summaryrefslogtreecommitdiffstats
path: root/gfx/src/nsRegion.cpp
blob: aa50d44fc4860968183e1664a3f0823f26891d93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsRegion.h"
#include "nsTArray.h"
#include "gfxUtils.h"
#include "gfx2DGlue.h"
#include "mozilla/ToString.h"

void nsRegion::AssertStateInternal() const {
  bool failed = false;
  // Verify consistent state inside the region.
  int32_t lastY = INT32_MIN;
  int32_t lowestX = INT32_MAX;
  int32_t highestX = INT32_MIN;
  for (auto iter = mBands.begin(); iter != mBands.end(); iter++) {
    const Band& band = *iter;
    if (band.bottom <= band.top) {
      failed = true;
      break;
    }
    if (band.top < lastY) {
      failed = true;
      break;
    }
    lastY = band.bottom;

    lowestX = std::min(lowestX, band.mStrips.begin()->left);
    highestX = std::max(highestX, band.mStrips.LastElement().right);

    int32_t lastX = INT32_MIN;
    if (iter != mBands.begin()) {
      auto prev = iter;
      prev--;

      if (prev->bottom == iter->top) {
        if (band.EqualStrips(*prev)) {
          failed = true;
          break;
        }
      }
    }
    for (const Strip& strip : band.mStrips) {
      if (strip.right <= strip.left) {
        failed = true;
        break;
      }
      if (strip.left <= lastX) {
        failed = true;
        break;
      }
      lastX = strip.right;
    }
    if (failed) {
      break;
    }
  }

  if (!(mBounds.IsEqualEdges(CalculateBounds()))) {
    failed = true;
  }

  if (failed) {
#ifdef DEBUG_REGIONS
    if (mCurrentOpGenerator) {
      mCurrentOpGenerator->OutputOp();
    }
#endif
    MOZ_ASSERT(false);
  }
}

bool nsRegion::Contains(const nsRegion& aRgn) const {
  // XXX this could be made faster by iterating over
  // both regions at the same time some how
  for (auto iter = aRgn.RectIter(); !iter.Done(); iter.Next()) {
    if (!Contains(iter.Get())) {
      return false;
    }
  }
  return true;
}

bool nsRegion::Intersects(const nsRectAbsolute& aRect) const {
  if (mBands.IsEmpty()) {
    return mBounds.Intersects(aRect);
  }

  if (!mBounds.Intersects(aRect)) {
    return false;
  }

  Strip rectStrip(aRect.X(), aRect.XMost());

  auto iter = mBands.begin();
  while (iter != mBands.end()) {
    if (iter->top >= aRect.YMost()) {
      return false;
    }

    if (iter->bottom <= aRect.Y()) {
      // This band is entirely before aRect, move on.
      iter++;
      continue;
    }

    if (!iter->Intersects(rectStrip)) {
      // This band does not intersect aRect horizontally. Move on.
      iter++;
      continue;
    }

    // This band intersects with aRect.
    return true;
  }

  return false;
}

void nsRegion::Inflate(const nsMargin& aMargin) {
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.Inflate(aMargin);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
}

void nsRegion::SimplifyOutward(uint32_t aMaxRects) {
  MOZ_ASSERT(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects) {
    return;
  }

  // Try combining rects in horizontal bands into a single rect
  // The goal here is to try to keep groups of rectangles that are vertically
  // discontiguous as separate rectangles in the final region. This is
  // simple and fast to implement and page contents tend to vary more
  // vertically than horizontally (which is why our rectangles are stored
  // sorted by y-coordinate, too).
  //
  // Note: if boxes share y1 because of the canonical representation they
  // will share y2

  size_t idx = 0;

  while (idx < mBands.Length()) {
    size_t oldIdx = idx;
    mBands[idx].mStrips.begin()->right =
        mBands[idx].mStrips.LastElement().right;
    mBands[idx].mStrips.TruncateLength(1);
    idx++;

    // Merge any bands with the same bounds.
    while (idx < mBands.Length() &&
           mBands[idx].mStrips.begin()->left ==
               mBands[oldIdx].mStrips.begin()->left &&
           mBands[idx].mStrips.LastElement().right ==
               mBands[oldIdx].mStrips.begin()->right) {
      mBands[oldIdx].bottom = mBands[idx].bottom;
      mBands.RemoveElementAt(idx);
    }
  }

