summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/opts/SkBlitRow_opts.h
blob: 36c5c396becce0b0582c6e64ec9df6a001e5637b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkBlitRow_opts_DEFINED
#define SkBlitRow_opts_DEFINED

#include "include/private/SkColorData.h"
#include "src/base/SkMSAN.h"
#include "src/base/SkVx.h"

// Helpers for blit_row_s32a_opaque(),
// then blit_row_s32a_opaque() itself,
// then unrelated blit_row_color32() at the bottom.
//
// To keep Skia resistant to timing attacks, it's important not to branch on pixel data.
// In particular, don't be tempted to [v]ptest, pmovmskb, etc. to branch on the source alpha.

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
    #include <immintrin.h>

    static inline __m512i SkPMSrcOver_SKX(const __m512i& src, const __m512i& dst) {
        // Detailed explanations in SkPMSrcOver_AVX2
        // b = s + (d*(256-srcA)) >> 8

        // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
        const uint8_t _ = -1;   // fills a literal 0 byte.
        const uint8_t mask[64] = { 3, _,3, _, 7, _,7, _, 11,_,11,_, 15,_,15,_,
                                   19,_,19,_, 23,_,23,_, 27,_,27,_, 31,_,31,_,
                                   35,_,35,_, 39,_,39,_, 43,_,43,_, 47,_,47,_,
                                   51,_,51,_, 55,_,55,_, 59,_,59,_, 63,_,63,_ };
        __m512i srcA_x2 = _mm512_shuffle_epi8(src, _mm512_loadu_si512(mask));
        __m512i scale_x2 = _mm512_sub_epi16(_mm512_set1_epi16(256),
                                            srcA_x2);

        // Scale red and blue, leaving results in the low byte of each 16-bit lane.
        __m512i rb = _mm512_and_si512(_mm512_set1_epi32(0x00ff00ff), dst);
        rb = _mm512_mullo_epi16(rb, scale_x2);
        rb = _mm512_srli_epi16(rb, 8);

        // Scale green and alpha, leaving results in the high byte, masking off the low bits.
        __m512i ga = _mm512_srli_epi16(dst, 8);
        ga = _mm512_mullo_epi16(ga, scale_x2);
        ga = _mm512_andnot_si512(_mm512_set1_epi32(0x00ff00ff), ga);

        return _mm512_adds_epu8(src, _mm512_or_si512(rb, ga));
    }
#endif

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
    #include <immintrin.h>

    static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
        // Abstractly srcover is
        //     b = s + d*(1-srcA)
        //
        // In terms of unorm8 bytes, that works out to
        //     b = s + (d*(255-srcA) + 127) / 255
        //
        // But we approximate that to within a bit with
        //     b = s + (d*(255-srcA) + d) / 256
        // a.k.a
        //     b = s + (d*(256-srcA)) >> 8

        // The bottleneck of this math is the multiply, and we want to do it as
        // narrowly as possible, here getting inputs into 16-bit lanes and
        // using 16-bit multiplies.  We can do twice as many multiplies at once
        // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies
        // are themselves a couple cycles quicker.  Win-win.

        // We'll get everything in 16-bit lanes for two multiplies, one
        // handling dst red and blue, the other green and alpha.  (They're
        // conveniently 16-bits apart, you see.) We don't need the individual
        // src channels beyond alpha until the very end when we do the "s + "
        // add, and we don't even need to unpack them; the adds cannot overflow.

        // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
        const int _ = -1;   // fills a literal 0 byte.
        __m256i srcA_x2 = _mm256_shuffle_epi8(src,
                _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_,
                                 3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_));
        __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256),
                                            srcA_x2);

        // Scale red and blue, leaving results in the low byte of each 16-bit lane.
        __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst);
        rb = _mm256_mullo_epi16(rb, scale_x2);
        rb = _mm256_srli_epi16 (rb, 8);

        // Scale green and alpha, leaving results in the high byte, masking off the low bits.
        __m256i ga = _mm256_srli_epi16(dst, 8);
        ga = _mm256_mullo_epi16(ga, scale_x2);
        ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga);

        return _mm256_adds_epu8(src, _mm256_or_si256(rb, ga));
    }
#endif

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
    #include <immintrin.h>

    static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
        __m128i scale = _mm_sub_epi32(_mm_set1_epi32(256),
                                      _mm_srli_epi32(src, 24));
        __m128i scale_x2 = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);

