lane = *src

        void ld24s(V dst, X src);  // deinterleave(dst,dst+1)             = 256-bit *src
        void ld44s(V dst, X src);  // deinterleave(dst,dst+1,dst+2,dst+3) = 512-bit *src
        void st24s(V src, X dst);  // 256-bit *dst = interleave_32bit_lanes(src,src+1)
        void st44s(V src, X dst);  // 512-bit *dst = interleave_32bit_lanes(src,src+1,src+2,src+3)

        void ld24s(V dst, X src, int lane);  // Load 2 32-bit values into given lane of dst..dst+1
        void ld44s(V dst, X src, int lane);  // Load 4 32-bit values into given lane of dst..dst+3

    private:
        uint8_t* fCode;
        size_t   fSize;

        // x86-64
        enum W { W0, W1 };      // Are the lanes 64-bit (W1) or default (W0)?  Intel Vol 2A 2.3.5.5
        enum L { L128, L256 };  // Is this a 128- or 256-bit operation?        Intel Vol 2A 2.3.6.2

        // Helpers for vector instructions.
        void op(int prefix, int map, int opcode, int dst, int x, Operand y, W,L);
        void op(int p, int m, int o, Ymm d, Ymm x, Operand y, W w=W0) { op(p,m,o, d,x,y,w,L256); }
        void op(int p, int m, int o, Ymm d,        Operand y, W w=W0) { op(p,m,o, d,0,y,w,L256); }
        void op(int p, int m, int o, Xmm d, Xmm x, Operand y, W w=W0) { op(p,m,o, d,x,y,w,L128); }
        void op(int p, int m, int o, Xmm d,        Operand y, W w=W0) { op(p,m,o, d,0,y,w,L128); }

        // Helpers for GP64 instructions.
        void op(int opcode, Operand dst, GP64 x);
        void op(int opcode, int opcode_ext, Operand dst, int imm);

        void jump(uint8_t condition, Label*);
        int disp32(Label*);
        void imm_byte_after_operand(const Operand&, int byte);

        // aarch64

        // Opcode for 3-arguments ops is split between hi and lo:
        //    [11 bits hi] [5 bits m] [6 bits lo] [5 bits n] [5 bits d]
        void op(uint32_t hi, V m, uint32_t lo, V n, V d);

        // 0,1,2-argument ops, with or without an immediate:
        //    [ 22 bits op ] [5 bits n] [5 bits d]
        // Any immediate falls in the middle somewhere overlapping with either op, n, or both.
        void op(uint32_t op22, V n, V d, int imm=0);
        void op(uint32_t op22, X n, V d, int imm=0) { this->op(op22,(V)n,   d,imm); }
        void op(uint32_t op22, V n, X d, int imm=0) { this->op(op22,   n,(V)d,imm); }
        void op(uint32_t op22, X n, X d, int imm=0) { this->op(op22,(V)n,(V)d,imm); }
        void op(uint32_t op22,           int imm=0) { this->op(op22,(V)0,(V)0,imm); }
        // (1-argument ops don't seem to have a consistent convention of passing as n or d.)


        // Order matters... value is 4-bit encoding for condition code.
        enum class Condition { eq,ne,cs,cc,mi,pl,vs,vc,hi,ls,ge,lt,gt,le,al };
        void b(Condition, Label*);
        int disp19(Label*);
    };

    // Order matters a little: Ops <=store128 are treated as having side effects.
    #define SKVM_OPS(M)                                              \
        M(assert_true)                                               \
        M(trace_line) M(trace_var)                                   \
        M(trace_enter) M(trace_exit) M(trace_scope)                  \
        M(store8)   M(store16)   M(store32) M(store64) M(store128)   \
        M(load8)    M(load16)    M(load32)  M(load64) M(load128)     \
        M(index)                                                     \
        M(gather8)  M(gather16)  M(gather32)                         \
                                 M(uniform32)                        \
                                 M(array32)                          \
        M(splat)                                                     \
        M(add_f32) M(add_i32)                                        \
        M(sub_f32) M(sub_i32)                                        \
        M(mul_f32) M(mul_i32)                                        \
        M(div_f32)                                                   \
        M(min_f32) M(max_f32)                                        \
        M(fma_f32) M(fms_f32) M(fnma_f32)                            \
        M(sqrt_f32)                                                  \
        M(shl_i32) M(shr_i32) M(sra_i32)                             \
        M(ceil) M(floor) M(trunc) M(round) M(to_fp16) M(from_fp16)   \
        M(to_f32)                                                    \
        M(neq_f32) M(eq_f32) M(eq_i32)                               \
        M(gte_f32) M(gt_f32) M(gt_i32)                               \
        M(bit_and)     M(bit_or)     M(bit_xor)     M(bit_clear)     \
        M(select)                                                    \
        M(duplicate)
    // End of SKVM_OPS

    enum class Op : int {
    #define M(op) op,
        SKVM_OPS(M)
    #undef M
    };

    static inline bool has_side_effect(Op op) {
        return op <= Op::store128;
    }
    static inline bool touches_varying_memory(Op op) {
        return Op::store8 <= op && op <= Op::load128;
    }
    static inline bool is_always_varying(Op op) {
        return Op::store8 <= op && op <= Op::index;
    }
    static inline bool is_trace(Op op) {
        return Op::trace_line <= op && op <= Op::trace_scope;
    }

    using Val = int;
    // We reserve an impossible Val ID as a sentinel
    // NA meaning none, n/a, null, nil, etc.
    static const Val NA = -1;