  AssertState();

  // mBands.size() is now equal to our rect count.
  if (mBands.Length() > aMaxRects) {
    *this = GetBounds();
  }
}

// compute the covered area difference between two rows.
// by iterating over both rows simultaneously and adding up
// the additional increase in area caused by extending each
// of the rectangles to the combined height of both rows
uint32_t nsRegion::ComputeMergedAreaIncrease(const Band& aTopBand,
                                             const Band& aBottomBand) {
  uint32_t totalArea = 0;

  uint32_t topHeight = aBottomBand.top - aTopBand.top;
  uint32_t bottomHeight = aBottomBand.bottom - aTopBand.bottom;
  uint32_t currentStripBottom = 0;

  // This could be done with slightly better worse case performance by merging
  // these two for-loops, but this makes the code a lot easier to understand.
  for (auto& strip : aTopBand.mStrips) {
    if (currentStripBottom == aBottomBand.mStrips.Length() ||
        strip.right < aBottomBand.mStrips[currentStripBottom].left) {
      totalArea += bottomHeight * strip.Size();
      continue;
    }

    int32_t currentX = strip.left;
    while (currentStripBottom != aBottomBand.mStrips.Length() &&
           aBottomBand.mStrips[currentStripBottom].left < strip.right) {
      if (currentX >= strip.right) {
        break;
      }
      if (currentX < aBottomBand.mStrips[currentStripBottom].left) {
        // Add the part that's not intersecting.
        totalArea += (aBottomBand.mStrips[currentStripBottom].left - currentX) *
                     bottomHeight;
      }

      currentX =
          std::max(aBottomBand.mStrips[currentStripBottom].right, currentX);
      currentStripBottom++;
    }

    // Add remainder of this strip.
    if (currentX < strip.right) {
      totalArea += (strip.right - currentX) * bottomHeight;
    }
    if (currentStripBottom) {
      currentStripBottom--;
    }
  }
  uint32_t currentStripTop = 0;
  for (auto& strip : aBottomBand.mStrips) {
    if (currentStripTop == aTopBand.mStrips.Length() ||
        strip.right < aTopBand.mStrips[currentStripTop].left) {
      totalArea += topHeight * strip.Size();
      continue;
    }

    int32_t currentX = strip.left;
    while (currentStripTop != aTopBand.mStrips.Length() &&
           aTopBand.mStrips[currentStripTop].left < strip.right) {
      if (currentX >= strip.right) {
        break;
      }
      if (currentX < aTopBand.mStrips[currentStripTop].left) {
        // Add the part that's not intersecting.
        totalArea +=
            (aTopBand.mStrips[currentStripTop].left - currentX) * topHeight;
      }

      currentX = std::max(aTopBand.mStrips[currentStripTop].right, currentX);
      currentStripTop++;
    }

    // Add remainder of this strip.
    if (currentX < strip.right) {
      totalArea += (strip.right - currentX) * topHeight;
    }
    if (currentStripTop) {
      currentStripTop--;
    }
  }
  return totalArea;
}

void nsRegion::SimplifyOutwardByArea(uint32_t aThreshold) {
  if (mBands.Length() < 2) {
    // We have only one or no row and we're done.
    return;
  }

  uint32_t currentBand = 0;
  do {
    Band& band = mBands[currentBand];

    uint32_t totalArea =
        ComputeMergedAreaIncrease(band, mBands[currentBand + 1]);

    if (totalArea <= aThreshold) {
      for (Strip& strip : mBands[currentBand + 1].mStrips) {
        // This could use an optimized function to merge two bands.
        band.InsertStrip(strip);
      }
      band.bottom = mBands[currentBand + 1].bottom;
      mBands.RemoveElementAt(currentBand + 1);
    } else {
      currentBand++;
    }
  } while (currentBand + 1 < mBands.Length());

