summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/src/compositor/sw_compositor.rs
blob: e9cc0a3052a8fed143e09c6c1135b7e4c837a083 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use gleam::{gl, gl::Gl};
use std::cell::{Cell, UnsafeCell};
use std::collections::{hash_map::HashMap, VecDeque};
use std::ops::{Deref, DerefMut, Range};
use std::ptr;
use std::sync::atomic::{AtomicBool, AtomicI8, AtomicPtr, AtomicU32, AtomicU8, Ordering};
use std::sync::{Arc, Condvar, Mutex, MutexGuard};
use std::thread;
use crate::{
    api::units::*, api::ColorDepth, api::ColorF, api::ExternalImageId, api::ImageRendering, api::YuvRangedColorSpace,
    Compositor, CompositorCapabilities, CompositorSurfaceTransform, NativeSurfaceId, NativeSurfaceInfo, NativeTileId,
    profiler, MappableCompositor, SWGLCompositeSurfaceInfo, WindowVisibility,
    device::Device,
};

pub struct SwTile {
    x: i32,
    y: i32,
    fbo_id: u32,
    color_id: u32,
    valid_rect: DeviceIntRect,
    /// Composition of tiles must be ordered such that any tiles that may overlap
    /// an invalidated tile in an earlier surface only get drawn after that tile
    /// is actually updated. We store a count of the number of overlapping invalid
    /// here, that gets decremented when the invalid tiles are finally updated so
    /// that we know when it is finally safe to draw. Must use a Cell as we might
    /// be analyzing multiple tiles and surfaces
    overlaps: Cell<u32>,
    /// Whether the tile's contents has been invalidated
    invalid: Cell<bool>,
    /// Graph node for job dependencies of this tile
    graph_node: SwCompositeGraphNodeRef,
}

impl SwTile {
    fn new(x: i32, y: i32) -> Self {
        SwTile {
            x,
            y,
            fbo_id: 0,
            color_id: 0,
            valid_rect: DeviceIntRect::zero(),
            overlaps: Cell::new(0),
            invalid: Cell::new(false),
            graph_node: SwCompositeGraphNode::new(),
        }
    }

    /// The offset of the tile in the local space of the surface before any
    /// transform is applied.
    fn origin(&self, surface: &SwSurface) -> DeviceIntPoint {
        DeviceIntPoint::new(self.x * surface.tile_size.width, self.y * surface.tile_size.height)
    }

    /// The offset valid rect positioned within the local space of the surface
    /// before any transform is applied.
    fn local_bounds(&self, surface: &SwSurface) -> DeviceIntRect {
        self.valid_rect.translate(self.origin(surface).to_vector())
    }

    /// Bounds used for determining overlap dependencies. This may either be the
    /// full tile bounds or the actual valid rect, depending on whether the tile
    /// is invalidated this frame. These bounds are more conservative as such and
    /// may differ from the precise bounds used to actually composite the tile.
    fn overlap_rect(
        &self,
        surface: &SwSurface,
        transform: &CompositorSurfaceTransform,
        clip_rect: &DeviceIntRect,
    ) -> Option<DeviceIntRect> {
        let bounds = self.local_bounds(surface);
        let device_rect = transform.map_rect(&bounds.to_f32()).round_out();
        Some(device_rect.intersection(&clip_rect.to_f32())?.to_i32())
    }

    /// Determine if the tile's bounds may overlap the dependency rect if it were
    /// to be composited at the given position.
    fn may_overlap(
        &self,
        surface: &SwSurface,
        transform: &CompositorSurfaceTransform,
        clip_rect: &DeviceIntRect,
        dep_rect: &DeviceIntRect,
    ) -> bool {
        self.overlap_rect(surface, transform, clip_rect)
            .map_or(false, |r| r.intersects(dep_rect))
    }

    /// Get valid source and destination rectangles for composition of the tile
    /// within a surface, bounded by the clipping rectangle. May return None if
    /// it falls outside of the clip rect.
    fn composite_rects(
        &self,
        surface: &SwSurface,
        transform: &CompositorSurfaceTransform,
        clip_rect: &DeviceIntRect,
    ) -> Option<(DeviceIntRect, DeviceIntRect, bool, bool)> {
        // Offset the valid rect to the appropriate surface origin.
        let valid = self.local_bounds(surface);
        // The destination rect is the valid rect transformed and then clipped.
        let dest_rect = transform.map_rect(&valid.to_f32()).round_out();
        if !dest_rect.intersects(&clip_rect.to_f32()) {
            return None;
        }
        // To get a valid source rect, we need to inverse transform the clipped destination rect to find out the effect
        // of the clip rect in source-space. After this, we subtract off the source-space valid rect origin to get
        // a source rect that is now relative to the surface origin rather than absolute.
        let inv_transform = transform.inverse();
        let src_rect = inv_transform
            .map_rect(&dest_rect)
            .round()
            .translate(-valid.min.to_vector().to_f32());
        // Ensure source and dest rects when transformed from Box2D to Rect formats will still fit in an i32.
        // If p0=i32::MIN and p1=i32::MAX, then evaluating the size with p1-p0 will overflow an i32 and not
        // be representable. 
        if src_rect.size().try_cast::<i32>().is_none() ||
           dest_rect.size().try_cast::<i32>().is_none() {
            return None;
        }
        let flip_x = transform.scale.x < 0.0;
        let flip_y = transform.scale.y < 0.0;
        Some((src_rect.try_cast()?, dest_rect.try_cast()?, flip_x, flip_y))
    }
}