    // Ptr and UPtr are an index into the registers args[]. The two styles of using args are
    // varyings and uniforms. Varyings use Ptr, have a stride associated with them, and are
    // evaluated everytime through the loop. Uniforms use UPtr, don't have a stride, and are
    // usually hoisted above the loop.
    struct Ptr { int ix; };
    struct UPtr : public Ptr {};

    bool operator!=(Ptr a, Ptr b);

    struct I32 {
        Builder* builder = nullptr;
        Val      id      = NA;
        explicit operator bool() const { return id != NA; }
        Builder* operator->()    const { return builder; }
    };

    struct F32 {
        Builder* builder = nullptr;
        Val      id      = NA;
        explicit operator bool() const { return id != NA; }
        Builder* operator->()    const { return builder; }
    };

    struct Color {
        F32 r,g,b,a;
        explicit operator bool() const { return r && g && b && a; }
        Builder* operator->()    const { return a.operator->(); }
    };

    struct HSLA {
        F32 h,s,l,a;
        explicit operator bool() const { return h && s && l && a; }
        Builder* operator->()    const { return a.operator->(); }
    };

    struct Coord {
        F32 x,y;
        explicit operator bool() const { return x && y; }
        Builder* operator->()    const { return x.operator->(); }
    };

    struct Uniform {
        UPtr ptr;
        int offset;
    };
    struct Uniforms {
        UPtr             base;
        std::vector<int> buf;

        Uniforms(UPtr ptr, int init) : base(ptr), buf(init) {}

        Uniform push(int val) {
            buf.push_back(val);
            return {base, (int)( sizeof(int)*(buf.size() - 1) )};
        }

        Uniform pushF(float val) {
            int bits;
            memcpy(&bits, &val, sizeof(int));
            return this->push(bits);
        }

        Uniform pushPtr(const void* ptr) {
            // Jam the pointer into 1 or 2 ints.
            int ints[sizeof(ptr) / sizeof(int)];
            memcpy(ints, &ptr, sizeof(ptr));
            for (int bits : ints) {
                buf.push_back(bits);
            }
            return {base, (int)( sizeof(int)*(buf.size() - std::size(ints)) )};
        }

        Uniform pushArray(int32_t a[]) {
            return this->pushPtr(a);
        }

        Uniform pushArrayF(float a[]) {
            return this->pushPtr(a);
        }
    };

    struct PixelFormat {
        enum { UNORM, SRGB, FLOAT, XRNG } encoding;
        int r_bits,  g_bits,  b_bits,  a_bits,
            r_shift, g_shift, b_shift, a_shift;
    };
    PixelFormat SkColorType_to_PixelFormat(SkColorType);

    SK_BEGIN_REQUIRE_DENSE
    struct Instruction {
        Op  op;              // v* = op(x,y,z,w,immA,immB), where * == index of this Instruction.
        Val x,y,z,w;         // Enough arguments for Op::store128.
        int immA,immB,immC;  // Immediate bit pattern, shift count, pointer index, byte offset, etc.
    };
    SK_END_REQUIRE_DENSE

    bool operator==(const Instruction&, const Instruction&);
    struct InstructionHash {
        uint32_t operator()(const Instruction&, uint32_t seed=0) const;
    };

    struct OptimizedInstruction {
        Op op;
        Val x,y,z,w;
        int immA,immB,immC;

        Val  death;
        bool can_hoist;
    };

    struct Features {
        bool fma   = false;
        bool fp16  = false;
    };

    class Builder {
    public:
        Builder(bool createDuplicates = false);
        Builder(Features, bool createDuplicates = false);

        Program done(const char* debug_name,
                     bool allow_jit,
                     std::unique_ptr<viz::Visualizer> visualizer) const;
        Program done(const char* debug_name = nullptr,
                     bool allow_jit=true) const;

        // Mostly for debugging, tests, etc.
        std::vector<Instruction> program() const { return fProgram; }
        std::vector<OptimizedInstruction> optimize(viz::Visualizer* visualizer = nullptr) const;

        // Returns a trace-hook ID which must be passed to the trace opcodes.
        int attachTraceHook(SkSL::TraceHook*);

        // Convenience arg() wrappers for most common strides, sizeof(T) and 0.
        template <typename T>
        Ptr varying() { return this->arg(sizeof(T)); }
        Ptr varying(int stride) { SkASSERT(stride > 0); return this->arg(stride); }
        UPtr uniform() { Ptr p = this->arg(0); return UPtr{{p.ix}}; }

        // TODO: allow uniform (i.e. Ptr) offsets to store* and load*?
        // TODO: sign extension (signed types) for <32-bit loads?
        // TODO: unsigned integer operations where relevant (just comparisons?)?

        // Assert cond is true, printing debug when not.
        void assert_true(I32 cond, I32 debug);
        void assert_true(I32 cond, F32 debug) { assert_true(cond, pun_to_I32(debug)); }
        void assert_true(I32 cond)            { assert_true(cond, cond); }

        // Insert debug traces into the instruction stream
        bool mergeMasks(I32& mask, I32& traceMask);
        void trace_line (int traceHookID, I32 mask, I32 traceMask, int line);
        void trace_var  (int traceHookID, I32 mask, I32 traceMask, int slot, I32 val);
        void trace_enter(int traceHookID, I32 mask, I32 traceMask, int fnIdx);
        void trace_exit (int traceHookID, I32 mask, I32 traceMask, int fnIdx);
        void trace_scope(int traceHookID, I32 mask, I32 traceMask, int delta);

        // Store {8,16,32,64,128}-bit varying.
        void store8  (Ptr ptr, I32 val);
        void store16 (Ptr ptr, I32 val);
        void store32 (Ptr ptr, I32 val);
        void storeF  (Ptr ptr, F32 val) { store32(ptr, pun_to_I32(val)); }
        void store64 (Ptr ptr, I32 lo, I32 hi);              // *ptr = lo|(hi<<32)
        void store128(Ptr ptr, I32 x, I32 y, I32 z, I32 w);  // *ptr = x|(y<<32)|(z<<64)|(w<<96)

        // Returns varying {n, n-1, n-2, ..., 1}, where n is the argument to Program::eval().
        I32 index();

        // Load {8,16,32,64,128}-bit varying.
        I32 load8  (Ptr ptr);
        I32 load16 (Ptr ptr);
        I32 load32 (Ptr ptr);
        F32 loadF  (Ptr ptr) { return pun_to_F32(load32(ptr)); }
        I32 load64 (Ptr ptr, int lane);  // Load 32-bit lane 0-1 of  64-bit value.
        I32 load128(Ptr ptr, int lane);  // Load 32-bit lane 0-3 of 128-bit value.