  EnsureSimplified();
  AssertState();
}

typedef void (*visit_fn)(void* closure, VisitSide side, int x1, int y1, int x2,
                         int y2);

void nsRegion::VisitEdges(visit_fn visit, void* closure) const {
  if (mBands.IsEmpty()) {
    visit(closure, VisitSide::LEFT, mBounds.X(), mBounds.Y(), mBounds.X(),
          mBounds.YMost());
    visit(closure, VisitSide::RIGHT, mBounds.XMost(), mBounds.Y(),
          mBounds.XMost(), mBounds.YMost());
    visit(closure, VisitSide::TOP, mBounds.X() - 1, mBounds.Y(),
          mBounds.XMost() + 1, mBounds.Y());
    visit(closure, VisitSide::BOTTOM, mBounds.X() - 1, mBounds.YMost(),
          mBounds.XMost() + 1, mBounds.YMost());
    return;
  }

  auto band = std::begin(mBands);
  auto bandFinal = std::end(mBands);
  bandFinal--;
  for (const Strip& strip : band->mStrips) {
    visit(closure, VisitSide::LEFT, strip.left, band->top, strip.left,
          band->bottom);
    visit(closure, VisitSide::RIGHT, strip.right, band->top, strip.right,
          band->bottom);
    visit(closure, VisitSide::TOP, strip.left - 1, band->top, strip.right + 1,
          band->top);
  }

  if (band != bandFinal) {
    do {
      const Band& topBand = *band;
      band++;

      for (const Strip& strip : band->mStrips) {
        visit(closure, VisitSide::LEFT, strip.left, band->top, strip.left,
              band->bottom);
        visit(closure, VisitSide::RIGHT, strip.right, band->top, strip.right,
              band->bottom);
      }

      if (band->top == topBand.bottom) {
        // Two bands touching each other vertically.
        const Band& bottomBand = *band;
        auto topStrip = std::begin(topBand.mStrips);
        auto bottomStrip = std::begin(bottomBand.mStrips);

        int y = topBand.bottom;

        // State from this point on along the vertical edge:
        // 0 - Empty
        // 1 - Touched by top rect
        // 2 - Touched by bottom rect
        // 3 - Touched on both sides
        int state;
        const int TouchedByNothing = 0;
        const int TouchedByTop = 1;
        const int TouchedByBottom = 2;
        // We always start with nothing.
        int oldState = TouchedByNothing;
        // Last state change, adjusted by -1 if the last state change was
        // a change away from 0.
        int lastX = std::min(topStrip->left, bottomStrip->left) - 1;

        // Current edge being considered for top and bottom,
        // 0 - left, 1 - right.
        bool topEdgeIsLeft = true;
        bool bottomEdgeIsLeft = true;
        while (topStrip != std::end(topBand.mStrips) &&
               bottomStrip != std::end(bottomBand.mStrips)) {
          int topPos;
          int bottomPos;
          if (topEdgeIsLeft) {
            topPos = topStrip->left;
          } else {
            topPos = topStrip->right;
          }
          if (bottomEdgeIsLeft) {
            bottomPos = bottomStrip->left;
          } else {
            bottomPos = bottomStrip->right;
          }

          int currentX = std::min(topPos, bottomPos);
          if (topPos < bottomPos) {
            if (topEdgeIsLeft) {
              state = oldState | TouchedByTop;
            } else {
              state = oldState ^ TouchedByTop;
              topStrip++;
            }
            topEdgeIsLeft = !topEdgeIsLeft;
          } else if (bottomPos < topPos) {
            if (bottomEdgeIsLeft) {
              state = oldState | TouchedByBottom;
            } else {
              state = oldState ^ TouchedByBottom;
              bottomStrip++;
            }
            bottomEdgeIsLeft = !bottomEdgeIsLeft;
          } else {
            // bottomPos == topPos
            state = TouchedByNothing;
            if (bottomEdgeIsLeft) {
              state = TouchedByBottom;
            } else {
              bottomStrip++;
            }
            if (topEdgeIsLeft) {
              state |= TouchedByTop;
            } else {
              topStrip++;
            }
            topEdgeIsLeft = !topEdgeIsLeft;
            bottomEdgeIsLeft = !bottomEdgeIsLeft;
          }

