1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <math.h>
#ifdef __MACH__
# include <mach/mach.h>
# include <mach/mach_time.h>
#else
# include <time.h>
#endif
#ifdef NDEBUG
# define debugf(...)
#else
# define debugf(...) printf(__VA_ARGS__)
#endif
// #define PRINT_TIMINGS
#ifdef _WIN32
# define ALWAYS_INLINE __forceinline
# define NO_INLINE __declspec(noinline)
// Including Windows.h brings a huge amount of namespace polution so just
// define a couple of things manually
typedef int BOOL;
# define WINAPI __stdcall
# define DECLSPEC_IMPORT __declspec(dllimport)
# define WINBASEAPI DECLSPEC_IMPORT
typedef unsigned long DWORD;
typedef long LONG;
typedef __int64 LONGLONG;
# define DUMMYSTRUCTNAME
typedef union _LARGE_INTEGER {
struct {
DWORD LowPart;
LONG HighPart;
} DUMMYSTRUCTNAME;
struct {
DWORD LowPart;
LONG HighPart;
} u;
LONGLONG QuadPart;
} LARGE_INTEGER;
extern "C" {
WINBASEAPI BOOL WINAPI
QueryPerformanceCounter(LARGE_INTEGER* lpPerformanceCount);
WINBASEAPI BOOL WINAPI QueryPerformanceFrequency(LARGE_INTEGER* lpFrequency);
}
#else
// GCC is slower when dealing with always_inline, especially in debug builds.
// When using Clang, use always_inline more aggressively.
# if defined(__clang__) || defined(NDEBUG)
# define ALWAYS_INLINE __attribute__((always_inline)) inline
# else
# define ALWAYS_INLINE inline
# endif
# define NO_INLINE __attribute__((noinline))
#endif
// Some functions may cause excessive binary bloat if inlined in debug or with
// GCC builds, so use PREFER_INLINE on these instead of ALWAYS_INLINE.
#if defined(__clang__) && defined(NDEBUG)
# define PREFER_INLINE ALWAYS_INLINE
#else
# define PREFER_INLINE inline
#endif
#define UNREACHABLE __builtin_unreachable()
#define UNUSED [[maybe_unused]]
#define FALLTHROUGH [[fallthrough]]
#if defined(MOZILLA_CLIENT) && defined(MOZ_CLANG_PLUGIN)
# define IMPLICIT __attribute__((annotate("moz_implicit")))
#else
# define IMPLICIT
#endif
#include "gl_defs.h"
#include "glsl.h"
#include "program.h"
#include "texture.h"
using namespace glsl;
typedef ivec2_scalar IntPoint;
struct IntRect {
int x0;
int y0;
int x1;
int y1;
IntRect() : x0(0), y0(0), x1(0), y1(0) {}
IntRect(int x0, int y0, int x1, int y1) : x0(x0), y0(y0), x1(x1), y1(y1) {}
IntRect(IntPoint origin, IntPoint size)
: x0(origin.x),
y0(origin.y),
x1(origin.x + size.x),
y1(origin.y + size.y) {}
int width() const { return x1 - x0; }
int height() const { return y1 - y0; }
bool is_empty() const { return width() <= 0 || height() <= 0; }
IntPoint origin() const { return IntPoint(x0, y0); }
bool same_size(const IntRect& o) const {
return width() == o.width() && height() == o.height();
}
bool contains(const IntRect& o) const {
return o.x0 >= x0 && o.y0 >= y0 && o.x1 <= x1 && o.y1 <= y1;
}
IntRect& intersect(const IntRect& o) {
x0 = max(x0, o.x0);
y0 = max(y0, o.y0);
x1 = min(x1, o.x1);
y1 = min(y1, o.y1);
return *this;
}
IntRect intersection(const IntRect& o) {
IntRect result = *this;
result.intersect(o);
return result;
}
// Scale from source-space to dest-space, optionally rounding inward
IntRect& scale(int srcWidth, int srcHeight, int dstWidth, int dstHeight,
bool roundIn = false) {
x0 = (x0 * dstWidth + (roundIn ? srcWidth - 1 : 0)) / srcWidth;
y0 = (y0 * dstHeight + (roundIn ? srcHeight - 1 : 0)) / srcHeight;
x1 = (x1 * dstWidth) / srcWidth;
y1 = (y1 * dstHeight) / srcHeight;
return *this;
}
// Flip the rect's Y coords around inflection point at Y=offset
void invert_y(int offset) {
y0 = offset - y0;
y1 = offset - y1;
swap(y0, y1);
}
IntRect& offset(const IntPoint& o) {
x0 += o.x;
y0 += o.y;
x1 += o.x;
y1 += o.y;
return *this;
}
IntRect operator+(const IntPoint& o) const {
return IntRect(*this).offset(o);
}
IntRect operator-(const IntPoint& o) const {
return IntRect(*this).offset(-o);
}
};
typedef vec2_scalar Point2D;
typedef vec4_scalar Point3D;
struct IntRange {
int start;
int end;
int len() const { return end - start; }
IntRange intersect(IntRange r) const {
return {max(start, r.start), min(end, r.end)};
}
};
struct FloatRange {
float start;
float end;
float clip(float x) const { return clamp(x, start, end); }
FloatRange clip(FloatRange r) const { return {clip(r.start), clip(r.end)}; }
FloatRange merge(FloatRange r) const {
return {min(start, r.start), max(end, r.end)};
}
IntRange round() const {
return {int(floor(start + 0.5f)), int(floor(end + 0.5f))};
}
IntRange round_out() const { return {int(floor(start)), int(ceil(end))}; }
};
template <typename P>
static inline FloatRange x_range(P p0, P p1) {
return {min(p0.x, p1.x), max(p0.x, p1.x)};
}
struct VertexAttrib {
size_t size = 0; // in bytes
GLenum type = 0;
bool normalized = false;
GLsizei stride = 0;
GLuint offset = 0;
bool enabled = false;
GLuint divisor = 0;
int vertex_array = 0;
int vertex_buffer = 0;
char* buf = nullptr; // XXX: this can easily dangle
size_t buf_size = 0; // this will let us bounds check
// Mark the buffer as invalid so we don't accidentally use stale data.
void disable() {
enabled = false;
buf = nullptr;
buf_size = 0;
}
};
static int bytes_for_internal_format(GLenum internal_format) {
switch (internal_format) {
case GL_RGBA32F:
return 4 * 4;
case GL_RGBA32I:
return 4 * 4;
case GL_RGBA8:
case GL_BGRA8:
case GL_RGBA:
return 4;
case GL_R8:
case GL_RED:
return 1;
case GL_RG8:
case GL_RG:
return 2;
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT24:
case GL_DEPTH_COMPONENT32:
return 4;
case GL_RGB_RAW_422_APPLE:
return 2;
case GL_R16:
return 2;
case GL_RG16:
return 4;
default:
debugf("internal format: %x\n", internal_format);
assert(0);
return 0;
}
}
static inline int aligned_stride(int row_bytes) { return (row_bytes + 3) & ~3; }
static TextureFormat gl_format_to_texture_format(int type) {
switch (type) {
case GL_RGBA32F:
return TextureFormat::RGBA32F;
case GL_RGBA32I:
return TextureFormat::RGBA32I;
case GL_RGBA8:
return TextureFormat::RGBA8;
case GL_R8:
return TextureFormat::R8;
case GL_RG8:
return TextureFormat::RG8;
case GL_R16:
return TextureFormat::R16;
case GL_RG16:
return TextureFormat::RG16;
case GL_RGB_RAW_422_APPLE:
return TextureFormat::YUV422;
default:
assert(0);
return TextureFormat::RGBA8;
}
}
struct Query {
uint64_t value = 0;
};
struct Buffer {
char* buf = nullptr;
size_t size = 0;
size_t capacity = 0;
// Returns true if re-allocation succeeded, false otherwise...
bool allocate(size_t new_size) {
// If the size remains unchanged, don't allocate anything.
if (new_size == size) {
return true;
}
// If the new size is within the existing capacity of the buffer, just
// reuse the existing buffer.
if (new_size <= capacity) {
size = new_size;
return true;
}
// Otherwise we need to reallocate the buffer to hold up to the requested
// larger size.
char* new_buf = (char*)realloc(buf, new_size);
assert(new_buf);
if (!new_buf) {
// If we fail, null out the buffer rather than leave around the old
// allocation state.
cleanup();
return false;
}
// The reallocation succeeded, so install the buffer.
buf = new_buf;
size = new_size;
capacity = new_size;
return true;
}
void cleanup() {
if (buf) {
free(buf);
buf = nullptr;
size = 0;
capacity = 0;
}
}
~Buffer() { cleanup(); }
};
struct Framebuffer {
GLuint color_attachment = 0;
GLuint depth_attachment = 0;
};
struct Renderbuffer {
GLuint texture = 0;
void on_erase();
};
TextureFilter gl_filter_to_texture_filter(int type) {
switch (type) {
case GL_NEAREST:
return TextureFilter::NEAREST;
case GL_NEAREST_MIPMAP_LINEAR:
return TextureFilter::NEAREST;
case GL_NEAREST_MIPMAP_NEAREST:
return TextureFilter::NEAREST;
case GL_LINEAR:
return TextureFilter::LINEAR;
case GL_LINEAR_MIPMAP_LINEAR:
return TextureFilter::LINEAR;
case GL_LINEAR_MIPMAP_NEAREST:
return TextureFilter::LINEAR;
default:
assert(0);
return TextureFilter::NEAREST;
}
}
struct Texture {
GLenum internal_format = 0;
int width = 0;
int height = 0;
char* buf = nullptr;
size_t buf_size = 0;
uint32_t buf_stride = 0;
uint8_t buf_bpp = 0;
GLenum min_filter = GL_NEAREST;
GLenum mag_filter = GL_LINEAR;
// The number of active locks on this texture. If this texture has any active
// locks, we need to disallow modifying or destroying the texture as it may
// be accessed by other threads where modifications could lead to races.
int32_t locked = 0;
// When used as an attachment of a framebuffer, rendering to the texture
// behaves as if it is located at the given offset such that the offset is
// subtracted from all transformed vertexes after the viewport is applied.
IntPoint offset;
enum FLAGS {
// If the buffer is internally-allocated by SWGL
SHOULD_FREE = 1 << 1,
// If the buffer has been cleared to initialize it. Currently this is only
// utilized by depth buffers which need to know when depth runs have reset
// to a valid row state. When unset, the depth runs may contain garbage.
CLEARED = 1 << 2,
};
int flags = SHOULD_FREE;
bool should_free() const { return bool(flags & SHOULD_FREE); }
bool cleared() const { return bool(flags & CLEARED); }
void set_flag(int flag, bool val) {
if (val) {
flags |= flag;
} else {
flags &= ~flag;
}
}
void set_should_free(bool val) {
// buf must be null before SHOULD_FREE can be safely toggled. Otherwise, we
// might accidentally mistakenly realloc an externally allocated buffer as
// if it were an internally allocated one.
assert(!buf);
set_flag(SHOULD_FREE, val);
}
void set_cleared(bool val) { set_flag(CLEARED, val); }
// Delayed-clearing state. When a clear of an FB is requested, we don't
// immediately clear each row, as the rows may be subsequently overwritten
// by draw calls, allowing us to skip the work of clearing the affected rows
// either fully or partially. Instead, we keep a bit vector of rows that need
// to be cleared later and save the value they need to be cleared with so
// that we can clear these rows individually when they are touched by draws.