        // Load i32/f32 uniform with byte-count offset.
        I32 uniform32(UPtr ptr, int offset);
        F32 uniformF (UPtr ptr, int offset) { return pun_to_F32(uniform32(ptr,offset)); }

        // Load i32/f32 uniform with byte-count offset and an c-style array index. The address of
        // the element is (*(ptr + byte-count offset))[index].
        I32 array32  (UPtr ptr, int offset, int index);
        F32 arrayF   (UPtr ptr, int offset, int index) {
            return pun_to_F32(array32(ptr, offset, index));
        }

        // Push and load this color as a uniform.
        Color uniformColor(SkColor4f, Uniforms*);

        // Gather u8,u16,i32 with varying element-count index from *(ptr + byte-count offset).
        I32 gather8 (UPtr ptr, int offset, I32 index);
        I32 gather16(UPtr ptr, int offset, I32 index);
        I32 gather32(UPtr ptr, int offset, I32 index);
        F32 gatherF (UPtr ptr, int offset, I32 index) {
            return pun_to_F32(gather32(ptr, offset, index));
        }

        // Convenience methods for working with skvm::Uniform(s).
        I32 uniform32(Uniform u)            { return this->uniform32(u.ptr, u.offset); }
        F32 uniformF (Uniform u)            { return this->uniformF (u.ptr, u.offset); }
        I32 gather8  (Uniform u, I32 index) { return this->gather8  (u.ptr, u.offset, index); }
        I32 gather16 (Uniform u, I32 index) { return this->gather16 (u.ptr, u.offset, index); }
        I32 gather32 (Uniform u, I32 index) { return this->gather32 (u.ptr, u.offset, index); }
        F32 gatherF  (Uniform u, I32 index) { return this->gatherF  (u.ptr, u.offset, index); }

        // Convenience methods for working with array pointers in skvm::Uniforms. Index is an
        // array index and not a byte offset. The array pointer is stored at u.
        I32 array32  (Uniform a, int index) { return this->array32  (a.ptr, a.offset, index); }
        F32 arrayF   (Uniform a, int index) { return this->arrayF   (a.ptr, a.offset, index); }

        // Load an immediate constant.
        I32 splat(int      n);
        I32 splat(unsigned u) { return splat((int)u); }
        F32 splat(float    f) {
            int bits;
            memcpy(&bits, &f, 4);
            return pun_to_F32(splat(bits));
        }

        // Some operations make sense with immediate arguments,
        // so we provide overloads inline to make that seamless.
        //
        // We omit overloads that may indicate a bug or performance issue.
        // In general it does not make sense to pass immediates to unary operations,
        // and even sometimes not for binary operations, e.g.
        //
        //   div(x, y)    -- normal every day divide
        //   div(3.0f, y) -- yep, makes sense
        //   div(x, 3.0f) -- omitted as a reminder you probably want mul(x, 1/3.0f).
        //
        // You can of course always splat() to override these opinions.

        // float math, comparisons, etc.
        F32 add(F32, F32);
        F32 add(F32 x, float y) { return add(x, splat(y)); }
        F32 add(float x, F32 y) { return add(splat(x), y); }

        F32 sub(F32, F32);
        F32 sub(F32 x, float y) { return sub(x, splat(y)); }
        F32 sub(float x, F32 y) { return sub(splat(x), y); }

        F32 mul(F32, F32);
        F32 mul(F32 x, float y) { return mul(x, splat(y)); }
        F32 mul(float x, F32 y) { return mul(splat(x), y); }

        // mul(), but allowing optimizations not strictly legal under IEEE-754 rules.
        F32 fast_mul(F32, F32);
        F32 fast_mul(F32 x, float y) { return fast_mul(x, splat(y)); }
        F32 fast_mul(float x, F32 y) { return fast_mul(splat(x), y); }

        F32 div(F32, F32);
        F32 div(float x, F32 y) { return div(splat(x), y); }

        F32 min(F32, F32);
        F32 min(F32 x, float y) { return min(x, splat(y)); }
        F32 min(float x, F32 y) { return min(splat(x), y); }

        F32 max(F32, F32);
        F32 max(F32 x, float y) { return max(x, splat(y)); }
        F32 max(float x, F32 y) { return max(splat(x), y); }

        // TODO: remove mad()?  It's just sugar.
        F32 mad(F32   x, F32   y, F32   z) { return add(mul(x,y), z); }
        F32 mad(F32   x, F32   y, float z) { return mad(      x ,       y , splat(z)); }
        F32 mad(F32   x, float y, F32   z) { return mad(      x , splat(y),       z ); }
        F32 mad(F32   x, float y, float z) { return mad(      x , splat(y), splat(z)); }
        F32 mad(float x, F32   y, F32   z) { return mad(splat(x),       y ,       z ); }
        F32 mad(float x, F32   y, float z) { return mad(splat(x),       y , splat(z)); }
        F32 mad(float x, float y, F32   z) { return mad(splat(x), splat(y),       z ); }

        F32        sqrt(F32);
        F32 approx_log2(F32);
        F32 approx_pow2(F32);
        F32 approx_log (F32 x) { return mul(0.69314718f, approx_log2(x)); }
        F32 approx_exp (F32 x) { return approx_pow2(mul(x, 1.4426950408889634074f)); }

        F32 approx_powf(F32 base, F32 exp);
        F32 approx_powf(F32 base, float exp) { return approx_powf(base, splat(exp)); }
        F32 approx_powf(float base, F32 exp) { return approx_powf(splat(base), exp); }


        F32 approx_sin(F32 radians);
        F32 approx_cos(F32 radians) { return approx_sin(add(radians, SK_ScalarPI/2)); }
        F32 approx_tan(F32 radians);

        F32 approx_asin(F32 x);
        F32 approx_acos(F32 x) { return sub(SK_ScalarPI/2, approx_asin(x)); }
        F32 approx_atan(F32 x);
        F32 approx_atan2(F32 y, F32 x);

        F32 lerp(F32   lo, F32   hi, F32   t);
        F32 lerp(F32   lo, F32   hi, float t) { return lerp(      lo ,       hi , splat(t)); }
        F32 lerp(F32   lo, float hi, float t) { return lerp(      lo , splat(hi), splat(t)); }
        F32 lerp(F32   lo, float hi, F32   t) { return lerp(      lo , splat(hi),       t ); }
        F32 lerp(float lo, F32   hi, F32   t) { return lerp(splat(lo),       hi ,       t ); }
        F32 lerp(float lo, F32   hi, float t) { return lerp(splat(lo),       hi , splat(t)); }
        F32 lerp(float lo, float hi, F32   t) { return lerp(splat(lo), splat(hi),       t ); }