          MOZ_ASSERT(state != oldState);
          if (oldState == TouchedByNothing) {
            // We had nothing before, make sure the left edge will be padded.
            lastX = currentX - 1;
          } else if (oldState == TouchedByTop) {
            if (state == TouchedByNothing) {
              visit(closure, VisitSide::BOTTOM, lastX, y, currentX + 1, y);
            } else {
              visit(closure, VisitSide::BOTTOM, lastX, y, currentX, y);
              lastX = currentX;
            }
          } else if (oldState == TouchedByBottom) {
            if (state == TouchedByNothing) {
              visit(closure, VisitSide::TOP, lastX, y, currentX + 1, y);
            } else {
              visit(closure, VisitSide::TOP, lastX, y, currentX, y);
              lastX = currentX;
            }
          } else {
            lastX = currentX;
          }
          oldState = state;
        }

        MOZ_ASSERT(!state || (topEdgeIsLeft || bottomEdgeIsLeft));
        if (topStrip != std::end(topBand.mStrips)) {
          if (!topEdgeIsLeft) {
            visit(closure, VisitSide::BOTTOM, lastX, y, topStrip->right + 1, y);
            topStrip++;
          }
          while (topStrip != std::end(topBand.mStrips)) {
            visit(closure, VisitSide::BOTTOM, topStrip->left - 1, y,
                  topStrip->right + 1, y);
            topStrip++;
          }
        } else if (bottomStrip != std::end(bottomBand.mStrips)) {
          if (!bottomEdgeIsLeft) {
            visit(closure, VisitSide::TOP, lastX, y, bottomStrip->right + 1, y);
            bottomStrip++;
          }
          while (bottomStrip != std::end(bottomBand.mStrips)) {
            visit(closure, VisitSide::TOP, bottomStrip->left - 1, y,
                  bottomStrip->right + 1, y);
            bottomStrip++;
          }
        }
      } else {
        for (const Strip& strip : topBand.mStrips) {
          visit(closure, VisitSide::BOTTOM, strip.left - 1, topBand.bottom,
                strip.right + 1, topBand.bottom);
        }
        for (const Strip& strip : band->mStrips) {
          visit(closure, VisitSide::TOP, strip.left - 1, band->top,
                strip.right + 1, band->top);
        }
      }
    } while (band != bandFinal);
  }

  for (const Strip& strip : band->mStrips) {
    visit(closure, VisitSide::BOTTOM, strip.left - 1, band->bottom,
          strip.right + 1, band->bottom);
  }
}

void nsRegion::SimplifyInward(uint32_t aMaxRects) {
  NS_ASSERTION(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects) return;

  SetEmpty();
}

uint64_t nsRegion::Area() const {
  if (mBands.IsEmpty()) {
    return mBounds.Area();
  }

  uint64_t area = 0;
  for (const Band& band : mBands) {
    uint32_t height = band.bottom - band.top;
    for (const Strip& strip : band.mStrips) {
      area += (strip.right - strip.left) * height;
    }
  }

  return area;
}

nsRegion& nsRegion::ScaleRoundOut(float aXScale, float aYScale) {
  if (mozilla::gfx::FuzzyEqual(aXScale, 1.0f) &&
      mozilla::gfx::FuzzyEqual(aYScale, 1.0f)) {
    return *this;
  }

  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.ScaleRoundOut(aXScale, aYScale);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
  return *this;
}

nsRegion& nsRegion::ScaleInverseRoundOut(float aXScale, float aYScale) {
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.ScaleInverseRoundOut(aXScale, aYScale);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
  return *this;
}

static mozilla::gfx::IntRect TransformRect(
    const mozilla::gfx::IntRect& aRect,
    const mozilla::gfx::Matrix4x4& aTransform) {
  if (aRect.IsEmpty()) {
    return mozilla::gfx::IntRect();
  }

  mozilla::gfx::RectDouble rect(aRect.X(), aRect.Y(), aRect.Width(),
                                aRect.Height());
  rect = aTransform.TransformAndClipBounds(
      rect, mozilla::gfx::RectDouble::MaxIntRect());
  rect.RoundOut();

  mozilla::gfx::IntRect intRect;
  if (!gfxUtils::GfxRectToIntRect(ThebesRect(rect), &intRect)) {
    return mozilla::gfx::IntRect();
  }

  return intRect;
}

nsRegion& nsRegion::Transform(const mozilla::gfx::Matrix4x4& aTransform) {
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = nsIntRegion::ToRect(
        TransformRect(nsIntRegion::FromRect(iter.Get()), aTransform));
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  *this = std::move(newRegion);
  return *this;
}