pub struct SwSurface {
    tile_size: DeviceIntSize,
    is_opaque: bool,
    tiles: Vec<SwTile>,
    /// An attached external image for this surface.
    external_image: Option<ExternalImageId>,
}

impl SwSurface {
    fn new(tile_size: DeviceIntSize, is_opaque: bool) -> Self {
        SwSurface {
            tile_size,
            is_opaque,
            tiles: Vec::new(),
            external_image: None,
        }
    }

    /// Conserative approximation of local bounds of the surface by combining
    /// the local bounds of all enclosed tiles.
    fn local_bounds(&self) -> DeviceIntRect {
        let mut bounds = DeviceIntRect::zero();
        for tile in &self.tiles {
            bounds = bounds.union(&tile.local_bounds(self));
        }
        bounds
    }

    /// The transformed and clipped conservative device-space bounds of the
    /// surface.
    fn device_bounds(
        &self,
        transform: &CompositorSurfaceTransform,
        clip_rect: &DeviceIntRect,
    ) -> Option<DeviceIntRect> {
        let bounds = self.local_bounds();
        let device_rect = transform.map_rect(&bounds.to_f32()).round_out();
        Some(device_rect.intersection(&clip_rect.to_f32())?.to_i32())
    }

    /// Check that there are no missing tiles in the interior, or rather, that
    /// the grid of tiles is solidly rectangular.
    fn has_all_tiles(&self) -> bool {
        if self.tiles.is_empty() {
            return false;
        }
        // Find the min and max tile ids to identify the tile id bounds.
        let mut min_x = i32::MAX;
        let mut min_y = i32::MAX;
        let mut max_x = i32::MIN;
        let mut max_y = i32::MIN;
        for tile in &self.tiles {
            min_x = min_x.min(tile.x);
            min_y = min_y.min(tile.y);
            max_x = max_x.max(tile.x);
            max_y = max_y.max(tile.y);
        }
        // If all tiles are present within the bounds, then the number of tiles
        // should equal the area of the bounds.
        (max_x + 1 - min_x) as usize * (max_y + 1 - min_y) as usize == self.tiles.len()
    }
}

fn image_rendering_to_gl_filter(filter: ImageRendering) -> gl::GLenum {
    match filter {
        ImageRendering::Pixelated => gl::NEAREST,
        ImageRendering::Auto | ImageRendering::CrispEdges => gl::LINEAR,
    }
}

/// A source for a composite job which can either be a single BGRA locked SWGL
/// resource or a collection of SWGL resources representing a YUV surface.
#[derive(Clone)]
enum SwCompositeSource {
    BGRA(swgl::LockedResource),
    YUV(
        swgl::LockedResource,
        swgl::LockedResource,
        swgl::LockedResource,
        YuvRangedColorSpace,
        ColorDepth,
    ),
}

/// Mark ExternalImage's renderer field as safe to send to SwComposite thread.
unsafe impl Send for SwCompositeSource {}

/// A tile composition job to be processed by the SwComposite thread.
/// Stores relevant details about the tile and where to composite it.
#[derive(Clone)]
struct SwCompositeJob {
    /// Locked texture that will be unlocked immediately following the job
    locked_src: SwCompositeSource,
    /// Locked framebuffer that may be shared among many jobs
    locked_dst: swgl::LockedResource,
    src_rect: DeviceIntRect,
    dst_rect: DeviceIntRect,
    clipped_dst: DeviceIntRect,
    opaque: bool,
    flip_x: bool,
    flip_y: bool,
    filter: ImageRendering,
    /// The total number of bands for this job
    num_bands: u8,
}