        F32 clamp(F32   x, F32   lo, F32   hi) { return max(lo, min(x, hi)); }
        F32 clamp(F32   x, F32   lo, float hi) { return clamp(      x ,       lo , splat(hi)); }
        F32 clamp(F32   x, float lo, float hi) { return clamp(      x , splat(lo), splat(hi)); }
        F32 clamp(F32   x, float lo, F32   hi) { return clamp(      x , splat(lo),       hi ); }
        F32 clamp(float x, F32   lo, F32   hi) { return clamp(splat(x),       lo ,       hi ); }
        F32 clamp(float x, F32   lo, float hi) { return clamp(splat(x),       lo , splat(hi)); }
        F32 clamp(float x, float lo, F32   hi) { return clamp(splat(x), splat(lo),       hi ); }

        F32 clamp01(F32 x) { return clamp(x, 0.0f, 1.0f); }

        F32    abs(F32 x) { return pun_to_F32(bit_and(pun_to_I32(x), 0x7fff'ffff)); }
        F32  fract(F32 x) { return sub(x, floor(x)); }
        F32   ceil(F32);
        F32  floor(F32);
        I32 is_NaN   (F32 x) { return neq(x,x); }
        I32 is_finite(F32 x) { return lt(bit_and(pun_to_I32(x), 0x7f80'0000), 0x7f80'0000); }

        I32 trunc(F32 x);
        I32 round(F32 x);  // Round to int using current rounding mode (as if lrintf()).
        I32 pun_to_I32(F32 x) { return {x.builder, x.id}; }

        I32   to_fp16(F32 x);
        F32 from_fp16(I32 x);

        I32 eq(F32, F32);
        I32 eq(F32 x, float y) { return eq(x, splat(y)); }
        I32 eq(float x, F32 y) { return eq(splat(x), y); }

        I32 neq(F32, F32);
        I32 neq(F32 x, float y) { return neq(x, splat(y)); }
        I32 neq(float x, F32 y) { return neq(splat(x), y); }

        I32 lt(F32, F32);
        I32 lt(F32 x, float y) { return lt(x, splat(y)); }
        I32 lt(float x, F32 y) { return lt(splat(x), y); }

        I32 lte(F32, F32);
        I32 lte(F32 x, float y) { return lte(x, splat(y)); }
        I32 lte(float x, F32 y) { return lte(splat(x), y); }

        I32 gt(F32, F32);
        I32 gt(F32 x, float y) { return gt(x, splat(y)); }
        I32 gt(float x, F32 y) { return gt(splat(x), y); }

        I32 gte(F32, F32);
        I32 gte(F32 x, float y) { return gte(x, splat(y)); }
        I32 gte(float x, F32 y) { return gte(splat(x), y); }

        // int math, comparisons, etc.
        I32 add(I32, I32);
        I32 add(I32 x, int y) { return add(x, splat(y)); }
        I32 add(int x, I32 y) { return add(splat(x), y); }

        I32 sub(I32, I32);
        I32 sub(I32 x, int y) { return sub(x, splat(y)); }
        I32 sub(int x, I32 y) { return sub(splat(x), y); }

        I32 mul(I32, I32);
        I32 mul(I32 x, int y) { return mul(x, splat(y)); }
        I32 mul(int x, I32 y) { return mul(splat(x), y); }

        I32 shl(I32 x, int bits);
        I32 shr(I32 x, int bits);
        I32 sra(I32 x, int bits);

        I32 eq(I32, I32);
        I32 eq(I32 x, int y) { return eq(x, splat(y)); }
        I32 eq(int x, I32 y) { return eq(splat(x), y); }

        I32 neq(I32, I32);
        I32 neq(I32 x, int y) { return neq(x, splat(y)); }
        I32 neq(int x, I32 y) { return neq(splat(x), y); }

        I32 lt(I32, I32);
        I32 lt(I32 x, int y) { return lt(x, splat(y)); }
        I32 lt(int x, I32 y) { return lt(splat(x), y); }

        I32 lte(I32, I32);
        I32 lte(I32 x, int y) { return lte(x, splat(y)); }
        I32 lte(int x, I32 y) { return lte(splat(x), y); }

        I32 gt(I32, I32);
        I32 gt(I32 x, int y) { return gt(x, splat(y)); }
        I32 gt(int x, I32 y) { return gt(splat(x), y); }

        I32 gte(I32, I32);
        I32 gte(I32 x, int y) { return gte(x, splat(y)); }
        I32 gte(int x, I32 y) { return gte(splat(x), y); }

        F32 to_F32(I32 x);
        F32 pun_to_F32(I32 x) { return {x.builder, x.id}; }

        // Bitwise operations.
        I32 bit_and(I32, I32);
        I32 bit_and(I32 x, int y) { return bit_and(x, splat(y)); }
        I32 bit_and(int x, I32 y) { return bit_and(splat(x), y); }

        I32 bit_or(I32, I32);
        I32 bit_or(I32 x, int y) { return bit_or(x, splat(y)); }
        I32 bit_or(int x, I32 y) { return bit_or(splat(x), y); }

        I32 bit_xor(I32, I32);
        I32 bit_xor(I32 x, int y) { return bit_xor(x, splat(y)); }
        I32 bit_xor(int x, I32 y) { return bit_xor(splat(x), y); }

        I32 bit_clear(I32, I32);
        I32 bit_clear(I32 x, int y) { return bit_clear(x, splat(y)); }
        I32 bit_clear(int x, I32 y) { return bit_clear(splat(x), y); }

        I32 min(I32 x, I32 y) { return select(lte(x,y), x, y); }
        I32 min(I32 x, int y) { return min(x, splat(y)); }
        I32 min(int x, I32 y) { return min(splat(x), y); }

        I32 max(I32 x, I32 y) { return select(gte(x,y), x, y); }
        I32 max(I32 x, int y) { return max(x, splat(y)); }
        I32 max(int x, I32 y) { return max(splat(x), y); }