nsRegion nsRegion::ScaleToOtherAppUnitsRoundOut(int32_t aFromAPP,
                                                int32_t aToAPP) const {
  if (aFromAPP == aToAPP) {
    return *this;
  }
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    rect = rect.ScaleToOtherAppUnitsRoundOut(aFromAPP, aToAPP);
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  return newRegion;
}

nsRegion nsRegion::ScaleToOtherAppUnitsRoundIn(int32_t aFromAPP,
                                               int32_t aToAPP) const {
  if (aFromAPP == aToAPP) {
    return *this;
  }

  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    rect = rect.ScaleToOtherAppUnitsRoundIn(aFromAPP, aToAPP);
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  return newRegion;
}

nsIntRegion nsRegion::ToPixels(nscoord aAppUnitsPerPixel,
                               bool aOutsidePixels) const {
  nsIntRegion intRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    mozilla::gfx::IntRect deviceRect;
    nsRect rect = iter.Get();
    if (aOutsidePixels)
      deviceRect = rect.ToOutsidePixels(aAppUnitsPerPixel);
    else
      deviceRect = rect.ToNearestPixels(aAppUnitsPerPixel);
    intRegion.OrWith(deviceRect);
  }

  return intRegion;
}

nsIntRegion nsRegion::ToOutsidePixels(nscoord aAppUnitsPerPixel) const {
  return ToPixels(aAppUnitsPerPixel, true);
}

nsIntRegion nsRegion::ToNearestPixels(nscoord aAppUnitsPerPixel) const {
  return ToPixels(aAppUnitsPerPixel, false);
}

nsIntRegion nsRegion::ScaleToNearestPixels(float aScaleX, float aScaleY,
                                           nscoord aAppUnitsPerPixel) const {
  nsIntRegion result;
  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    mozilla::gfx::IntRect deviceRect =
        iter.Get().ScaleToNearestPixels(aScaleX, aScaleY, aAppUnitsPerPixel);
    result.Or(result, deviceRect);
  }
  return result;
}

nsIntRegion nsRegion::ScaleToOutsidePixels(float aScaleX, float aScaleY,
                                           nscoord aAppUnitsPerPixel) const {
  // make a copy of the region so that we can mutate it inplace
  nsIntRegion intRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    intRegion.OrWith(
        rect.ScaleToOutsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel));
  }
  return intRegion;
}

nsIntRegion nsRegion::ScaleToInsidePixels(float aScaleX, float aScaleY,
                                          nscoord aAppUnitsPerPixel) const {
  /* When scaling a rect, walk forward through the rect list up until the y
   * value is greater than the current rect's YMost() value.
   *
   * For each rect found, check if the rects have a touching edge (in unscaled
   * coordinates), and if one edge is entirely contained within the other.
   *
   * If it is, then the contained edge can be moved (in scaled pixels) to ensure
   * that no gap exists.
   *
   * Since this could be potentially expensive - O(n^2), we only attempt this
   * algorithm for the first rect.
   */

  if (mBands.IsEmpty()) {
    nsIntRect rect = mBounds.ToNSRect().ScaleToInsidePixels(aScaleX, aScaleY,
                                                            aAppUnitsPerPixel);
    return nsIntRegion(rect);
  }

  nsIntRegion intRegion;
  RectIterator iter = RectIterator(*this);

  nsRect first = iter.Get();

  mozilla::gfx::IntRect firstDeviceRect =
      first.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

  for (iter.Next(); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    mozilla::gfx::IntRect deviceRect =
        rect.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

    if (rect.Y() <= first.YMost()) {
      if (rect.XMost() == first.X() && rect.YMost() <= first.YMost()) {
        // rect is touching on the left edge of the first rect and contained
        // within the length of its left edge
        deviceRect.SetRightEdge(firstDeviceRect.X());
      } else if (rect.X() == first.XMost() && rect.YMost() <= first.YMost()) {
        // rect is touching on the right edge of the first rect and contained
        // within the length of its right edge
        deviceRect.SetLeftEdge(firstDeviceRect.XMost());
      } else if (rect.Y() == first.YMost()) {
        // The bottom of the first rect is on the same line as the top of rect,
        // but they aren't necessarily contained.
        if (rect.X() <= first.X() && rect.XMost() >= first.XMost()) {
          // The top of rect contains the bottom of the first rect
          firstDeviceRect.SetBottomEdge(deviceRect.Y());
        } else if (rect.X() >= first.X() && rect.XMost() <= first.XMost()) {
          // The bottom of the first contains the top of rect
          deviceRect.SetTopEdge(firstDeviceRect.YMost());
        }
      }
    }