// This currently only works for 2D textures, but not on texture arrays.
int delay_clear = 0;
uint32_t clear_val = 0;
uint32_t* cleared_rows = nullptr;
void init_depth_runs(uint32_t z);
void fill_depth_runs(uint32_t z, const IntRect& scissor);
void enable_delayed_clear(uint32_t val) {
delay_clear = height;
clear_val = val;
if (!cleared_rows) {
cleared_rows = new uint32_t[(height + 31) / 32];
}
memset(cleared_rows, 0, ((height + 31) / 32) * sizeof(uint32_t));
if (height & 31) {
cleared_rows[height / 32] = ~0U << (height & 31);
}
}
void disable_delayed_clear() {
if (cleared_rows) {
delete[] cleared_rows;
cleared_rows = nullptr;
delay_clear = 0;
}
}
int bpp() const { return buf_bpp; }
int compute_bpp() const { return bytes_for_internal_format(internal_format); }
size_t stride() const { return buf_stride; }
size_t compute_stride(int bpp, int width) const {
return aligned_stride(bpp * width);
}
// Set an external backing buffer of this texture.
void set_buffer(void* new_buf, size_t new_stride) {
assert(!should_free());
// Ensure that the supplied stride is at least as big as the row data and
// is aligned to the smaller of either the BPP or word-size. We need to at
// least be able to sample data from within a row and sample whole pixels
// of smaller formats without risking unaligned access.
int new_bpp = compute_bpp();
assert(new_stride >= size_t(new_bpp * width) &&
new_stride % min(new_bpp, sizeof(uint32_t)) == 0);
buf = (char*)new_buf;
buf_size = 0;
buf_bpp = new_bpp;
buf_stride = new_stride;
}
// Returns true if re-allocation succeeded, false otherwise...
bool allocate(bool force = false, int min_width = 0, int min_height = 0) {
assert(!locked); // Locked textures shouldn't be reallocated
// If we get here, some GL API call that invalidates the texture was used.
// Mark the buffer as not-cleared to signal this.
set_cleared(false);
// Check if there is either no buffer currently or if we forced validation
// of the buffer size because some dimension might have changed.
if ((!buf || force) && should_free()) {
// Compute the buffer's BPP and stride, since they may have changed.
int new_bpp = compute_bpp();
size_t new_stride = compute_stride(new_bpp, width);
// Compute new size based on the maximum potential stride, rather than
// the current stride, to hopefully avoid reallocations when size would
// otherwise change too much...
size_t max_stride = compute_stride(new_bpp, max(width, min_width));
size_t size = max_stride * max(height, min_height);
if ((!buf && size > 0) || size > buf_size) {
// Allocate with a SIMD register-sized tail of padding at the end so we
// can safely read or write past the end of the texture with SIMD ops.
// Currently only the flat Z-buffer texture needs this padding due to
// full-register loads and stores in check_depth and discard_depth. In
// case some code in the future accidentally uses a linear filter on a
// texture with less than 2 pixels per row, we also add this padding
// just to be safe. All other texture types and use-cases should be
// safe to omit padding.
size_t padding =
internal_format == GL_DEPTH_COMPONENT24 || max(width, min_width) < 2
? sizeof(Float)
: 0;
char* new_buf = (char*)realloc(buf, size + padding);
assert(new_buf);
if (!new_buf) {
// Allocation failed, so ensure we don't leave stale buffer state.
cleanup();
return false;
}
// Successfully reallocated the buffer, so go ahead and set it.
buf = new_buf;
buf_size = size;
}
// Set the BPP and stride in case they changed.
buf_bpp = new_bpp;
buf_stride = new_stride;
}
// Allocation succeeded or nothing changed...
return true;
}
void cleanup() {
assert(!locked); // Locked textures shouldn't be destroyed
if (buf) {
// If we need to toggle SHOULD_FREE state, ensure that buf is nulled out,
// regardless of whether we internally allocated it. This will prevent us
// from wrongly treating buf as having been internally allocated for when
// we go to realloc if it actually was externally allocted.
if (should_free()) {
free(buf);
}
buf = nullptr;
buf_size = 0;
buf_bpp = 0;
buf_stride = 0;
}
disable_delayed_clear();
}
~Texture() { cleanup(); }
IntRect bounds() const { return IntRect{0, 0, width, height}; }
IntRect offset_bounds() const { return bounds() + offset; }
// Find the valid sampling bounds relative to the requested region
IntRect sample_bounds(const IntRect& req, bool invertY = false) const {
IntRect bb = bounds().intersect(req) - req.origin();
if (invertY) bb.invert_y(req.height());
return bb;
}
// Get a pointer for sampling at the given offset
char* sample_ptr(int x, int y) const {
return buf + y * stride() + x * bpp();
}
// Get a pointer for sampling the requested region and limit to the provided
// sampling bounds
char* sample_ptr(const IntRect& req, const IntRect& bounds,
bool invertY = false) const {
// Offset the sample pointer by the clamped bounds
int x = req.x0 + bounds.x0;
// Invert the Y offset if necessary
int y = invertY ? req.y1 - 1 - bounds.y0 : req.y0 + bounds.y0;
return sample_ptr(x, y);
}
};
// The last vertex attribute is reserved as a null attribute in case a vertex
// attribute is used without being set.
#define MAX_ATTRIBS 17
#define NULL_ATTRIB 16
struct VertexArray {
VertexAttrib attribs[MAX_ATTRIBS];
int max_attrib = -1;
// The GL spec defines element array buffer binding to be part of VAO state.
GLuint element_array_buffer_binding = 0;
void validate();
};
struct Shader {
GLenum type = 0;
ProgramLoader loader = nullptr;
};
struct Program {
ProgramImpl* impl = nullptr;
VertexShaderImpl* vert_impl = nullptr;
FragmentShaderImpl* frag_impl = nullptr;
bool deleted = false;
~Program() { delete impl; }
};
// clang-format off
// Fully-expand GL defines while ignoring more than 4 suffixes
#define CONCAT_KEY(prefix, x, y, z, w, ...) prefix##x##y##z##w
// Generate a blend key enum symbol
#define BLEND_KEY(...) CONCAT_KEY(BLEND_, __VA_ARGS__, 0, 0, 0)
#define MASK_BLEND_KEY(...) CONCAT_KEY(MASK_BLEND_, __VA_ARGS__, 0, 0, 0)
#define AA_BLEND_KEY(...) CONCAT_KEY(AA_BLEND_, __VA_ARGS__, 0, 0, 0)
#define AA_MASK_BLEND_KEY(...) CONCAT_KEY(AA_MASK_BLEND_, __VA_ARGS__, 0, 0, 0)
// Utility macro to easily generate similar code for all implemented blend modes
#define FOR_EACH_BLEND_KEY(macro) \
macro(GL_ONE, GL_ZERO, 0, 0) \
macro(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA) \
macro(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, 0, 0) \
macro(GL_ZERO, GL_ONE_MINUS_SRC_COLOR, 0, 0) \
macro(GL_ZERO, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE) \
macro(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA, 0, 0) \
macro(GL_ZERO, GL_SRC_COLOR, 0, 0) \
macro(GL_ONE, GL_ONE, 0, 0) \
macro(GL_ONE, GL_ONE, GL_ONE, GL_ONE_MINUS_SRC_ALPHA) \
macro(GL_ONE_MINUS_DST_ALPHA, GL_ONE, GL_ZERO, GL_ONE) \
macro(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, 0, 0) \
macro(GL_ONE, GL_ONE_MINUS_SRC1_COLOR, 0, 0) \
macro(GL_MIN, 0, 0, 0) \
macro(GL_MAX, 0, 0, 0) \
macro(GL_MULTIPLY_KHR, 0, 0, 0) \
macro(GL_SCREEN_KHR, 0, 0, 0) \
macro(GL_OVERLAY_KHR, 0, 0, 0) \
macro(GL_DARKEN_KHR, 0, 0, 0) \
macro(GL_LIGHTEN_KHR, 0, 0, 0) \
macro(GL_COLORDODGE_KHR, 0, 0, 0) \
macro(GL_COLORBURN_KHR, 0, 0, 0) \
macro(GL_HARDLIGHT_KHR, 0, 0, 0) \
macro(GL_SOFTLIGHT_KHR, 0, 0, 0) \
macro(GL_DIFFERENCE_KHR, 0, 0, 0) \
macro(GL_EXCLUSION_KHR, 0, 0, 0) \
macro(GL_HSL_HUE_KHR, 0, 0, 0) \
macro(GL_HSL_SATURATION_KHR, 0, 0, 0) \
macro(GL_HSL_COLOR_KHR, 0, 0, 0) \
macro(GL_HSL_LUMINOSITY_KHR, 0, 0, 0) \
macro(SWGL_BLEND_DROP_SHADOW, 0, 0, 0) \
macro(SWGL_BLEND_SUBPIXEL_TEXT, 0, 0, 0)
#define DEFINE_BLEND_KEY(...) BLEND_KEY(__VA_ARGS__),
#define DEFINE_MASK_BLEND_KEY(...) MASK_BLEND_KEY(__VA_ARGS__),
#define DEFINE_AA_BLEND_KEY(...) AA_BLEND_KEY(__VA_ARGS__),
#define DEFINE_AA_MASK_BLEND_KEY(...) AA_MASK_BLEND_KEY(__VA_ARGS__),
enum BlendKey : uint8_t {
FOR_EACH_BLEND_KEY(DEFINE_BLEND_KEY)
FOR_EACH_BLEND_KEY(DEFINE_MASK_BLEND_KEY)
FOR_EACH_BLEND_KEY(DEFINE_AA_BLEND_KEY)
FOR_EACH_BLEND_KEY(DEFINE_AA_MASK_BLEND_KEY)
BLEND_KEY_NONE = BLEND_KEY(GL_ONE, GL_ZERO),
MASK_BLEND_KEY_NONE = MASK_BLEND_KEY(GL_ONE, GL_ZERO),
AA_BLEND_KEY_NONE = AA_BLEND_KEY(GL_ONE, GL_ZERO),
AA_MASK_BLEND_KEY_NONE = AA_MASK_BLEND_KEY(GL_ONE, GL_ZERO),
};
// clang-format on
const size_t MAX_TEXTURE_UNITS = 16;
template <typename T>
static inline bool unlink(T& binding, T n) {
if (binding == n) {
binding = 0;
return true;
}
return false;
}
template <typename O>
struct ObjectStore {
O** objects = nullptr;
size_t size = 0;
// reserve object 0 as null
size_t first_free = 1;
O invalid;
~ObjectStore() {
if (objects) {
for (size_t i = 0; i < size; i++) delete objects[i];
free(objects);
}
}
bool grow(size_t i) {
size_t new_size = size ? size : 8;
while (new_size <= i) new_size += new_size / 2;
O** new_objects = (O**)realloc(objects, new_size * sizeof(O*));
assert(new_objects);
if (!new_objects) return false;
while (size < new_size) new_objects[size++] = nullptr;
objects = new_objects;
return true;
}
void insert(size_t i, const O& o) {
if (i >= size && !grow(i)) return;
if (!objects[i]) objects[i] = new O(o);
}
size_t next_free() {
size_t i = first_free;
while (i < size && objects[i]) i++;
first_free = i;
return i;
}
size_t insert(const O& o = O()) {
size_t i = next_free();
insert(i, o);
return i;
}
O& operator[](size_t i) {
insert(i, O());
return i < size ? *objects[i] : invalid;
}
O* find(size_t i) const { return i < size ? objects[i] : nullptr; }
template <typename T>
void on_erase(T*, ...) {}
template <typename T>
void on_erase(T* o, decltype(&T::on_erase)) {
o->on_erase();
}
bool erase(size_t i) {
if (i < size && objects[i]) {
on_erase(objects[i], nullptr);
delete objects[i];
objects[i] = nullptr;
if (i < first_free) first_free = i;
return true;
}
return false;
}
O** begin() const { return objects; }
O** end() const { return &objects[size]; }