        I32 select(I32 cond, I32 t, I32 f);  // cond ? t : f
        I32 select(I32 cond, int t, I32 f) { return select(cond, splat(t),       f ); }
        I32 select(I32 cond, I32 t, int f) { return select(cond,       t , splat(f)); }
        I32 select(I32 cond, int t, int f) { return select(cond, splat(t), splat(f)); }

        F32 select(I32 cond, F32 t, F32 f) {
            return pun_to_F32(select(cond, pun_to_I32(t)
                                         , pun_to_I32(f)));
        }
        F32 select(I32 cond, float t, F32   f) { return select(cond, splat(t),       f ); }
        F32 select(I32 cond, F32   t, float f) { return select(cond,       t , splat(f)); }
        F32 select(I32 cond, float t, float f) { return select(cond, splat(t), splat(f)); }

        I32 extract(I32 x, int bits, I32 z);   // (x>>bits) & z
        I32 extract(I32 x, int bits, int z) { return extract(x, bits, splat(z)); }
        I32 extract(int x, int bits, I32 z) { return extract(splat(x), bits, z); }

        I32 pack(I32 x, I32 y, int bits);   // x | (y<<bits)
        I32 pack(I32 x, int y, int bits) { return pack(x, splat(y), bits); }
        I32 pack(int x, I32 y, int bits) { return pack(splat(x), y, bits); }


        // Common idioms used in several places, worth centralizing for consistency.
        F32 from_unorm(int bits, I32);   // E.g. from_unorm(8, x) -> x * (1/255.0f)
        I32   to_unorm(int bits, F32);   // E.g.   to_unorm(8, x) -> round(x * 255)

        Color   load(PixelFormat, Ptr ptr);
        void   store(PixelFormat, Ptr ptr, Color);
        Color gather(PixelFormat, UPtr ptr, int offset, I32 index);
        Color gather(PixelFormat f, Uniform u, I32 index) {
            return gather(f, u.ptr, u.offset, index);
        }

        void   premul(F32* r, F32* g, F32* b, F32 a);
        void unpremul(F32* r, F32* g, F32* b, F32 a);

        Color   premul(Color c) {   this->premul(&c.r, &c.g, &c.b, c.a); return c; }
        Color unpremul(Color c) { this->unpremul(&c.r, &c.g, &c.b, c.a); return c; }

        Color lerp(Color lo, Color hi, F32 t);
        Color blend(SkBlendMode, Color src, Color dst);

        Color clamp01(Color c) {
            return { clamp01(c.r), clamp01(c.g), clamp01(c.b), clamp01(c.a) };
        }

        HSLA  to_hsla(Color);
        Color to_rgba(HSLA);

        void dump(SkWStream* = nullptr) const;

        uint64_t hash() const;

        Val push(Instruction);

        bool allImm() const { return true; }

        template <typename T, typename... Rest>
        bool allImm(Val id, T* imm, Rest... rest) const {
            if (fProgram[id].op == Op::splat) {
                static_assert(sizeof(T) == 4);
                memcpy(imm, &fProgram[id].immA, 4);
                return this->allImm(rest...);
            }
            return false;
        }

        bool allUniform() const { return true; }

        template <typename... Rest>
        bool allUniform(Val id, Uniform* uni, Rest... rest) const {
            if (fProgram[id].op == Op::uniform32) {
                uni->ptr.ix = fProgram[id].immA;
                uni->offset = fProgram[id].immB;
                return this->allUniform(rest...);
            }
            return false;
        }

    private:
        // Declare an argument with given stride (use stride=0 for uniforms).
        Ptr arg(int stride);

        Val push(
                Op op, Val x=NA, Val y=NA, Val z=NA, Val w=NA, int immA=0, int immB=0, int immC=0) {
            return this->push(Instruction{op, x,y,z,w, immA,immB,immC});
        }

        template <typename T>
        bool isImm(Val id, T want) const {
            T imm = 0;
            return this->allImm(id, &imm) && imm == want;
        }

        // `canonicalizeIdOrder` and has two rules:
        // - Immediate values go last; that is, `x + 1` is preferred over `1 + x`.
        // - If both/neither of x and y are immediate, lower IDs go before higher IDs.
        // Canonicalizing the IDs helps with opcode deduplication. Putting immediates in a
        // consistent position makes it easier to detect no-op arithmetic like `x + 0`.
        template <typename F32_or_I32>
        void canonicalizeIdOrder(F32_or_I32& x, F32_or_I32& y);

        // If the passed in ID is a bit-not, return the value being bit-notted. Otherwise, NA.
        Val holdsBitNot(Val id);

        SkTHashMap<Instruction, Val, InstructionHash> fIndex;
        std::vector<Instruction>                      fProgram;
        std::vector<SkSL::TraceHook*>                 fTraceHooks;
        std::vector<int>                              fStrides;
        const Features                                fFeatures;
        bool                                          fCreateDuplicates;
    };

    // Optimization passes and data structures normally used by Builder::optimize(),
    // extracted here so they can be unit tested.
    std::vector<Instruction> eliminate_dead_code(std::vector<Instruction>,
                                                 viz::Visualizer* visualizer = nullptr);
    std::vector<OptimizedInstruction> finalize(std::vector<Instruction>,
                                               viz::Visualizer* visualizer = nullptr);

    using Reg = int;

    // d = op(x,y,z,w, immA,immB)
    struct InterpreterInstruction {
        Op  op;
        Reg d,x,y,z,w;
        int immA,immB,immC;
    };

    class Program {
    public:
        Program(const std::vector<OptimizedInstruction>& instructions,
                std::unique_ptr<viz::Visualizer> visualizer,
                const std::vector<int>& strides,
                const std::vector<SkSL::TraceHook*>& traceHooks,
                const char* debug_name, bool allow_jit);

        Program();
        ~Program();

        Program(Program&&);
        Program& operator=(Program&&);