    intRegion.OrWith(deviceRect);
  }

  intRegion.OrWith(firstDeviceRect);
  return intRegion;
}

// A cell's "value" is a pair consisting of
// a) the area of the subrectangle it corresponds to, if it's in
// aContainingRect and in the region, 0 otherwise
// b) the area of the subrectangle it corresponds to, if it's in the region,
// 0 otherwise
// Addition, subtraction and identity are defined on these values in the
// obvious way. Partial order is lexicographic.
// A "large negative value" is defined with large negative numbers for both
// fields of the pair. This negative value has the property that adding any
// number of non-negative values to it always results in a negative value.
//
// The GetLargestRectangle algorithm works in three phases:
//  1) Convert the region into a grid by adding vertical/horizontal lines for
//     each edge of each rectangle in the region.
//  2) For each rectangle in the region, for each cell it contains, set that
//     cells's value as described above.
//  3) Calculate the submatrix with the largest sum such that none of its cells
//     contain any 0s (empty regions). The rectangle represented by the
//     submatrix is the largest rectangle in the region.
//
// Let k be the number of rectangles in the region.
// Let m be the height of the grid generated in step 1.
// Let n be the width of the grid generated in step 1.
//
// Step 1 is O(k) in time and O(m+n) in space for the sparse grid.
// Step 2 is O(mn) in time and O(mn) in additional space for the full grid.
// Step 3 is O(m^2 n) in time and O(mn) in additional space
//
// The implementation of steps 1 and 2 are rather straightforward. However our
// implementation of step 3 uses dynamic programming to achieve its efficiency.
//
// Psuedo code for step 3 is as follows where G is the grid from step 1 and A
// is the array from step 2:
// Phase3 = function (G, A, m, n) {
//   let (t,b,l,r,_) = MaxSum2D(A,m,n)
//   return rect(G[t],G[l],G[r],G[b]);
// }
// MaxSum2D = function (A, m, n) {
//   S = array(m+1,n+1)
//   S[0][i] = 0 for i in [0,n]
//   S[j][0] = 0 for j in [0,m]
//   S[j][i] = (if A[j-1][i-1] = 0 then some large negative value
//                                 else A[j-1][i-1])
//           + S[j-1][n] + S[j][i-1] - S[j-1][i-1]
//
//   // top, bottom, left, right, area
//   var maxRect = (-1, -1, -1, -1, 0);
//
//   for all (m',m'') in [0, m]^2 {
//     let B = { S[m'][i] - S[m''][i] | 0 <= i <= n }
//     let ((l,r),area) = MaxSum1D(B,n+1)
//     if (area > maxRect.area) {
//       maxRect := (m', m'', l, r, area)
//     }
//   }
//
//   return maxRect;
// }
//
// Originally taken from Improved algorithms for the k-maximum subarray problem
// for small k - SE Bae, T Takaoka but modified to show the explicit tracking
// of indices and we already have the prefix sums from our one call site so
// there's no need to construct them.
// MaxSum1D = function (A,n) {
//   var minIdx = 0;
//   var min = 0;
//   var maxIndices = (0,0);
//   var max = 0;
//   for i in range(n) {
//     let cand = A[i] - min;
//     if (cand > max) {
//       max := cand;
//       maxIndices := (minIdx, i)
//     }
//     if (min > A[i]) {
//       min := A[i];
//       minIdx := i;
//     }
//   }
//   return (minIdx, maxIdx, max);
// }

namespace {
// This class represents a partitioning of an axis delineated by coordinates.
// It internally maintains a sorted array of coordinates.
class AxisPartition {
 public:
  // Adds a new partition at the given coordinate to this partitioning. If
  // the coordinate is already present in the partitioning, this does nothing.
  void InsertCoord(nscoord c) {
    uint32_t i = mStops.IndexOfFirstElementGt(c);
    if (i == 0 || mStops[i - 1] != c) {
      mStops.InsertElementAt(i, c);
    }
  }