};
struct Context {
int32_t references = 1;
ObjectStore<Query> queries;
ObjectStore<Buffer> buffers;
ObjectStore<Texture> textures;
ObjectStore<VertexArray> vertex_arrays;
ObjectStore<Framebuffer> framebuffers;
ObjectStore<Renderbuffer> renderbuffers;
ObjectStore<Shader> shaders;
ObjectStore<Program> programs;
GLenum last_error = GL_NO_ERROR;
IntRect viewport = {0, 0, 0, 0};
bool blend = false;
GLenum blendfunc_srgb = GL_ONE;
GLenum blendfunc_drgb = GL_ZERO;
GLenum blendfunc_sa = GL_ONE;
GLenum blendfunc_da = GL_ZERO;
GLenum blend_equation = GL_FUNC_ADD;
V8<uint16_t> blendcolor = 0;
BlendKey blend_key = BLEND_KEY_NONE;
bool depthtest = false;
bool depthmask = true;
GLenum depthfunc = GL_LESS;
bool scissortest = false;
IntRect scissor = {0, 0, 0, 0};
GLfloat clearcolor[4] = {0, 0, 0, 0};
GLdouble cleardepth = 1;
int unpack_row_length = 0;
int shaded_rows = 0;
int shaded_pixels = 0;
struct TextureUnit {
GLuint texture_2d_binding = 0;
GLuint texture_rectangle_binding = 0;
void unlink(GLuint n) {
::unlink(texture_2d_binding, n);
::unlink(texture_rectangle_binding, n);
}
};
TextureUnit texture_units[MAX_TEXTURE_UNITS];
int active_texture_unit = 0;
GLuint current_program = 0;
GLuint current_vertex_array = 0;
bool validate_vertex_array = true;
GLuint pixel_pack_buffer_binding = 0;
GLuint pixel_unpack_buffer_binding = 0;
GLuint array_buffer_binding = 0;
GLuint time_elapsed_query = 0;
GLuint samples_passed_query = 0;
GLuint renderbuffer_binding = 0;
GLuint draw_framebuffer_binding = 0;
GLuint read_framebuffer_binding = 0;
GLuint unknown_binding = 0;
GLuint& get_binding(GLenum name) {
switch (name) {
case GL_PIXEL_PACK_BUFFER:
return pixel_pack_buffer_binding;
case GL_PIXEL_UNPACK_BUFFER:
return pixel_unpack_buffer_binding;
case GL_ARRAY_BUFFER:
return array_buffer_binding;
case GL_ELEMENT_ARRAY_BUFFER:
return vertex_arrays[current_vertex_array].element_array_buffer_binding;
case GL_TEXTURE_2D:
return texture_units[active_texture_unit].texture_2d_binding;
case GL_TEXTURE_RECTANGLE:
return texture_units[active_texture_unit].texture_rectangle_binding;
case GL_TIME_ELAPSED:
return time_elapsed_query;
case GL_SAMPLES_PASSED:
return samples_passed_query;
case GL_RENDERBUFFER:
return renderbuffer_binding;
case GL_DRAW_FRAMEBUFFER:
return draw_framebuffer_binding;
case GL_READ_FRAMEBUFFER:
return read_framebuffer_binding;
default:
debugf("unknown binding %x\n", name);
assert(false);
return unknown_binding;
}
}
Texture& get_texture(sampler2D, int unit) {
return textures[texture_units[unit].texture_2d_binding];
}
Texture& get_texture(isampler2D, int unit) {
return textures[texture_units[unit].texture_2d_binding];
}
Texture& get_texture(sampler2DRect, int unit) {
return textures[texture_units[unit].texture_rectangle_binding];
}
IntRect apply_scissor(IntRect bb,
const IntPoint& origin = IntPoint(0, 0)) const {
return scissortest ? bb.intersect(scissor - origin) : bb;
}
IntRect apply_scissor(const Texture& t) const {
return apply_scissor(t.bounds(), t.offset);
}
};
static Context* ctx = nullptr;
static VertexShaderImpl* vertex_shader = nullptr;
static FragmentShaderImpl* fragment_shader = nullptr;
static BlendKey blend_key = BLEND_KEY_NONE;
static void prepare_texture(Texture& t, const IntRect* skip = nullptr);
template <typename S>
static inline void init_filter(S* s, Texture& t) {
// If the width is not at least 2 pixels, then we can't safely sample the end
// of the row with a linear filter. In that case, just punt to using nearest
// filtering instead.
s->filter = t.width >= 2 ? gl_filter_to_texture_filter(t.mag_filter)
: TextureFilter::NEAREST;
}
template <typename S>
static inline void init_sampler(S* s, Texture& t) {
prepare_texture(t);
s->width = t.width;
s->height = t.height;
s->stride = t.stride();
int bpp = t.bpp();
if (bpp >= 4)
s->stride /= 4;
else if (bpp == 2)
s->stride /= 2;
else
assert(bpp == 1);
// Use uint32_t* for easier sampling, but need to cast to uint8_t* or
// uint16_t* for formats with bpp < 4.
s->buf = (uint32_t*)t.buf;
s->format = gl_format_to_texture_format(t.internal_format);
}
template <typename S>
static inline void null_sampler(S* s) {
// For null texture data, just make the sampler provide a 1x1 buffer that is
// transparent black. Ensure buffer holds at least a SIMD vector of zero data
// for SIMD padding of unaligned loads.
static const uint32_t zeroBuf[sizeof(Float) / sizeof(uint32_t)] = {0};
s->width = 1;
s->height = 1;
s->stride = s->width;
s->buf = (uint32_t*)zeroBuf;
s->format = TextureFormat::RGBA8;
}
template <typename S>
static inline void null_filter(S* s) {
s->filter = TextureFilter::NEAREST;
}
template <typename S>
S* lookup_sampler(S* s, int texture) {
Texture& t = ctx->get_texture(s, texture);
if (!t.buf) {
null_sampler(s);
null_filter(s);
} else {
init_sampler(s, t);
init_filter(s, t);
}
return s;
}
template <typename S>
S* lookup_isampler(S* s, int texture) {
Texture& t = ctx->get_texture(s, texture);
if (!t.buf) {
null_sampler(s);
} else {
init_sampler(s, t);
}
return s;
}
int bytes_per_type(GLenum type) {
switch (type) {
case GL_INT:
return 4;
case GL_FLOAT:
return 4;
case GL_UNSIGNED_SHORT:
return 2;
case GL_UNSIGNED_BYTE:
return 1;
default:
assert(0);
return 0;
}
}
template <typename S, typename C>
static inline S expand_attrib(const char* buf, size_t size, bool normalized) {
typedef typename ElementType<S>::ty elem_type;
S scalar = {0};
const C* src = reinterpret_cast<const C*>(buf);
if (normalized) {
const float scale = 1.0f / ((1 << (8 * sizeof(C))) - 1);
for (size_t i = 0; i < size / sizeof(C); i++) {
put_nth_component(scalar, i, elem_type(src[i]) * scale);
}
} else {
for (size_t i = 0; i < size / sizeof(C); i++) {
put_nth_component(scalar, i, elem_type(src[i]));
}
}
return scalar;
}
template <typename S>
static inline S load_attrib_scalar(VertexAttrib& va, const char* src) {
if (sizeof(S) <= va.size) {
return *reinterpret_cast<const S*>(src);
}
if (va.type == GL_UNSIGNED_SHORT) {
return expand_attrib<S, uint16_t>(src, va.size, va.normalized);
}
if (va.type == GL_UNSIGNED_BYTE) {
return expand_attrib<S, uint8_t>(src, va.size, va.normalized);
}
assert(sizeof(typename ElementType<S>::ty) == bytes_per_type(va.type));
S scalar = {0};
memcpy(&scalar, src, va.size);
return scalar;
}
template <typename T>
void load_attrib(T& attrib, VertexAttrib& va, uint32_t start, int instance,
int count) {
typedef decltype(force_scalar(attrib)) scalar_type;
// If no buffer is available, just use a zero default.
if (!va.buf_size) {
attrib = T(scalar_type{0});
} else if (va.divisor != 0) {
char* src = (char*)va.buf + va.stride * instance + va.offset;
assert(src + va.size <= va.buf + va.buf_size);
attrib = T(load_attrib_scalar<scalar_type>(va, src));
} else {
// Specialized for WR's primitive vertex order/winding.
if (!count) return;
assert(count >= 2 && count <= 4);
char* src = (char*)va.buf + va.stride * start + va.offset;
switch (count) {
case 2: {
// Lines must be indexed at offsets 0, 1.
// Line vertexes fill vertex shader SIMD lanes as 0, 1, 1, 0.
scalar_type lanes[2] = {
load_attrib_scalar<scalar_type>(va, src),
load_attrib_scalar<scalar_type>(va, src + va.stride)};
attrib = (T){lanes[0], lanes[1], lanes[1], lanes[0]};
break;
}
case 3: {
// Triangles must be indexed at offsets 0, 1, 2.
// Triangle vertexes fill vertex shader SIMD lanes as 0, 1, 2, 2.
scalar_type lanes[3] = {
load_attrib_scalar<scalar_type>(va, src),
load_attrib_scalar<scalar_type>(va, src + va.stride),
load_attrib_scalar<scalar_type>(va, src + va.stride * 2)};
attrib = (T){lanes[0], lanes[1], lanes[2], lanes[2]};
break;
}
default:
// Quads must be successive triangles indexed at offsets 0, 1, 2, 2,
// 1, 3. Quad vertexes fill vertex shader SIMD lanes as 0, 1, 3, 2, so
// that the points form a convex path that can be traversed by the
// rasterizer.
attrib = (T){load_attrib_scalar<scalar_type>(va, src),
load_attrib_scalar<scalar_type>(va, src + va.stride),
load_attrib_scalar<scalar_type>(va, src + va.stride * 3),
load_attrib_scalar<scalar_type>(va, src + va.stride * 2)};
break;
}
}
}
template <typename T>
void load_flat_attrib(T& attrib, VertexAttrib& va, uint32_t start, int instance,
int count) {
typedef decltype(force_scalar(attrib)) scalar_type;
// If no buffer is available, just use a zero default.
if (!va.buf_size) {
attrib = T{0};
return;
}
char* src = nullptr;
if (va.divisor != 0) {
src = (char*)va.buf + va.stride * instance + va.offset;
} else {
if (!count) return;
src = (char*)va.buf + va.stride * start + va.offset;
}
assert(src + va.size <= va.buf + va.buf_size);
attrib = T(load_attrib_scalar<scalar_type>(va, src));
}
void setup_program(GLuint program) {
if (!program) {
vertex_shader = nullptr;
fragment_shader = nullptr;
return;
}
Program& p = ctx->programs[program];
assert(p.impl);
assert(p.vert_impl);
assert(p.frag_impl);
vertex_shader = p.vert_impl;
fragment_shader = p.frag_impl;
}
extern ProgramLoader load_shader(const char* name);
extern "C" {
void UseProgram(GLuint program) {
if (ctx->current_program && program != ctx->current_program) {
auto* p = ctx->programs.find(ctx->current_program);
if (p && p->deleted) {
ctx->programs.erase(ctx->current_program);
}
}
ctx->current_program = program;
setup_program(program);
}
void SetViewport(GLint x, GLint y, GLsizei width, GLsizei height) {
ctx->viewport = IntRect{x, y, x + width, y + height};
}
void Enable(GLenum cap) {
switch (cap) {
case GL_BLEND:
ctx->blend = true;
break;
case GL_DEPTH_TEST:
ctx->depthtest = true;
break;
case GL_SCISSOR_TEST:
ctx->scissortest = true;
break;
}
}
void Disable(GLenum cap) {
switch (cap) {
case GL_BLEND:
ctx->blend = false;
break;
case GL_DEPTH_TEST:
ctx->depthtest = false;
break;
case GL_SCISSOR_TEST:
ctx->scissortest = false;
break;
}
}
// Report the last error generated and clear the error status.