        Program(const Program&) = delete;
        Program& operator=(const Program&) = delete;

        void eval(int n, void* args[]) const;

        template <typename... T>
        void eval(int n, T*... arg) const {
            SkASSERT(sizeof...(arg) == this->nargs());
            // This nullptr isn't important except that it makes args[] non-empty if you pass none.
            void* args[] = { (void*)arg..., nullptr };
            this->eval(n, args);
        }

        std::vector<InterpreterInstruction> instructions() const;
        int  nargs() const;
        int  nregs() const;
        int  loop () const;
        bool empty() const;

        bool hasJIT() const;         // Has this Program been JITted?
        bool hasTraceHooks() const;  // Is this program instrumented for debugging?

        void visualize(SkWStream* output) const;
        void dump(SkWStream* = nullptr) const;
        void disassemble(SkWStream* = nullptr) const;
        viz::Visualizer* visualizer();

    private:
        void setupInterpreter(const std::vector<OptimizedInstruction>&);
        void setupJIT        (const std::vector<OptimizedInstruction>&, const char* debug_name);

        bool jit(const std::vector<OptimizedInstruction>&,
                 int* stack_hint, uint32_t* registers_used,
                 Assembler*) const;

        void dropJIT();

        struct Impl;
        std::unique_ptr<Impl> fImpl;
    };

    // TODO: control flow
    // TODO: 64-bit values?

#define SI static inline

    SI I32 operator+(I32 x, I32 y) { return x->add(x,y); }
    SI I32 operator+(I32 x, int y) { return x->add(x,y); }
    SI I32 operator+(int x, I32 y) { return y->add(x,y); }

    SI I32 operator-(I32 x, I32 y) { return x->sub(x,y); }
    SI I32 operator-(I32 x, int y) { return x->sub(x,y); }
    SI I32 operator-(int x, I32 y) { return y->sub(x,y); }

    SI I32 operator*(I32 x, I32 y) { return x->mul(x,y); }
    SI I32 operator*(I32 x, int y) { return x->mul(x,y); }
    SI I32 operator*(int x, I32 y) { return y->mul(x,y); }

    SI I32 min(I32 x, I32 y) { return x->min(x,y); }
    SI I32 min(I32 x, int y) { return x->min(x,y); }
    SI I32 min(int x, I32 y) { return y->min(x,y); }

    SI I32 max(I32 x, I32 y) { return x->max(x,y); }
    SI I32 max(I32 x, int y) { return x->max(x,y); }
    SI I32 max(int x, I32 y) { return y->max(x,y); }

    SI I32 operator==(I32 x, I32 y) { return x->eq(x,y); }
    SI I32 operator==(I32 x, int y) { return x->eq(x,y); }
    SI I32 operator==(int x, I32 y) { return y->eq(x,y); }

    SI I32 operator!=(I32 x, I32 y) { return x->neq(x,y); }
    SI I32 operator!=(I32 x, int y) { return x->neq(x,y); }
    SI I32 operator!=(int x, I32 y) { return y->neq(x,y); }

    SI I32 operator< (I32 x, I32 y) { return x->lt(x,y); }
    SI I32 operator< (I32 x, int y) { return x->lt(x,y); }
    SI I32 operator< (int x, I32 y) { return y->lt(x,y); }

    SI I32 operator<=(I32 x, I32 y) { return x->lte(x,y); }
    SI I32 operator<=(I32 x, int y) { return x->lte(x,y); }
    SI I32 operator<=(int x, I32 y) { return y->lte(x,y); }

    SI I32 operator> (I32 x, I32 y) { return x->gt(x,y); }
    SI I32 operator> (I32 x, int y) { return x->gt(x,y); }
    SI I32 operator> (int x, I32 y) { return y->gt(x,y); }

    SI I32 operator>=(I32 x, I32 y) { return x->gte(x,y); }
    SI I32 operator>=(I32 x, int y) { return x->gte(x,y); }
    SI I32 operator>=(int x, I32 y) { return y->gte(x,y); }


    SI F32 operator+(F32   x, F32   y) { return x->add(x,y); }
    SI F32 operator+(F32   x, float y) { return x->add(x,y); }
    SI F32 operator+(float x, F32   y) { return y->add(x,y); }

    SI F32 operator-(F32   x, F32   y) { return x->sub(x,y); }
    SI F32 operator-(F32   x, float y) { return x->sub(x,y); }
    SI F32 operator-(float x, F32   y) { return y->sub(x,y); }

    SI F32 operator*(F32   x, F32   y) { return x->mul(x,y); }
    SI F32 operator*(F32   x, float y) { return x->mul(x,y); }
    SI F32 operator*(float x, F32   y) { return y->mul(x,y); }

    SI F32 fast_mul(F32   x, F32   y) { return x->fast_mul(x,y); }
    SI F32 fast_mul(F32   x, float y) { return x->fast_mul(x,y); }
    SI F32 fast_mul(float x, F32   y) { return y->fast_mul(x,y); }

    SI F32 operator/(F32   x, F32  y) { return x->div(x,y); }
    SI F32 operator/(float x, F32  y) { return y->div(x,y); }

    SI F32 min(F32   x, F32   y) { return x->min(x,y); }
    SI F32 min(F32   x, float y) { return x->min(x,y); }
    SI F32 min(float x, F32   y) { return y->min(x,y); }

    SI F32 max(F32   x, F32   y) { return x->max(x,y); }
    SI F32 max(F32   x, float y) { return x->max(x,y); }
    SI F32 max(float x, F32   y) { return y->max(x,y); }

    SI I32 operator==(F32   x, F32   y) { return x->eq(x,y); }
    SI I32 operator==(F32   x, float y) { return x->eq(x,y); }
    SI I32 operator==(float x, F32   y) { return y->eq(x,y); }

    SI I32 operator!=(F32   x, F32   y) { return x->neq(x,y); }
    SI I32 operator!=(F32   x, float y) { return x->neq(x,y); }
    SI I32 operator!=(float x, F32   y) { return y->neq(x,y); }

    SI I32 operator< (F32   x, F32   y) { return x->lt(x,y); }
    SI I32 operator< (F32   x, float y) { return x->lt(x,y); }
    SI I32 operator< (float x, F32   y) { return y->lt(x,y); }

    SI I32 operator<=(F32   x, F32   y) { return x->lte(x,y); }
    SI I32 operator<=(F32   x, float y) { return x->lte(x,y); }
    SI I32 operator<=(float x, F32   y) { return y->lte(x,y); }