  // Returns the array index of the given partition point. The partition
  // point must already be present in the partitioning.
  int32_t IndexOf(nscoord p) const { return mStops.BinaryIndexOf(p); }

  // Returns the partition at the given index which must be non-zero and
  // less than the number of partitions in this partitioning.
  nscoord StopAt(int32_t index) const { return mStops[index]; }

  // Returns the size of the gap between the partition at the given index and
  // the next partition in this partitioning. If the index is the last index
  // in the partitioning, the result is undefined.
  nscoord StopSize(int32_t index) const {
    return mStops[index + 1] - mStops[index];
  }

  // Returns the number of partitions in this partitioning.
  int32_t GetNumStops() const { return mStops.Length(); }

 private:
  nsTArray<nscoord> mStops;
};

const int64_t kVeryLargeNegativeNumber = 0xffff000000000000ll;

struct SizePair {
  int64_t mSizeContainingRect;
  int64_t mSize;

  SizePair() : mSizeContainingRect(0), mSize(0) {}

  static SizePair VeryLargeNegative() {
    SizePair result;
    result.mSize = result.mSizeContainingRect = kVeryLargeNegativeNumber;
    return result;
  }
  bool operator<(const SizePair& aOther) const {
    if (mSizeContainingRect < aOther.mSizeContainingRect) return true;
    if (mSizeContainingRect > aOther.mSizeContainingRect) return false;
    return mSize < aOther.mSize;
  }
  bool operator>(const SizePair& aOther) const {
    return aOther.operator<(*this);
  }
  SizePair operator+(const SizePair& aOther) const {
    SizePair result = *this;
    result.mSizeContainingRect += aOther.mSizeContainingRect;
    result.mSize += aOther.mSize;
    return result;
  }
  SizePair operator-(const SizePair& aOther) const {
    SizePair result = *this;
    result.mSizeContainingRect -= aOther.mSizeContainingRect;
    result.mSize -= aOther.mSize;
    return result;
  }
};

// Returns the sum and indices of the subarray with the maximum sum of the
// given array (A,n), assuming the array is already in prefix sum form.
SizePair MaxSum1D(const nsTArray<SizePair>& A, int32_t n, int32_t* minIdx,
                  int32_t* maxIdx) {
  // The min/max indicies of the largest subarray found so far
  SizePair min, max;
  int32_t currentMinIdx = 0;

  *minIdx = 0;
  *maxIdx = 0;

  // Because we're given the array in prefix sum form, we know the first
  // element is 0
  for (int32_t i = 1; i < n; i++) {
    SizePair cand = A[i] - min;
    if (cand > max) {
      max = cand;
      *minIdx = currentMinIdx;
      *maxIdx = i;
    }
    if (min > A[i]) {
      min = A[i];
      currentMinIdx = i;
    }
  }

  return max;
}
}  // namespace

nsRect nsRegion::GetLargestRectangle(const nsRect& aContainingRect) const {
  nsRect bestRect;

  if (GetNumRects() <= 1) {
    bestRect = GetBounds();
    return bestRect;
  }

  AxisPartition xaxis, yaxis;

  // Step 1: Calculate the grid lines
  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    const nsRect& rect = iter.Get();
    xaxis.InsertCoord(rect.X());
    xaxis.InsertCoord(rect.XMost());
    yaxis.InsertCoord(rect.Y());
    yaxis.InsertCoord(rect.YMost());
  }
  if (!aContainingRect.IsEmpty()) {
    xaxis.InsertCoord(aContainingRect.X());
    xaxis.InsertCoord(aContainingRect.XMost());
    yaxis.InsertCoord(aContainingRect.Y());
    yaxis.InsertCoord(aContainingRect.YMost());
  }

  // Step 2: Fill out the grid with the areas
  // Note: due to the ordering of rectangles in the region, it is not always
  // possible to combine steps 2 and 3 so we don't try to be clever.
  int32_t matrixHeight = yaxis.GetNumStops() - 1;
  int32_t matrixWidth = xaxis.GetNumStops() - 1;
  int32_t matrixSize = matrixHeight * matrixWidth;
  nsTArray<SizePair> areas(matrixSize);
  areas.SetLength(matrixSize);