GLenum GetError() {
GLenum error = ctx->last_error;
ctx->last_error = GL_NO_ERROR;
return error;
}
// Sets the error status to out-of-memory to indicate that a buffer
// or texture re-allocation failed.
static void out_of_memory() { ctx->last_error = GL_OUT_OF_MEMORY; }
static const char* const extensions[] = {
"GL_ARB_blend_func_extended",
"GL_ARB_clear_texture",
"GL_ARB_copy_image",
"GL_ARB_draw_instanced",
"GL_ARB_explicit_attrib_location",
"GL_ARB_instanced_arrays",
"GL_ARB_invalidate_subdata",
"GL_ARB_texture_storage",
"GL_EXT_timer_query",
"GL_KHR_blend_equation_advanced",
"GL_KHR_blend_equation_advanced_coherent",
"GL_APPLE_rgb_422",
};
void GetIntegerv(GLenum pname, GLint* params) {
assert(params);
switch (pname) {
case GL_MAX_TEXTURE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
params[0] = MAX_TEXTURE_UNITS;
break;
case GL_MAX_TEXTURE_SIZE:
params[0] = 1 << 15;
break;
case GL_MAX_ARRAY_TEXTURE_LAYERS:
params[0] = 0;
break;
case GL_READ_FRAMEBUFFER_BINDING:
params[0] = ctx->read_framebuffer_binding;
break;
case GL_DRAW_FRAMEBUFFER_BINDING:
params[0] = ctx->draw_framebuffer_binding;
break;
case GL_PIXEL_PACK_BUFFER_BINDING:
params[0] = ctx->pixel_pack_buffer_binding;
break;
case GL_PIXEL_UNPACK_BUFFER_BINDING:
params[0] = ctx->pixel_unpack_buffer_binding;
break;
case GL_NUM_EXTENSIONS:
params[0] = sizeof(extensions) / sizeof(extensions[0]);
break;
case GL_MAJOR_VERSION:
params[0] = 3;
break;
case GL_MINOR_VERSION:
params[0] = 2;
break;
case GL_MIN_PROGRAM_TEXEL_OFFSET:
params[0] = 0;
break;
case GL_MAX_PROGRAM_TEXEL_OFFSET:
params[0] = MAX_TEXEL_OFFSET;
break;
default:
debugf("unhandled glGetIntegerv parameter %x\n", pname);
assert(false);
}
}
void GetBooleanv(GLenum pname, GLboolean* params) {
assert(params);
switch (pname) {
case GL_DEPTH_WRITEMASK:
params[0] = ctx->depthmask;
break;
default:
debugf("unhandled glGetBooleanv parameter %x\n", pname);
assert(false);
}
}
const char* GetString(GLenum name) {
switch (name) {
case GL_VENDOR:
return "Mozilla Gfx";
case GL_RENDERER:
return "Software WebRender";
case GL_VERSION:
return "3.2";
case GL_SHADING_LANGUAGE_VERSION:
return "1.50";
default:
debugf("unhandled glGetString parameter %x\n", name);
assert(false);
return nullptr;
}
}
const char* GetStringi(GLenum name, GLuint index) {
switch (name) {
case GL_EXTENSIONS:
if (index >= sizeof(extensions) / sizeof(extensions[0])) {
return nullptr;
}
return extensions[index];
default:
debugf("unhandled glGetStringi parameter %x\n", name);
assert(false);
return nullptr;
}
}
GLenum remap_blendfunc(GLenum rgb, GLenum a) {
switch (a) {
case GL_SRC_ALPHA:
if (rgb == GL_SRC_COLOR) a = GL_SRC_COLOR;
break;
case GL_ONE_MINUS_SRC_ALPHA:
if (rgb == GL_ONE_MINUS_SRC_COLOR) a = GL_ONE_MINUS_SRC_COLOR;
break;
case GL_DST_ALPHA:
if (rgb == GL_DST_COLOR) a = GL_DST_COLOR;
break;
case GL_ONE_MINUS_DST_ALPHA:
if (rgb == GL_ONE_MINUS_DST_COLOR) a = GL_ONE_MINUS_DST_COLOR;
break;
case GL_CONSTANT_ALPHA:
if (rgb == GL_CONSTANT_COLOR) a = GL_CONSTANT_COLOR;
break;
case GL_ONE_MINUS_CONSTANT_ALPHA:
if (rgb == GL_ONE_MINUS_CONSTANT_COLOR) a = GL_ONE_MINUS_CONSTANT_COLOR;
break;
case GL_SRC_COLOR:
if (rgb == GL_SRC_ALPHA) a = GL_SRC_ALPHA;
break;
case GL_ONE_MINUS_SRC_COLOR:
if (rgb == GL_ONE_MINUS_SRC_ALPHA) a = GL_ONE_MINUS_SRC_ALPHA;
break;
case GL_DST_COLOR:
if (rgb == GL_DST_ALPHA) a = GL_DST_ALPHA;
break;
case GL_ONE_MINUS_DST_COLOR:
if (rgb == GL_ONE_MINUS_DST_ALPHA) a = GL_ONE_MINUS_DST_ALPHA;
break;
case GL_CONSTANT_COLOR:
if (rgb == GL_CONSTANT_ALPHA) a = GL_CONSTANT_ALPHA;
break;
case GL_ONE_MINUS_CONSTANT_COLOR:
if (rgb == GL_ONE_MINUS_CONSTANT_ALPHA) a = GL_ONE_MINUS_CONSTANT_ALPHA;
break;
case GL_SRC1_ALPHA:
if (rgb == GL_SRC1_COLOR) a = GL_SRC1_COLOR;
break;
case GL_ONE_MINUS_SRC1_ALPHA:
if (rgb == GL_ONE_MINUS_SRC1_COLOR) a = GL_ONE_MINUS_SRC1_COLOR;
break;
case GL_SRC1_COLOR:
if (rgb == GL_SRC1_ALPHA) a = GL_SRC1_ALPHA;
break;
case GL_ONE_MINUS_SRC1_COLOR:
if (rgb == GL_ONE_MINUS_SRC1_ALPHA) a = GL_ONE_MINUS_SRC1_ALPHA;
break;
}
return a;
}
// Generate a hashed blend key based on blend func and equation state. This
// allows all the blend state to be processed down to a blend key that can be
// dealt with inside a single switch statement.
static void hash_blend_key() {
GLenum srgb = ctx->blendfunc_srgb;
GLenum drgb = ctx->blendfunc_drgb;
GLenum sa = ctx->blendfunc_sa;
GLenum da = ctx->blendfunc_da;
GLenum equation = ctx->blend_equation;
#define HASH_BLEND_KEY(x, y, z, w) ((x << 4) | (y) | (z << 24) | (w << 20))
// Basic non-separate blend funcs used the two argument form
int hash = HASH_BLEND_KEY(srgb, drgb, 0, 0);
// Separate alpha blend funcs use the 4 argument hash
if (srgb != sa || drgb != da) hash |= HASH_BLEND_KEY(0, 0, sa, da);
// Any other blend equation than the default func_add ignores the func and
// instead generates a one-argument hash based on the equation
if (equation != GL_FUNC_ADD) hash = HASH_BLEND_KEY(equation, 0, 0, 0);
switch (hash) {
#define MAP_BLEND_KEY(...) \
case HASH_BLEND_KEY(__VA_ARGS__): \
ctx->blend_key = BLEND_KEY(__VA_ARGS__); \
break;
FOR_EACH_BLEND_KEY(MAP_BLEND_KEY)
default:
debugf("blendfunc: %x, %x, separate: %x, %x, equation: %x\n", srgb, drgb,
sa, da, equation);
assert(false);
break;
}
}
void BlendFunc(GLenum srgb, GLenum drgb, GLenum sa, GLenum da) {
ctx->blendfunc_srgb = srgb;
ctx->blendfunc_drgb = drgb;
sa = remap_blendfunc(srgb, sa);
da = remap_blendfunc(drgb, da);
ctx->blendfunc_sa = sa;
ctx->blendfunc_da = da;
hash_blend_key();
}
void BlendColor(GLfloat r, GLfloat g, GLfloat b, GLfloat a) {
I32 c = round_pixel((Float){b, g, r, a});
ctx->blendcolor = CONVERT(c, U16).xyzwxyzw;
}
void BlendEquation(GLenum mode) {
assert(mode == GL_FUNC_ADD || mode == GL_MIN || mode == GL_MAX ||
(mode >= GL_MULTIPLY_KHR && mode <= GL_HSL_LUMINOSITY_KHR));
if (mode != ctx->blend_equation) {
ctx->blend_equation = mode;
hash_blend_key();
}
}
void DepthMask(GLboolean flag) { ctx->depthmask = flag; }
void DepthFunc(GLenum func) {
switch (func) {
case GL_LESS:
case GL_LEQUAL:
break;
default:
assert(false);
}
ctx->depthfunc = func;
}
void SetScissor(GLint x, GLint y, GLsizei width, GLsizei height) {
ctx->scissor = IntRect{x, y, x + width, y + height};
}
void ClearColor(GLfloat r, GLfloat g, GLfloat b, GLfloat a) {
ctx->clearcolor[0] = r;
ctx->clearcolor[1] = g;
ctx->clearcolor[2] = b;
ctx->clearcolor[3] = a;
}
void ClearDepth(GLdouble depth) { ctx->cleardepth = depth; }
void ActiveTexture(GLenum texture) {
assert(texture >= GL_TEXTURE0);
assert(texture < GL_TEXTURE0 + MAX_TEXTURE_UNITS);
ctx->active_texture_unit =
clamp(int(texture - GL_TEXTURE0), 0, int(MAX_TEXTURE_UNITS - 1));
}
void GenQueries(GLsizei n, GLuint* result) {
for (int i = 0; i < n; i++) {
Query q;
result[i] = ctx->queries.insert(q);
}
}
void DeleteQuery(GLuint n) {
if (n && ctx->queries.erase(n)) {
unlink(ctx->time_elapsed_query, n);
unlink(ctx->samples_passed_query, n);
}
}
void GenBuffers(int n, GLuint* result) {
for (int i = 0; i < n; i++) {
Buffer b;
result[i] = ctx->buffers.insert(b);
}
}
void DeleteBuffer(GLuint n) {
if (n && ctx->buffers.erase(n)) {
unlink(ctx->pixel_pack_buffer_binding, n);
unlink(ctx->pixel_unpack_buffer_binding, n);