    SI I32 operator> (F32   x, F32   y) { return x->gt(x,y); }
    SI I32 operator> (F32   x, float y) { return x->gt(x,y); }
    SI I32 operator> (float x, F32   y) { return y->gt(x,y); }

    SI I32 operator>=(F32   x, F32   y) { return x->gte(x,y); }
    SI I32 operator>=(F32   x, float y) { return x->gte(x,y); }
    SI I32 operator>=(float x, F32   y) { return y->gte(x,y); }

    SI I32& operator+=(I32& x, I32 y) { return (x = x + y); }
    SI I32& operator+=(I32& x, int y) { return (x = x + y); }

    SI I32& operator-=(I32& x, I32 y) { return (x = x - y); }
    SI I32& operator-=(I32& x, int y) { return (x = x - y); }

    SI I32& operator*=(I32& x, I32 y) { return (x = x * y); }
    SI I32& operator*=(I32& x, int y) { return (x = x * y); }

    SI F32& operator+=(F32& x, F32   y) { return (x = x + y); }
    SI F32& operator+=(F32& x, float y) { return (x = x + y); }

    SI F32& operator-=(F32& x, F32   y) { return (x = x - y); }
    SI F32& operator-=(F32& x, float y) { return (x = x - y); }

    SI F32& operator*=(F32& x, F32   y) { return (x = x * y); }
    SI F32& operator*=(F32& x, float y) { return (x = x * y); }

    SI F32& operator/=(F32& x, F32   y) { return (x = x / y); }

    SI void assert_true(I32 cond, I32 debug) { cond->assert_true(cond,debug); }
    SI void assert_true(I32 cond, F32 debug) { cond->assert_true(cond,debug); }
    SI void assert_true(I32 cond)            { cond->assert_true(cond); }

    SI void store8  (Ptr ptr, I32 val)                    { val->store8  (ptr, val); }
    SI void store16 (Ptr ptr, I32 val)                    { val->store16 (ptr, val); }
    SI void store32 (Ptr ptr, I32 val)                    { val->store32 (ptr, val); }
    SI void storeF  (Ptr ptr, F32 val)                    { val->storeF  (ptr, val); }
    SI void store64 (Ptr ptr, I32 lo, I32 hi)             { lo ->store64 (ptr, lo,hi); }
    SI void store128(Ptr ptr, I32 x, I32 y, I32 z, I32 w) { x  ->store128(ptr, x,y,z,w); }

    SI I32 gather8 (UPtr ptr, int off, I32 ix) { return ix->gather8 (ptr, off, ix); }
    SI I32 gather16(UPtr ptr, int off, I32 ix) { return ix->gather16(ptr, off, ix); }
    SI I32 gather32(UPtr ptr, int off, I32 ix) { return ix->gather32(ptr, off, ix); }
    SI F32 gatherF (UPtr ptr, int off, I32 ix) { return ix->gatherF (ptr, off, ix); }

    SI I32 gather8 (Uniform u, I32 ix) { return ix->gather8 (u, ix); }
    SI I32 gather16(Uniform u, I32 ix) { return ix->gather16(u, ix); }
    SI I32 gather32(Uniform u, I32 ix) { return ix->gather32(u, ix); }
    SI F32 gatherF (Uniform u, I32 ix) { return ix->gatherF (u, ix); }

    SI F32        sqrt(F32 x) { return x->       sqrt(x); }
    SI F32 approx_log2(F32 x) { return x->approx_log2(x); }
    SI F32 approx_pow2(F32 x) { return x->approx_pow2(x); }
    SI F32 approx_log (F32 x) { return x->approx_log (x); }
    SI F32 approx_exp (F32 x) { return x->approx_exp (x); }

    SI F32 approx_powf(F32   base, F32   exp) { return base->approx_powf(base, exp); }
    SI F32 approx_powf(F32   base, float exp) { return base->approx_powf(base, exp); }
    SI F32 approx_powf(float base, F32   exp) { return  exp->approx_powf(base, exp); }

    SI F32 approx_sin(F32 radians) { return radians->approx_sin(radians); }
    SI F32 approx_cos(F32 radians) { return radians->approx_cos(radians); }
    SI F32 approx_tan(F32 radians) { return radians->approx_tan(radians); }

    SI F32 approx_asin(F32 x) { return x->approx_asin(x); }
    SI F32 approx_acos(F32 x) { return x->approx_acos(x); }
    SI F32 approx_atan(F32 x) { return x->approx_atan(x); }
    SI F32 approx_atan2(F32 y, F32 x) { return x->approx_atan2(y, x); }

    SI F32   clamp01(F32 x) { return x->  clamp01(x); }
    SI F32       abs(F32 x) { return x->      abs(x); }
    SI F32      ceil(F32 x) { return x->     ceil(x); }
    SI F32     fract(F32 x) { return x->    fract(x); }
    SI F32     floor(F32 x) { return x->    floor(x); }
    SI I32    is_NaN(F32 x) { return x->   is_NaN(x); }
    SI I32 is_finite(F32 x) { return x->is_finite(x); }

    SI I32      trunc(F32 x) { return x->      trunc(x); }
    SI I32      round(F32 x) { return x->      round(x); }
    SI I32 pun_to_I32(F32 x) { return x-> pun_to_I32(x); }
    SI F32 pun_to_F32(I32 x) { return x-> pun_to_F32(x); }
    SI F32     to_F32(I32 x) { return x->     to_F32(x); }
    SI I32    to_fp16(F32 x) { return x->    to_fp16(x); }
    SI F32  from_fp16(I32 x) { return x->  from_fp16(x); }

    SI F32 lerp(F32   lo, F32   hi, F32   t) { return lo->lerp(lo,hi,t); }
    SI F32 lerp(F32   lo, F32   hi, float t) { return lo->lerp(lo,hi,t); }
    SI F32 lerp(F32   lo, float hi, F32   t) { return lo->lerp(lo,hi,t); }
    SI F32 lerp(F32   lo, float hi, float t) { return lo->lerp(lo,hi,t); }
    SI F32 lerp(float lo, F32   hi, F32   t) { return hi->lerp(lo,hi,t); }
    SI F32 lerp(float lo, F32   hi, float t) { return hi->lerp(lo,hi,t); }
    SI F32 lerp(float lo, float hi, F32   t) { return  t->lerp(lo,hi,t); }