  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    const nsRect& rect = iter.Get();
    int32_t xstart = xaxis.IndexOf(rect.X());
    int32_t xend = xaxis.IndexOf(rect.XMost());
    int32_t y = yaxis.IndexOf(rect.Y());
    int32_t yend = yaxis.IndexOf(rect.YMost());

    for (; y < yend; y++) {
      nscoord height = yaxis.StopSize(y);
      for (int32_t x = xstart; x < xend; x++) {
        nscoord width = xaxis.StopSize(x);
        int64_t size = width * int64_t(height);
        if (rect.Intersects(aContainingRect)) {
          areas[y * matrixWidth + x].mSizeContainingRect = size;
        }
        areas[y * matrixWidth + x].mSize = size;
      }
    }
  }

  // Step 3: Find the maximum submatrix sum that does not contain a rectangle
  {
    // First get the prefix sum array
    int32_t m = matrixHeight + 1;
    int32_t n = matrixWidth + 1;
    nsTArray<SizePair> pareas(m * n);
    pareas.SetLength(m * n);
    for (int32_t y = 1; y < m; y++) {
      for (int32_t x = 1; x < n; x++) {
        SizePair area = areas[(y - 1) * matrixWidth + x - 1];
        if (!area.mSize) {
          area = SizePair::VeryLargeNegative();
        }
        area = area + pareas[y * n + x - 1] + pareas[(y - 1) * n + x] -
               pareas[(y - 1) * n + x - 1];
        pareas[y * n + x] = area;
      }
    }

    // No longer need the grid
    areas.SetLength(0);

    SizePair bestArea;
    struct {
      int32_t left, top, right, bottom;
    } bestRectIndices = {0, 0, 0, 0};
    for (int32_t m1 = 0; m1 < m; m1++) {
      for (int32_t m2 = m1 + 1; m2 < m; m2++) {
        nsTArray<SizePair> B;
        B.SetLength(n);
        for (int32_t i = 0; i < n; i++) {
          B[i] = pareas[m2 * n + i] - pareas[m1 * n + i];
        }
        int32_t minIdx, maxIdx;
        SizePair area = MaxSum1D(B, n, &minIdx, &maxIdx);
        if (area > bestArea) {
          bestRectIndices.left = minIdx;
          bestRectIndices.top = m1;
          bestRectIndices.right = maxIdx;
          bestRectIndices.bottom = m2;
          bestArea = area;
        }
      }
    }

    bestRect.MoveTo(xaxis.StopAt(bestRectIndices.left),
                    yaxis.StopAt(bestRectIndices.top));
    bestRect.SizeTo(xaxis.StopAt(bestRectIndices.right) - bestRect.X(),
                    yaxis.StopAt(bestRectIndices.bottom) - bestRect.Y());
  }

  return bestRect;
}

std::ostream& operator<<(std::ostream& stream, const nsRegion& m) {
  stream << "[";

  bool first = true;
  for (auto iter = m.RectIter(); !iter.Done(); iter.Next()) {
    if (!first) {
      stream << "; ";
    } else {
      first = false;
    }
    const nsRect& rect = iter.Get();
    stream << rect.X() << "," << rect.Y() << "," << rect.XMost() << ","
           << rect.YMost();
  }

  stream << "]";
  return stream;
}

void nsRegion::OutputToStream(std::string aObjName,
                              std::ostream& stream) const {
  auto iter = RectIter();
  nsRect r = iter.Get();
  stream << "nsRegion " << aObjName << "(nsRect(" << r.X() << ", " << r.Y()
         << ", " << r.Width() << ", " << r.Height() << "));\n";
  iter.Next();

  for (; !iter.Done(); iter.Next()) {
    nsRect r = iter.Get();
    stream << aObjName << ".OrWith(nsRect(" << r.X() << ", " << r.Y() << ", "
           << r.Width() << ", " << r.Height() << "));\n";
  }
}

nsCString nsRegion::ToString() const {
  return nsCString(mozilla::ToString(*this).c_str());
}