unlink(ctx->array_buffer_binding, n);
}
}
void GenVertexArrays(int n, GLuint* result) {
for (int i = 0; i < n; i++) {
VertexArray v;
result[i] = ctx->vertex_arrays.insert(v);
}
}
void DeleteVertexArray(GLuint n) {
if (n && ctx->vertex_arrays.erase(n)) {
unlink(ctx->current_vertex_array, n);
}
}
GLuint CreateShader(GLenum type) {
Shader s;
s.type = type;
return ctx->shaders.insert(s);
}
void ShaderSourceByName(GLuint shader, char* name) {
Shader& s = ctx->shaders[shader];
s.loader = load_shader(name);
if (!s.loader) {
debugf("unknown shader %s\n", name);
}
}
void AttachShader(GLuint program, GLuint shader) {
Program& p = ctx->programs[program];
Shader& s = ctx->shaders[shader];
if (s.type == GL_VERTEX_SHADER) {
if (!p.impl && s.loader) p.impl = s.loader();
} else if (s.type == GL_FRAGMENT_SHADER) {
if (!p.impl && s.loader) p.impl = s.loader();
} else {
assert(0);
}
}
void DeleteShader(GLuint n) {
if (n) ctx->shaders.erase(n);
}
GLuint CreateProgram() {
Program p;
return ctx->programs.insert(p);
}
void DeleteProgram(GLuint n) {
if (!n) return;
if (ctx->current_program == n) {
if (auto* p = ctx->programs.find(n)) {
p->deleted = true;
}
} else {
ctx->programs.erase(n);
}
}
void LinkProgram(GLuint program) {
Program& p = ctx->programs[program];
assert(p.impl);
if (!p.impl) {
return;
}
assert(p.impl->interpolants_size() <= sizeof(Interpolants));
if (!p.vert_impl) p.vert_impl = p.impl->get_vertex_shader();
if (!p.frag_impl) p.frag_impl = p.impl->get_fragment_shader();
}
GLint GetLinkStatus(GLuint program) {
if (auto* p = ctx->programs.find(program)) {
return p->impl ? 1 : 0;
}
return 0;
}
void BindAttribLocation(GLuint program, GLuint index, char* name) {
Program& p = ctx->programs[program];
assert(p.impl);
if (!p.impl) {
return;
}
p.impl->bind_attrib(name, index);
}
GLint GetAttribLocation(GLuint program, char* name) {
Program& p = ctx->programs[program];
assert(p.impl);
if (!p.impl) {
return -1;
}
return p.impl->get_attrib(name);
}
GLint GetUniformLocation(GLuint program, char* name) {
Program& p = ctx->programs[program];
assert(p.impl);
if (!p.impl) {
return -1;
}
GLint loc = p.impl->get_uniform(name);
// debugf("location: %d\n", loc);
return loc;
}
static uint64_t get_time_value() {
#ifdef __MACH__
return mach_absolute_time();
#elif defined(_WIN32)
LARGE_INTEGER time;
static bool have_frequency = false;
static LARGE_INTEGER frequency;
if (!have_frequency) {
QueryPerformanceFrequency(&frequency);
have_frequency = true;
}
QueryPerformanceCounter(&time);
return time.QuadPart * 1000000000ULL / frequency.QuadPart;
#else
return ({
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
tp.tv_sec * 1000000000ULL + tp.tv_nsec;
});
#endif
}
void BeginQuery(GLenum target, GLuint id) {
ctx->get_binding(target) = id;
Query& q = ctx->queries[id];
switch (target) {
case GL_SAMPLES_PASSED:
q.value = 0;
break;
case GL_TIME_ELAPSED:
q.value = get_time_value();
break;
default:
debugf("unknown query target %x for query %d\n", target, id);
assert(false);
}
}
void EndQuery(GLenum target) {
Query& q = ctx->queries[ctx->get_binding(target)];
switch (target) {
case GL_SAMPLES_PASSED:
break;
case GL_TIME_ELAPSED:
q.value = get_time_value() - q.value;
break;
default:
debugf("unknown query target %x\n", target);
assert(false);
}
ctx->get_binding(target) = 0;
}
void GetQueryObjectui64v(GLuint id, GLenum pname, GLuint64* params) {
Query& q = ctx->queries[id];
switch (pname) {
case GL_QUERY_RESULT:
assert(params);
params[0] = q.value;
break;
default:
assert(false);
}
}
void BindVertexArray(GLuint vertex_array) {
if (vertex_array != ctx->current_vertex_array) {
ctx->validate_vertex_array = true;
}
ctx->current_vertex_array = vertex_array;
}
void BindTexture(GLenum target, GLuint texture) {
ctx->get_binding(target) = texture;
}
void BindBuffer(GLenum target, GLuint buffer) {
ctx->get_binding(target) = buffer;
}
void BindFramebuffer(GLenum target, GLuint fb) {
if (target == GL_FRAMEBUFFER) {
ctx->read_framebuffer_binding = fb;
ctx->draw_framebuffer_binding = fb;
} else {
assert(target == GL_READ_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER);
ctx->get_binding(target) = fb;
}
}
void BindRenderbuffer(GLenum target, GLuint rb) {
ctx->get_binding(target) = rb;
}
void PixelStorei(GLenum name, GLint param) {
if (name == GL_UNPACK_ALIGNMENT) {
assert(param == 1);
} else if (name == GL_UNPACK_ROW_LENGTH) {
ctx->unpack_row_length = param;
}
}
static GLenum remap_internal_format(GLenum format) {
switch (format) {
case GL_DEPTH_COMPONENT:
return GL_DEPTH_COMPONENT24;
case GL_RGBA:
return GL_RGBA8;
case GL_RED:
return GL_R8;
case GL_RG:
return GL_RG8;
case GL_RGB_422_APPLE:
return GL_RGB_RAW_422_APPLE;
default:
return format;
}
}
} // extern "C"
static bool format_requires_conversion(GLenum external_format,
GLenum internal_format) {
switch (external_format) {
case GL_RGBA:
return internal_format == GL_RGBA8;
default:
return false;
}
}
static inline void copy_bgra8_to_rgba8(uint32_t* dest, const uint32_t* src,
int width) {
for (; width >= 4; width -= 4, dest += 4, src += 4) {
U32 p = unaligned_load<U32>(src);
U32 rb = p & 0x00FF00FF;
unaligned_store(dest, (p & 0xFF00FF00) | (rb << 16) | (rb >> 16));
}
for (; width > 0; width--, dest++, src++) {
uint32_t p = *src;
uint32_t rb = p & 0x00FF00FF;
*dest = (p & 0xFF00FF00) | (rb << 16) | (rb >> 16);
}
}
static void convert_copy(GLenum external_format, GLenum internal_format,
uint8_t* dst_buf, size_t dst_stride,
const uint8_t* src_buf, size_t src_stride,
size_t width, size_t height) {
switch (external_format) {
case GL_RGBA:
if (internal_format == GL_RGBA8) {
for (; height; height--) {
copy_bgra8_to_rgba8((uint32_t*)dst_buf, (const uint32_t*)src_buf,
width);
dst_buf += dst_stride;
src_buf += src_stride;
}
return;
}
break;
default:
break;
}
size_t row_bytes = width * bytes_for_internal_format(internal_format);
for (; height; height--) {
memcpy(dst_buf, src_buf, row_bytes);
dst_buf += dst_stride;
src_buf += src_stride;
}
}
static void set_tex_storage(Texture& t, GLenum external_format, GLsizei width,
GLsizei height, void* buf = nullptr,
GLsizei stride = 0, GLsizei min_width = 0,
GLsizei min_height = 0) {
GLenum internal_format = remap_internal_format(external_format);
bool changed = false;
if (t.width != width || t.height != height ||
t.internal_format != internal_format) {
changed = true;
t.internal_format = internal_format;
t.width = width;
t.height = height;
}
// If we are changed from an internally managed buffer to an externally
// supplied one or vice versa, ensure that we clean up old buffer state.
// However, if we have to convert the data from a non-native format, then
// always treat it as internally managed since we will need to copy to an
// internally managed native format buffer.
bool should_free = buf == nullptr || format_requires_conversion(
external_format, internal_format);
if (t.should_free() != should_free) {
changed = true;
t.cleanup();
t.set_should_free(should_free);
}
// If now an external buffer, explicitly set it...
if (!should_free) {
t.set_buffer(buf, stride);
}
t.disable_delayed_clear();
if (!t.allocate(changed, min_width, min_height)) {
out_of_memory();
}
// If we have a buffer that needs format conversion, then do that now.