    SI F32 clamp(F32   x, F32   lo, F32   hi) { return  x->clamp(x,lo,hi); }
    SI F32 clamp(F32   x, F32   lo, float hi) { return  x->clamp(x,lo,hi); }
    SI F32 clamp(F32   x, float lo, F32   hi) { return  x->clamp(x,lo,hi); }
    SI F32 clamp(F32   x, float lo, float hi) { return  x->clamp(x,lo,hi); }
    SI F32 clamp(float x, F32   lo, F32   hi) { return lo->clamp(x,lo,hi); }
    SI F32 clamp(float x, F32   lo, float hi) { return lo->clamp(x,lo,hi); }
    SI F32 clamp(float x, float lo, F32   hi) { return hi->clamp(x,lo,hi); }

    SI I32 operator<<(I32 x, int bits) { return x->shl(x, bits); }
    SI I32        shl(I32 x, int bits) { return x->shl(x, bits); }
    SI I32        shr(I32 x, int bits) { return x->shr(x, bits); }
    SI I32        sra(I32 x, int bits) { return x->sra(x, bits); }

    SI I32 operator&(I32 x, I32 y) { return x->bit_and(x,y); }
    SI I32 operator&(I32 x, int y) { return x->bit_and(x,y); }
    SI I32 operator&(int x, I32 y) { return y->bit_and(x,y); }

    SI I32 operator|(I32 x, I32 y) { return x->bit_or (x,y); }
    SI I32 operator|(I32 x, int y) { return x->bit_or (x,y); }
    SI I32 operator|(int x, I32 y) { return y->bit_or (x,y); }

    SI I32 operator^(I32 x, I32 y) { return x->bit_xor(x,y); }
    SI I32 operator^(I32 x, int y) { return x->bit_xor(x,y); }
    SI I32 operator^(int x, I32 y) { return y->bit_xor(x,y); }

    SI I32& operator&=(I32& x, I32 y) { return (x = x & y); }
    SI I32& operator&=(I32& x, int y) { return (x = x & y); }
    SI I32& operator|=(I32& x, I32 y) { return (x = x | y); }
    SI I32& operator|=(I32& x, int y) { return (x = x | y); }
    SI I32& operator^=(I32& x, I32 y) { return (x = x ^ y); }
    SI I32& operator^=(I32& x, int y) { return (x = x ^ y); }

    SI I32 bit_clear(I32 x, I32 y) { return x->bit_clear(x,y); }
    SI I32 bit_clear(I32 x, int y) { return x->bit_clear(x,y); }
    SI I32 bit_clear(int x, I32 y) { return y->bit_clear(x,y); }

    SI I32 select(I32 c, I32 t, I32 f) { return c->select(c,          t ,          f ); }
    SI I32 select(I32 c, I32 t, int f) { return c->select(c,          t , c->splat(f)); }
    SI I32 select(I32 c, int t, I32 f) { return c->select(c, c->splat(t),          f ); }
    SI I32 select(I32 c, int t, int f) { return c->select(c, c->splat(t), c->splat(f)); }

    SI F32 select(I32 c, F32   t, F32   f) { return c->select(c,          t ,          f ); }
    SI F32 select(I32 c, F32   t, float f) { return c->select(c,          t , c->splat(f)); }
    SI F32 select(I32 c, float t, F32   f) { return c->select(c, c->splat(t),          f ); }
    SI F32 select(I32 c, float t, float f) { return c->select(c, c->splat(t), c->splat(f)); }

    SI I32 extract(I32 x, int bits, I32 z) { return x->extract(x,bits,z); }
    SI I32 extract(I32 x, int bits, int z) { return x->extract(x,bits,z); }
    SI I32 extract(int x, int bits, I32 z) { return z->extract(x,bits,z); }

    SI I32 pack(I32 x, I32 y, int bits) { return x->pack   (x,y,bits); }
    SI I32 pack(I32 x, int y, int bits) { return x->pack   (x,y,bits); }
    SI I32 pack(int x, I32 y, int bits) { return y->pack   (x,y,bits); }

    SI I32 operator~(I32 x) { return ~0 ^ x; }
    SI I32 operator-(I32 x) { return  0 - x; }
    SI F32 operator-(F32 x) { return 0.0f - x; }

    SI F32 from_unorm(int bits, I32 x) { return x->from_unorm(bits,x); }
    SI I32   to_unorm(int bits, F32 x) { return x->  to_unorm(bits,x); }

    SI void store(PixelFormat f, Ptr p, Color c) { return c->store(f,p,c); }

    SI Color gather(PixelFormat f, UPtr p, int off, I32 ix) { return ix->gather(f,p,off,ix); }
    SI Color gather(PixelFormat f, Uniform u     , I32 ix)  { return ix->gather(f,u,ix); }

    SI void   premul(F32* r, F32* g, F32* b, F32 a) { a->  premul(r,g,b,a); }
    SI void unpremul(F32* r, F32* g, F32* b, F32 a) { a->unpremul(r,g,b,a); }

    SI Color   premul(Color c) { return c->  premul(c); }
    SI Color unpremul(Color c) { return c->unpremul(c); }

    SI Color lerp(Color lo, Color hi, F32 t) { return t->lerp(lo,hi,t); }

    SI Color blend(SkBlendMode m, Color s, Color d) { return s->blend(m,s,d); }

    SI Color clamp01(Color c) { return c->clamp01(c); }

    SI HSLA  to_hsla(Color c) { return c->to_hsla(c); }
    SI Color to_rgba(HSLA  c) { return c->to_rgba(c); }

    // Evaluate polynomials: ax^n + bx^(n-1) + ... for n >= 1
    template <typename F32_or_float, typename... Rest>
    SI F32 poly(F32 x, F32_or_float a, float b, Rest... rest) {
        if constexpr (sizeof...(rest) == 0) {
            return x*a+b;
        } else {
            return poly(x, x*a+b, rest...);
        }
    }
#undef SI
}  // namespace skvm

#endif//SkVM_DEFINED