        __m128i rb = _mm_and_si128(_mm_set1_epi32(0x00ff00ff), dst);
        rb = _mm_mullo_epi16(rb, scale_x2);
        rb = _mm_srli_epi16(rb, 8);

        __m128i ga = _mm_srli_epi16(dst, 8);
        ga = _mm_mullo_epi16(ga, scale_x2);
        ga = _mm_andnot_si128(_mm_set1_epi32(0x00ff00ff), ga);

        return _mm_adds_epu8(src, _mm_or_si128(rb, ga));
    }
#endif

#if defined(SK_ARM_HAS_NEON)
    #include <arm_neon.h>

    // SkMulDiv255Round() applied to each lane.
    static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
        uint16x8_t prod = vmull_u8(x, y);
        return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
    }

    static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
        uint8x8_t nalphas = vmvn_u8(src.val[3]);  // 256 - alpha
        return {
            vqadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas,  dst.val[0])),
            vqadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas,  dst.val[1])),
            vqadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas,  dst.val[2])),
            vqadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas,  dst.val[3])),
        };
    }

    // Variant assuming dst and src contain the color components of two consecutive pixels.
    static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
        const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
        uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
        return vqadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
    }

#endif

namespace SK_OPTS_NS {

/*not static*/
inline void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
    SkASSERT(alpha == 0xFF);
    sk_msan_assert_initialized(src, src+len);

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
    while (len >= 16) {
        _mm512_storeu_si512((__m512*)dst,
                            SkPMSrcOver_SKX(_mm512_loadu_si512((const __m512i*)src),
                                            _mm512_loadu_si512((const __m512i*)dst)));
        src += 16;
        dst += 16;
        len -= 16;
    }
#endif

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
    while (len >= 8) {
        _mm256_storeu_si256((__m256i*)dst,
                            SkPMSrcOver_AVX2(_mm256_loadu_si256((const __m256i*)src),
                                             _mm256_loadu_si256((const __m256i*)dst)));
        src += 8;
        dst += 8;
        len -= 8;
    }
#endif

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
    while (len >= 4) {
        _mm_storeu_si128((__m128i*)dst, SkPMSrcOver_SSE2(_mm_loadu_si128((const __m128i*)src),
                                                         _mm_loadu_si128((const __m128i*)dst)));
        src += 4;
        dst += 4;
        len -= 4;
    }
#endif

#if defined(SK_ARM_HAS_NEON)
    while (len >= 8) {
        vst4_u8((uint8_t*)dst, SkPMSrcOver_neon8(vld4_u8((const uint8_t*)dst),
                                                 vld4_u8((const uint8_t*)src)));
        src += 8;
        dst += 8;
        len -= 8;
    }

    while (len >= 2) {
        vst1_u8((uint8_t*)dst, SkPMSrcOver_neon2(vld1_u8((const uint8_t*)dst),
                                                 vld1_u8((const uint8_t*)src)));
        src += 2;
        dst += 2;
        len -= 2;
    }

    if (len != 0) {
        uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst),
                                             vcreate_u8((uint64_t)*src));
        vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
    }
    return;
#endif

    while (len --> 0) {
        *dst = SkPMSrcOver(*src, *dst);
        src++;
        dst++;
    }
}

// Blend constant color over count src pixels, writing into dst.
/*not static*/
inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
    constexpr int N = 4;  // 8, 16 also reasonable choices
    using U32 = skvx::Vec<  N, uint32_t>;
    using U16 = skvx::Vec<4*N, uint16_t>;
    using U8  = skvx::Vec<4*N, uint8_t>;

    auto kernel = [color](U32 src) {
        unsigned invA = 255 - SkGetPackedA32(color);
        invA += invA >> 7;
        SkASSERT(0 < invA && invA < 256);  // We handle alpha == 0 or alpha == 255 specially.

        // (src * invA + (color << 8) + 128) >> 8
        // Should all fit in 16 bits.
        U8 s = skvx::bit_pun<U8>(src),
           a = U8(invA);
        U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
            d = (mull(s,a) + (c << 8) + 128)>>8;
        return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
    };

    while (count >= N) {
        kernel(U32::Load(src)).store(dst);
        src   += N;
        dst   += N;
        count -= N;
    }
    while (count --> 0) {
        *dst++ = kernel(U32{*src++})[0];
    }
}

}  // namespace SK_OPTS_NS

#endif//SkBlitRow_opts_DEFINED