if (buf && should_free) {
convert_copy(external_format, internal_format, (uint8_t*)t.buf, t.stride(),
(const uint8_t*)buf, stride, width, height);
}
}
extern "C" {
void TexStorage2D(GLenum target, GLint levels, GLenum internal_format,
GLsizei width, GLsizei height) {
assert(levels == 1);
Texture& t = ctx->textures[ctx->get_binding(target)];
set_tex_storage(t, internal_format, width, height);
}
GLenum internal_format_for_data(GLenum format, GLenum ty) {
if (format == GL_RED && ty == GL_UNSIGNED_BYTE) {
return GL_R8;
} else if ((format == GL_RGBA || format == GL_BGRA) &&
(ty == GL_UNSIGNED_BYTE || ty == GL_UNSIGNED_INT_8_8_8_8_REV)) {
return GL_RGBA8;
} else if (format == GL_RGBA && ty == GL_FLOAT) {
return GL_RGBA32F;
} else if (format == GL_RGBA_INTEGER && ty == GL_INT) {
return GL_RGBA32I;
} else if (format == GL_RG && ty == GL_UNSIGNED_BYTE) {
return GL_RG8;
} else if (format == GL_RGB_422_APPLE &&
ty == GL_UNSIGNED_SHORT_8_8_REV_APPLE) {
return GL_RGB_RAW_422_APPLE;
} else if (format == GL_RED && ty == GL_UNSIGNED_SHORT) {
return GL_R16;
} else if (format == GL_RG && ty == GL_UNSIGNED_SHORT) {
return GL_RG16;
} else {
debugf("unknown internal format for format %x, type %x\n", format, ty);
assert(false);
return 0;
}
}
static Buffer* get_pixel_pack_buffer() {
return ctx->pixel_pack_buffer_binding
? &ctx->buffers[ctx->pixel_pack_buffer_binding]
: nullptr;
}
static void* get_pixel_pack_buffer_data(void* data) {
if (Buffer* b = get_pixel_pack_buffer()) {
return b->buf ? b->buf + (size_t)data : nullptr;
}
return data;
}
static Buffer* get_pixel_unpack_buffer() {
return ctx->pixel_unpack_buffer_binding
? &ctx->buffers[ctx->pixel_unpack_buffer_binding]
: nullptr;
}
static void* get_pixel_unpack_buffer_data(void* data) {
if (Buffer* b = get_pixel_unpack_buffer()) {
return b->buf ? b->buf + (size_t)data : nullptr;
}
return data;
}
void TexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height, GLenum format, GLenum ty,
void* data) {
if (level != 0) {
assert(false);
return;
}
data = get_pixel_unpack_buffer_data(data);
if (!data) return;
Texture& t = ctx->textures[ctx->get_binding(target)];
IntRect skip = {xoffset, yoffset, xoffset + width, yoffset + height};
prepare_texture(t, &skip);
assert(xoffset + width <= t.width);
assert(yoffset + height <= t.height);
assert(ctx->unpack_row_length == 0 || ctx->unpack_row_length >= width);
GLsizei row_length =
ctx->unpack_row_length != 0 ? ctx->unpack_row_length : width;
assert(t.internal_format == internal_format_for_data(format, ty));
int src_bpp = format_requires_conversion(format, t.internal_format)
? bytes_for_internal_format(format)
: t.bpp();
if (!src_bpp || !t.buf) return;
convert_copy(format, t.internal_format,
(uint8_t*)t.sample_ptr(xoffset, yoffset), t.stride(),
(const uint8_t*)data, row_length * src_bpp, width, height);
}
void TexImage2D(GLenum target, GLint level, GLint internal_format,
GLsizei width, GLsizei height, GLint border, GLenum format,
GLenum ty, void* data) {
if (level != 0) {
assert(false);
return;
}
assert(border == 0);
TexStorage2D(target, 1, internal_format, width, height);
TexSubImage2D(target, 0, 0, 0, width, height, format, ty, data);
}
void GenerateMipmap(UNUSED GLenum target) {
// TODO: support mipmaps
}
void SetTextureParameter(GLuint texid, GLenum pname, GLint param) {
Texture& t = ctx->textures[texid];
switch (pname) {
case GL_TEXTURE_WRAP_S:
assert(param == GL_CLAMP_TO_EDGE);
break;
case GL_TEXTURE_WRAP_T:
assert(param == GL_CLAMP_TO_EDGE);
break;
case GL_TEXTURE_MIN_FILTER:
t.min_filter = param;
break;
case GL_TEXTURE_MAG_FILTER:
t.mag_filter = param;
break;
default:
break;
}
}
void TexParameteri(GLenum target, GLenum pname, GLint param) {
SetTextureParameter(ctx->get_binding(target), pname, param);
}
void GenTextures(int n, GLuint* result) {
for (int i = 0; i < n; i++) {
Texture t;
result[i] = ctx->textures.insert(t);
}
}
void DeleteTexture(GLuint n) {
if (n && ctx->textures.erase(n)) {
for (size_t i = 0; i < MAX_TEXTURE_UNITS; i++) {
ctx->texture_units[i].unlink(n);
}
}
}
void GenRenderbuffers(int n, GLuint* result) {
for (int i = 0; i < n; i++) {
Renderbuffer r;
result[i] = ctx->renderbuffers.insert(r);
}
}
void Renderbuffer::on_erase() {
for (auto* fb : ctx->framebuffers) {
if (fb) {
unlink(fb->color_attachment, texture);
unlink(fb->depth_attachment, texture);
}
}
DeleteTexture(texture);
}
void DeleteRenderbuffer(GLuint n) {
if (n && ctx->renderbuffers.erase(n)) {
unlink(ctx->renderbuffer_binding, n);
}
}
void GenFramebuffers(int n, GLuint* result) {
for (int i = 0; i < n; i++) {
Framebuffer f;
result[i] = ctx->framebuffers.insert(f);
}
}
void DeleteFramebuffer(GLuint n) {
if (n && ctx->framebuffers.erase(n)) {
unlink(ctx->read_framebuffer_binding, n);
unlink(ctx->draw_framebuffer_binding, n);
}
}
void RenderbufferStorage(GLenum target, GLenum internal_format, GLsizei width,
GLsizei height) {
// Just refer a renderbuffer to a texture to simplify things for now...
Renderbuffer& r = ctx->renderbuffers[ctx->get_binding(target)];
if (!r.texture) {
GenTextures(1, &r.texture);
}
switch (internal_format) {
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT24:
case GL_DEPTH_COMPONENT32:
// Force depth format to 24 bits...
internal_format = GL_DEPTH_COMPONENT24;
break;
}
set_tex_storage(ctx->textures[r.texture], internal_format, width, height);
}
void VertexAttribPointer(GLuint index, GLint size, GLenum type, bool normalized,
GLsizei stride, GLuint offset) {
// debugf("cva: %d\n", ctx->current_vertex_array);
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
if (index >= NULL_ATTRIB) {
assert(0);
return;
}
VertexAttrib& va = v.attribs[index];
va.size = size * bytes_per_type(type);
va.type = type;
va.normalized = normalized;
va.stride = stride;
va.offset = offset;
// Buffer &vertex_buf = ctx->buffers[ctx->array_buffer_binding];
va.vertex_buffer = ctx->array_buffer_binding;
va.vertex_array = ctx->current_vertex_array;
ctx->validate_vertex_array = true;
}
void VertexAttribIPointer(GLuint index, GLint size, GLenum type, GLsizei stride,
GLuint offset) {
// debugf("cva: %d\n", ctx->current_vertex_array);
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
if (index >= NULL_ATTRIB) {
assert(0);
return;
}
VertexAttrib& va = v.attribs[index];
va.size = size * bytes_per_type(type);
va.type = type;
va.normalized = false;
va.stride = stride;
va.offset = offset;
// Buffer &vertex_buf = ctx->buffers[ctx->array_buffer_binding];
va.vertex_buffer = ctx->array_buffer_binding;
va.vertex_array = ctx->current_vertex_array;
ctx->validate_vertex_array = true;
}
void EnableVertexAttribArray(GLuint index) {
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
if (index >= NULL_ATTRIB) {
assert(0);
return;
}
VertexAttrib& va = v.attribs[index];
if (!va.enabled) {
ctx->validate_vertex_array = true;
}
va.enabled = true;
v.max_attrib = max(v.max_attrib, (int)index);
}
void DisableVertexAttribArray(GLuint index) {
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
if (index >= NULL_ATTRIB) {
assert(0);
return;
}
VertexAttrib& va = v.attribs[index];
if (va.enabled) {
ctx->validate_vertex_array = true;
}
va.disable();
}
void VertexAttribDivisor(GLuint index, GLuint divisor) {
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
// Only support divisor being 0 (per-vertex) or 1 (per-instance).
if (index >= NULL_ATTRIB || divisor > 1) {
assert(0);
return;
}
VertexAttrib& va = v.attribs[index];
va.divisor = divisor;
}
void BufferData(GLenum target, GLsizeiptr size, void* data,
UNUSED GLenum usage) {
Buffer& b = ctx->buffers[ctx->get_binding(target)];
if (size != b.size) {
if (!b.allocate(size)) {
out_of_memory();
}
ctx->validate_vertex_array = true;
}
if (data && b.buf && size <= b.size) {
memcpy(b.buf, data, size);
}
}
void BufferSubData(GLenum target, GLintptr offset, GLsizeiptr size,
void* data) {
Buffer& b = ctx->buffers[ctx->get_binding(target)];
assert(offset + size <= b.size);
if (data && b.buf && offset + size <= b.size) {
memcpy(&b.buf[offset], data, size);
}
}
void* MapBuffer(GLenum target, UNUSED GLbitfield access) {
Buffer& b = ctx->buffers[ctx->get_binding(target)];
return b.buf;
}
void* MapBufferRange(GLenum target, GLintptr offset, GLsizeiptr length,
UNUSED GLbitfield access) {
Buffer& b = ctx->buffers[ctx->get_binding(target)];
if (b.buf && offset >= 0 && length > 0 && offset + length <= b.size) {
return b.buf + offset;
}
return nullptr;
}
GLboolean UnmapBuffer(GLenum target) {
Buffer& b = ctx->buffers[ctx->get_binding(target)];
return b.buf != nullptr;
}
void Uniform1i(GLint location, GLint V0) {
// debugf("tex: %d\n", (int)ctx->textures.size);
if (vertex_shader) {
vertex_shader->set_uniform_1i(location, V0);
}
}
void Uniform4fv(GLint location, GLsizei count, const GLfloat* v) {
assert(count == 1);
if (vertex_shader) {
vertex_shader->set_uniform_4fv(location, v);
}
}
void UniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat* value) {
assert(count == 1);
assert(!transpose);
if (vertex_shader) {
vertex_shader->set_uniform_matrix4fv(location, value);
}
}
void FramebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget,
GLuint texture, GLint level) {
assert(target == GL_READ_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER);
assert(textarget == GL_TEXTURE_2D || textarget == GL_TEXTURE_RECTANGLE);
assert(level == 0);
Framebuffer& fb = ctx->framebuffers[ctx->get_binding(target)];
if (attachment == GL_COLOR_ATTACHMENT0) {
fb.color_attachment = texture;
} else if (attachment == GL_DEPTH_ATTACHMENT) {
fb.depth_attachment = texture;
} else {
assert(0);
}
}
void FramebufferRenderbuffer(GLenum target, GLenum attachment,
GLenum renderbuffertarget, GLuint renderbuffer) {
assert(target == GL_READ_FRAMEBUFFER || target == GL_DRAW_FRAMEBUFFER);
assert(renderbuffertarget == GL_RENDERBUFFER);
Framebuffer& fb = ctx->framebuffers[ctx->get_binding(target)];
Renderbuffer& rb = ctx->renderbuffers[renderbuffer];
if (attachment == GL_COLOR_ATTACHMENT0) {
fb.color_attachment = rb.texture;
} else if (attachment == GL_DEPTH_ATTACHMENT) {
fb.depth_attachment = rb.texture;
} else {
assert(0);
}
}
} // extern "C"
static inline Framebuffer* get_framebuffer(GLenum target,
bool fallback = false) {
if (target == GL_FRAMEBUFFER) {
target = GL_DRAW_FRAMEBUFFER;
}
Framebuffer* fb = ctx->framebuffers.find(ctx->get_binding(target));
if (fallback && !fb) {
// If the specified framebuffer isn't found and a fallback is requested,
// use the default framebuffer.
fb = &ctx->framebuffers[0];
}
return fb;
}
template <typename T>
static inline void fill_n(T* dst, size_t n, T val) {
for (T* end = &dst[n]; dst < end; dst++) *dst = val;
}
#if USE_SSE2
template <>
inline void fill_n<uint32_t>(uint32_t* dst, size_t n, uint32_t val) {
__asm__ __volatile__("rep stosl\n"
: "+D"(dst), "+c"(n)
: "a"(val)
: "memory", "cc");
}
#endif
static inline uint32_t clear_chunk(uint8_t value) {
return uint32_t(value) * 0x01010101U;
}
static inline uint32_t clear_chunk(uint16_t value) {
return uint32_t(value) | (uint32_t(value) << 16);
}
static inline uint32_t clear_chunk(uint32_t value) { return value; }
template <typename T>
static inline void clear_row(T* buf, size_t len, T value, uint32_t chunk) {
const size_t N = sizeof(uint32_t) / sizeof(T);
// fill any leading unaligned values
if (N > 1) {
size_t align = (-(intptr_t)buf & (sizeof(uint32_t) - 1)) / sizeof(T);
if (align <= len) {
fill_n(buf, align, value);
len -= align;
buf += align;
}
}
// fill as many aligned chunks as possible
fill_n((uint32_t*)buf, len / N, chunk);
// fill any remaining values
if (N > 1) {
fill_n(buf + (len & ~(N - 1)), len & (N - 1), value);
}
}
template <typename T>
static void clear_buffer(Texture& t, T value, IntRect bb, int skip_start = 0,
int skip_end = 0) {
if (!t.buf) return;
skip_start = max(skip_start, bb.x0);
skip_end = max(skip_end, skip_start);
assert(sizeof(T) == t.bpp());
size_t stride = t.stride();
// When clearing multiple full-width rows, collapse them into a single large
// "row" to avoid redundant setup from clearing each row individually. Note
// that we can only safely do this if the stride is tightly packed.
if (bb.width() == t.width && bb.height() > 1 && skip_start >= skip_end &&
(t.should_free() || stride == t.width * sizeof(T))) {
bb.x1 += (stride / sizeof(T)) * (bb.height() - 1);
bb.y1 = bb.y0 + 1;
}
T* buf = (T*)t.sample_ptr(bb.x0, bb.y0);
uint32_t chunk = clear_chunk(value);
for (int rows = bb.height(); rows > 0; rows--) {
if (bb.x0 < skip_start) {
clear_row(buf, skip_start - bb.x0, value, chunk);
}
if (skip_end < bb.x1) {
clear_row(buf + (skip_end - bb.x0), bb.x1 - skip_end, value, chunk);
}
buf += stride / sizeof(T);
}
}
template <typename T>
static inline void force_clear_row(Texture& t, int y, int skip_start = 0,
int skip_end = 0) {
assert(t.buf != nullptr);
assert(sizeof(T) == t.bpp());
assert(skip_start <= skip_end);
T* buf = (T*)t.sample_ptr(0, y);
uint32_t chunk = clear_chunk((T)t.clear_val);
if (skip_start > 0) {
clear_row<T>(buf, skip_start, t.clear_val, chunk);
}
if (skip_end < t.width) {
clear_row<T>(buf + skip_end, t.width - skip_end, t.clear_val, chunk);
}
}
template <typename T>
static void force_clear(Texture& t, const IntRect* skip = nullptr) {
if (!t.delay_clear || !t.cleared_rows) {
return;
}
int y0 = 0;
int y1 = t.height;
int skip_start = 0;
int skip_end = 0;
if (skip) {
y0 = clamp(skip->y0, 0, t.height);
y1 = clamp(skip->y1, y0, t.height);
skip_start = clamp(skip->x0, 0, t.width);
skip_end = clamp(skip->x1, skip_start, t.width);
if (skip_start <= 0 && skip_end >= t.width && y0 <= 0 && y1 >= t.height) {
t.disable_delayed_clear();
return;
}
}
int num_masks = (y1 + 31) / 32;
uint32_t* rows = t.cleared_rows;
for (int i = y0 / 32; i < num_masks; i++) {
uint32_t mask = rows[i];
if (mask != ~0U) {
rows[i] = ~0U;
int start = i * 32;
while (mask) {
int count = __builtin_ctz(mask);
if (count > 0) {
clear_buffer<T>(t, t.clear_val,
IntRect{0, start, t.width, start + count}, skip_start,
skip_end);
t.delay_clear -= count;
start += count;
mask >>= count;
}
count = __builtin_ctz(mask + 1);
start += count;
mask >>= count;
}
int count = (i + 1) * 32 - start;
if (count > 0) {
clear_buffer<T>(t, t.clear_val,
IntRect{0, start, t.width, start + count}, skip_start,
skip_end);
t.delay_clear -= count;
}
}
}
if (t.delay_clear <= 0) t.disable_delayed_clear();
}
static void prepare_texture(Texture& t, const IntRect* skip) {
if (t.delay_clear) {
switch (t.internal_format) {
case GL_RGBA8:
force_clear<uint32_t>(t, skip);
break;
case GL_R8:
force_clear<uint8_t>(t, skip);
break;
case GL_RG8:
force_clear<uint16_t>(t, skip);
break;
default:
assert(false);
break;
}
}
}
// Setup a clear on a texture. This may either force an immediate clear or
// potentially punt to a delayed clear, if applicable.
template <typename T>
static void request_clear(Texture& t, T value, const IntRect& scissor) {
// If the clear would require a scissor, force clear anything outside
// the scissor, and then immediately clear anything inside the scissor.
if (!scissor.contains(t.offset_bounds())) {
IntRect skip = scissor - t.offset;
force_clear<T>(t, &skip);
clear_buffer<T>(t, value, skip.intersection(t.bounds()));
} else {
// Do delayed clear for 2D texture without scissor.
t.enable_delayed_clear(value);
}
}
template <typename T>
static inline void request_clear(Texture& t, T value) {
// If scissoring is enabled, use the scissor rect. Otherwise, just scissor to
// the entire texture bounds.
request_clear(t, value, ctx->scissortest ? ctx->scissor : t.offset_bounds());
}
extern "C" {
void InitDefaultFramebuffer(int x, int y, int width, int height, int stride,
void* buf) {
Framebuffer& fb = ctx->framebuffers[0];
if (!fb.color_attachment) {
GenTextures(1, &fb.color_attachment);
}
// If the dimensions or buffer properties changed, we need to reallocate
// the underlying storage for the color buffer texture.
Texture& colortex = ctx->textures[fb.color_attachment];
set_tex_storage(colortex, GL_RGBA8, width, height, buf, stride);
colortex.offset = IntPoint(x, y);
if (!fb.depth_attachment) {
GenTextures(1, &fb.depth_attachment);
}
// Ensure dimensions of the depth buffer match the color buffer.
Texture& depthtex = ctx->textures[fb.depth_attachment];
set_tex_storage(depthtex, GL_DEPTH_COMPONENT24, width, height);
depthtex.offset = IntPoint(x, y);
}
void* GetColorBuffer(GLuint fbo, GLboolean flush, int32_t* width,
int32_t* height, int32_t* stride) {
Framebuffer* fb = ctx->framebuffers.find(fbo);
if (!fb || !fb->color_attachment) {
return nullptr;
}
Texture& colortex = ctx->textures[fb->color_attachment];
if (flush) {
prepare_texture(colortex);
}
assert(colortex.offset == IntPoint(0, 0));
if (width) {
*width = colortex.width;
}
if (height) {
*height = colortex.height;
}
if (stride) {
*stride = colortex.stride();
}
return colortex.buf ? colortex.sample_ptr(0, 0) : nullptr;
}
void ResolveFramebuffer(GLuint fbo) {
Framebuffer* fb = ctx->framebuffers.find(fbo);
if (!fb || !fb->color_attachment) {
return;
}
Texture& colortex = ctx->textures[fb->color_attachment];
prepare_texture(colortex);
}
void SetTextureBuffer(GLuint texid, GLenum internal_format, GLsizei width,
GLsizei height, GLsizei stride, void* buf,
GLsizei min_width, GLsizei min_height) {
Texture& t = ctx->textures[texid];
set_tex_storage(t, internal_format, width, height, buf, stride, min_width,
min_height);
}
GLenum CheckFramebufferStatus(GLenum target) {
Framebuffer* fb = get_framebuffer(target);
if (!fb || !fb->color_attachment) {
return GL_FRAMEBUFFER_UNSUPPORTED;
}
return GL_FRAMEBUFFER_COMPLETE;
}
void ClearTexSubImage(GLuint texture, GLint level, GLint xoffset, GLint yoffset,
GLint zoffset, GLsizei width, GLsizei height,
GLsizei depth, GLenum format, GLenum type,
const void* data) {
if (level != 0) {
assert(false);
return;
}
Texture& t = ctx->textures[texture];
assert(!t.locked);
if (width <= 0 || height <= 0 || depth <= 0) {
return;
}
assert(zoffset == 0 && depth == 1);
IntRect scissor = {xoffset, yoffset, xoffset + width, yoffset + height};
if (t.internal_format == GL_DEPTH_COMPONENT24) {
uint32_t value = 0xFFFFFF;
switch (format) {
case GL_DEPTH_COMPONENT:
switch (type) {
case GL_DOUBLE:
value = uint32_t(*(const GLdouble*)data * 0xFFFFFF);
break;
case GL_FLOAT:
value = uint32_t(*(const GLfloat*)data * 0xFFFFFF);
break;
default:
assert(false);
break;
}
break;
default:
assert(false);
break;
}
if (t.cleared() && !scissor.contains(t.offset_bounds())) {
// If we need to scissor the clear and the depth buffer was already
// initialized, then just fill runs for that scissor area.
t.fill_depth_runs(value, scissor);
} else {
// Otherwise, the buffer is either uninitialized or the clear would
// encompass the entire buffer. If uninitialized, we can safely fill
// the entire buffer with any value and thus ignore any scissoring.
t.init_depth_runs(value);
}
return;
}
uint32_t color = 0xFF000000;
switch (type) {
case GL_FLOAT: {
const GLfloat* f = (const GLfloat*)data;
Float v = {0.0f, 0.0f, 0.0f, 1.0f};
switch (format) {
case GL_RGBA:
v.w = f[3]; // alpha
FALLTHROUGH;
case GL_RGB:
v.z = f[2]; // blue
FALLTHROUGH;
case GL_RG:
v.y = f[1]; // green
FALLTHROUGH;
case GL_RED:
v.x = f[0]; // red
break;
default:
assert(false);
break;
}
color = bit_cast<uint32_t>(CONVERT(round_pixel(v), U8));
break;
}
case GL_UNSIGNED_BYTE: {
const GLubyte* b = (const GLubyte*)data;
switch (format) {
case GL_RGBA:
color = (color & ~0xFF000000) | (uint32_t(b[3]) << 24); // alpha
FALLTHROUGH;
case GL_RGB:
color = (color & ~0x00FF0000) | (uint32_t(b[2]) << 16); // blue
FALLTHROUGH;
case GL_RG:
color = (color & ~0x0000FF00) | (uint32_t(b[1]) << 8); // green
FALLTHROUGH;
case GL_RED:
color = (color & ~0x000000FF) | uint32_t(b[0]); // red
break;
default:
assert(false);
break;
}
break;
}
default:
assert(false);
break;
}
switch (t.internal_format) {
case GL_RGBA8:
// Clear color needs to swizzle to BGRA.
request_clear<uint32_t>(t,
(color & 0xFF00FF00) |
((color << 16) & 0xFF0000) |
((color >> 16) & 0xFF),
scissor);
break;
case GL_R8:
request_clear<uint8_t>(t, uint8_t(color & 0xFF), scissor);
break;
case GL_RG8:
request_clear<uint16_t>(t, uint16_t(color & 0xFFFF), scissor);
break;
default:
assert(false);
break;
}
}
void ClearTexImage(GLuint texture, GLint level, GLenum format, GLenum type,
const void* data) {
Texture& t = ctx->textures[texture];
IntRect scissor = t.offset_bounds();
ClearTexSubImage(texture, level, scissor.x0, scissor.y0, 0, scissor.width(),
scissor.height(), 1, format, type, data);
}
void Clear(GLbitfield mask) {
Framebuffer& fb = *get_framebuffer(GL_DRAW_FRAMEBUFFER, true);
if ((mask & GL_COLOR_BUFFER_BIT) && fb.color_attachment) {
Texture& t = ctx->textures[fb.color_attachment];
IntRect scissor = ctx->scissortest
? ctx->scissor.intersection(t.offset_bounds())
: t.offset_bounds();
ClearTexSubImage(fb.color_attachment, 0, scissor.x0, scissor.y0, 0,
scissor.width(), scissor.height(), 1, GL_RGBA, GL_FLOAT,
ctx->clearcolor);
}
if ((mask & GL_DEPTH_BUFFER_BIT) && fb.depth_attachment) {
Texture& t = ctx->textures[fb.depth_attachment];
IntRect scissor = ctx->scissortest
? ctx->scissor.intersection(t.offset_bounds())
: t.offset_bounds();
ClearTexSubImage(fb.depth_attachment, 0, scissor.x0, scissor.y0, 0,
scissor.width(), scissor.height(), 1, GL_DEPTH_COMPONENT,
GL_DOUBLE, &ctx->cleardepth);
}
}
void ClearColorRect(GLuint fbo, GLint xoffset, GLint yoffset, GLsizei width,
GLsizei height, GLfloat r, GLfloat g, GLfloat b,
GLfloat a) {
GLfloat color[] = {r, g, b, a};
Framebuffer& fb = ctx->framebuffers[fbo];
Texture& t = ctx->textures[fb.color_attachment];
IntRect scissor =
IntRect{xoffset, yoffset, xoffset + width, yoffset + height}.intersection(
t.offset_bounds());
ClearTexSubImage(fb.color_attachment, 0, scissor.x0, scissor.y0, 0,
scissor.width(), scissor.height(), 1, GL_RGBA, GL_FLOAT,
color);
}
void InvalidateFramebuffer(GLenum target, GLsizei num_attachments,
const GLenum* attachments) {
Framebuffer* fb = get_framebuffer(target);
if (!fb || num_attachments <= 0 || !attachments) {
return;
}
for (GLsizei i = 0; i < num_attachments; i++) {
switch (attachments[i]) {
case GL_DEPTH_ATTACHMENT: {
Texture& t = ctx->textures[fb->depth_attachment];
t.set_cleared(false);
break;
}
case GL_COLOR_ATTACHMENT0: {
Texture& t = ctx->textures[fb->color_attachment];
t.disable_delayed_clear();
break;
}
}
}
}
void ReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format,
GLenum type, void* data) {
data = get_pixel_pack_buffer_data(data);
if (!data) return;
Framebuffer* fb = get_framebuffer(GL_READ_FRAMEBUFFER);
if (!fb) return;
assert(format == GL_RED || format == GL_RGBA || format == GL_RGBA_INTEGER ||
format == GL_BGRA || format == GL_RG);
Texture& t = ctx->textures[fb->color_attachment];
if (!t.buf) return;
prepare_texture(t);
// debugf("read pixels %d, %d, %d, %d from fb %d with format %x\n", x, y,
// width, height, ctx->read_framebuffer_binding, t.internal_format);
x -= t.offset.x;
y -= t.offset.y;
assert(x >= 0 && y >= 0);
assert(x + width <= t.width);
assert(y + height <= t.height);
if (internal_format_for_data(format, type) != t.internal_format) {
debugf("mismatched format for read pixels: %x vs %x\n", t.internal_format,
internal_format_for_data(format, type));
assert(false);
return;
}
// Only support readback conversions that are reversible
assert(!format_requires_conversion(format, t.internal_format) ||
bytes_for_internal_format(format) == t.bpp());
uint8_t* dest = (uint8_t*)data;
size_t destStride = width * t.bpp();
if (y < 0) {
dest += -y * destStride;
height += y;
y = 0;
}
if (y + height > t.height) {
height = t.height - y;
}
if (x < 0) {
dest += -x * t.bpp();
width += x;
x = 0;
}
if (x + width > t.width) {
width = t.width - x;
}
if (width <= 0 || height <= 0) {
return;
}
convert_copy(format, t.internal_format, dest, destStride,
(const uint8_t*)t.sample_ptr(x, y), t.stride(), width, height);
}
void CopyImageSubData(GLuint srcName, GLenum srcTarget, UNUSED GLint srcLevel,
GLint srcX, GLint srcY, GLint srcZ, GLuint dstName,
GLenum dstTarget, UNUSED GLint dstLevel, GLint dstX,
GLint dstY, GLint dstZ, GLsizei srcWidth,
GLsizei srcHeight, GLsizei srcDepth) {
assert(srcLevel == 0 && dstLevel == 0);
assert(srcZ == 0 && srcDepth == 1 && dstZ == 0);
if (srcTarget == GL_RENDERBUFFER) {
Renderbuffer& rb = ctx->renderbuffers[srcName];
srcName = rb.texture;
}
if (dstTarget == GL_RENDERBUFFER) {
Renderbuffer& rb = ctx->renderbuffers[dstName];
dstName = rb.texture;
}
Texture& srctex = ctx->textures[srcName];
if (!srctex.buf) return;
prepare_texture(srctex);
Texture& dsttex = ctx->textures[dstName];
if (!dsttex.buf) return;
assert(!dsttex.locked);
IntRect skip = {dstX, dstY, dstX + srcWidth, dstY + srcHeight};
prepare_texture(dsttex, &skip);
assert(srctex.internal_format == dsttex.internal_format);
assert(srcWidth >= 0);
assert(srcHeight >= 0);
assert(srcX + srcWidth <= srctex.width);
assert(srcY + srcHeight <= srctex.height);
assert(dstX + srcWidth <= dsttex.width);
assert(dstY + srcHeight <= dsttex.height);
int bpp = srctex.bpp();
int src_stride = srctex.stride();
int dest_stride = dsttex.stride();
char* dest = dsttex.sample_ptr(dstX, dstY);
char* src = srctex.sample_ptr(srcX, srcY);
for (int y = 0; y < srcHeight; y++) {
memcpy(dest, src, srcWidth * bpp);
dest += dest_stride;
src += src_stride;
}
}
void CopyTexSubImage2D(GLenum target, UNUSED GLint level, GLint xoffset,
GLint yoffset, GLint x, GLint y, GLsizei width,
GLsizei height) {
assert(level == 0);
Framebuffer* fb = get_framebuffer(GL_READ_FRAMEBUFFER);
if (!fb) return;
CopyImageSubData(fb->color_attachment, GL_TEXTURE_2D, 0, x, y, 0,
ctx->get_binding(target), GL_TEXTURE_2D, 0, xoffset, yoffset,
0, width, height, 1);
}
} // extern "C"
#include "blend.h"
#include "composite.h"
#include "swgl_ext.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
#pragma GCC diagnostic ignored "-Wunused-function"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
#ifdef __clang__
# pragma GCC diagnostic ignored "-Wunused-private-field"
#else
# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#endif
#include "load_shader.h"
#pragma GCC diagnostic pop
#include "rasterize.h"
void VertexArray::validate() {
int last_enabled = -1;
for (int i = 0; i <= max_attrib; i++) {
VertexAttrib& attr = attribs[i];
if (attr.enabled) {
// VertexArray &v = ctx->vertex_arrays[attr.vertex_array];
Buffer& vertex_buf = ctx->buffers[attr.vertex_buffer];
attr.buf = vertex_buf.buf;
attr.buf_size = vertex_buf.size;
// debugf("%d %x %d %d %d %d\n", i, attr.type, attr.size, attr.stride,
// attr.offset, attr.divisor);
last_enabled = i;
}
}
max_attrib = last_enabled;
}
extern "C" {
void DrawElementsInstanced(GLenum mode, GLsizei count, GLenum type,
GLintptr offset, GLsizei instancecount) {
if (offset < 0 || count <= 0 || instancecount <= 0 || !vertex_shader ||
!fragment_shader) {
return;
}
Framebuffer& fb = *get_framebuffer(GL_DRAW_FRAMEBUFFER, true);
if (!fb.color_attachment) {
return;
}
Texture& colortex = ctx->textures[fb.color_attachment];
if (!colortex.buf) {
return;
}
assert(!colortex.locked);
assert(colortex.internal_format == GL_RGBA8 ||
colortex.internal_format == GL_R8);
Texture& depthtex = ctx->textures[ctx->depthtest ? fb.depth_attachment : 0];
if (depthtex.buf) {
assert(depthtex.internal_format == GL_DEPTH_COMPONENT24);
assert(colortex.width == depthtex.width &&
colortex.height == depthtex.height);
assert(colortex.offset == depthtex.offset);
}
// debugf("current_vertex_array %d\n", ctx->current_vertex_array);
// debugf("indices size: %d\n", indices_buf.size);
VertexArray& v = ctx->vertex_arrays[ctx->current_vertex_array];
if (ctx->validate_vertex_array) {
ctx->validate_vertex_array = false;
v.validate();
}
#ifdef PRINT_TIMINGS
uint64_t start = get_time_value();
#endif
ctx->shaded_rows = 0;
ctx->shaded_pixels = 0;
vertex_shader->init_batch();
switch (type) {
case GL_UNSIGNED_SHORT:
assert(mode == GL_TRIANGLES);
draw_elements<uint16_t>(count, instancecount, offset, v, colortex,
depthtex);
break;
case GL_UNSIGNED_INT:
assert(mode == GL_TRIANGLES);
draw_elements<uint32_t>(count, instancecount, offset, v, colortex,
depthtex);
break;
case GL_NONE:
// Non-standard GL extension - if element type is GL_NONE, then we don't
// use any element buffer and behave as if DrawArrays was called instead.
for (GLsizei instance = 0; instance < instancecount; instance++) {
switch (mode) {
case GL_LINES:
for (GLsizei i = 0; i + 2 <= count; i += 2) {
vertex_shader->load_attribs(v.attribs, offset + i, instance, 2);
draw_quad(2, colortex, depthtex);
}
break;
case GL_TRIANGLES:
for (GLsizei i = 0; i + 3 <= count; i += 3) {
vertex_shader->load_attribs(v.attribs, offset + i, instance, 3);
draw_quad(3, colortex, depthtex);
}
break;
default:
assert(false);
break;
}
}
break;
default:
assert(false);
break;
}
if (ctx->samples_passed_query) {
Query& q = ctx->queries[ctx->samples_passed_query];
q.value += ctx->shaded_pixels;
}
#ifdef PRINT_TIMINGS
uint64_t end = get_time_value();
printf(
"%7.3fms draw(%s, %d): %d pixels in %d rows (avg %f pixels/row, "
"%fns/pixel)\n",
double(end - start) / (1000. * 1000.),
ctx->programs[ctx->current_program].impl->get_name(), instancecount,
ctx->shaded_pixels, ctx->shaded_rows,
double(ctx->shaded_pixels) / ctx->shaded_rows,
double(end - start) / max(ctx->shaded_pixels, 1));
#endif
}
void Finish() {
#ifdef PRINT_TIMINGS
printf("Finish\n");
#endif
}
void MakeCurrent(Context* c) {
if (ctx == c) {
return;
}
ctx = c;
setup_program(ctx ? ctx->current_program : 0);
}
Context* CreateContext() { return new Context; }
void ReferenceContext(Context* c) {
if (!c) {
return;
}
++c->references;
}
void DestroyContext(Context* c) {
if (!c) {
return;
}
assert(c->references > 0);
--c->references;
if (c->references > 0) {
return;
}
if (ctx == c) {
MakeCurrent(nullptr);
}
delete c;
}
size_t ReportMemory(Context* ctx, size_t (*size_of_op)(const void*)) {
size_t size = 0;
if (ctx) {
for (auto& t : ctx->textures) {
if (t && t->should_free()) {
size += size_of_op(t->buf);
}
}
}
return size;
}
} // extern "C"
|