impl SwCompositeJob {
    /// Process a composite job
    fn process(&self, band_index: i32) {
        // Bands are allocated in reverse order, but we want to process them in increasing order.
        let num_bands = self.num_bands as i32;
        let band_index = num_bands - 1 - band_index;
        // Calculate the Y extents for the job's band, starting at the current index and spanning to
        // the following index.
        let band_offset = (self.clipped_dst.height() * band_index) / num_bands;
        let band_height = (self.clipped_dst.height() * (band_index + 1)) / num_bands - band_offset;
        // Create a rect that is the intersection of the band with the clipped dest
        let band_clip = DeviceIntRect::from_origin_and_size(
            DeviceIntPoint::new(self.clipped_dst.min.x, self.clipped_dst.min.y + band_offset),
            DeviceIntSize::new(self.clipped_dst.width(), band_height),
        );
        match self.locked_src {
            SwCompositeSource::BGRA(ref resource) => {
                self.locked_dst.composite(
                    resource,
                    self.src_rect.min.x,
                    self.src_rect.min.y,
                    self.src_rect.width(),
                    self.src_rect.height(),
                    self.dst_rect.min.x,
                    self.dst_rect.min.y,
                    self.dst_rect.width(),
                    self.dst_rect.height(),
                    self.opaque,
                    self.flip_x,
                    self.flip_y,
                    image_rendering_to_gl_filter(self.filter),
                    band_clip.min.x,
                    band_clip.min.y,
                    band_clip.width(),
                    band_clip.height(),
                );
            }
            SwCompositeSource::YUV(ref y, ref u, ref v, color_space, color_depth) => {
                let swgl_color_space = match color_space {
                    YuvRangedColorSpace::Rec601Narrow => swgl::YuvRangedColorSpace::Rec601Narrow,
                    YuvRangedColorSpace::Rec601Full => swgl::YuvRangedColorSpace::Rec601Full,
                    YuvRangedColorSpace::Rec709Narrow => swgl::YuvRangedColorSpace::Rec709Narrow,
                    YuvRangedColorSpace::Rec709Full => swgl::YuvRangedColorSpace::Rec709Full,
                    YuvRangedColorSpace::Rec2020Narrow => swgl::YuvRangedColorSpace::Rec2020Narrow,
                    YuvRangedColorSpace::Rec2020Full => swgl::YuvRangedColorSpace::Rec2020Full,
                    YuvRangedColorSpace::GbrIdentity => swgl::YuvRangedColorSpace::GbrIdentity,
                };
                self.locked_dst.composite_yuv(
                    y,
                    u,
                    v,
                    swgl_color_space,
                    color_depth.bit_depth(),
                    self.src_rect.min.x,
                    self.src_rect.min.y,
                    self.src_rect.width(),
                    self.src_rect.height(),
                    self.dst_rect.min.x,
                    self.dst_rect.min.y,
                    self.dst_rect.width(),
                    self.dst_rect.height(),
                    self.flip_x,
                    self.flip_y,
                    band_clip.min.x,
                    band_clip.min.y,
                    band_clip.width(),
                    band_clip.height(),
                );
            }
        }
    }
}

/// A reference to a SwCompositeGraph node that can be passed from the render
/// thread to the SwComposite thread. Consistency of mutation is ensured in
/// SwCompositeGraphNode via use of Atomic operations that prevent more than
/// one thread from mutating SwCompositeGraphNode at once. This avoids using
/// messy and not-thread-safe RefCells or expensive Mutexes inside the graph
/// node and at least signals to the compiler that potentially unsafe coercions
/// are occurring.
#[derive(Clone)]
struct SwCompositeGraphNodeRef(Arc<UnsafeCell<SwCompositeGraphNode>>);

impl SwCompositeGraphNodeRef {
    fn new(graph_node: SwCompositeGraphNode) -> Self {
        SwCompositeGraphNodeRef(Arc::new(UnsafeCell::new(graph_node)))
    }

    fn get(&self) -> &SwCompositeGraphNode {
        unsafe { &*self.0.get() }
    }

    fn get_mut(&self) -> &mut SwCompositeGraphNode {
        unsafe { &mut *self.0.get() }
    }

    fn get_ptr_mut(&self) -> *mut SwCompositeGraphNode {
        self.0.get()
    }
}

unsafe impl Send for SwCompositeGraphNodeRef {}

impl Deref for SwCompositeGraphNodeRef {
    type Target = SwCompositeGraphNode;

    fn deref(&self) -> &Self::Target {
        self.get()
    }
}

impl DerefMut for SwCompositeGraphNodeRef {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.get_mut()
    }
}

/// Dependency graph of composite jobs to be completed. Keeps a list of child jobs that are dependent on the completion of this job.
/// Also keeps track of the number of parent jobs that this job is dependent upon before it can be processed. Once there are no more
/// in-flight parent jobs that it depends on, the graph node is finally added to the job queue for processing.
struct SwCompositeGraphNode {
    /// Job to be queued for this graph node once ready.
    job: Option<SwCompositeJob>,
    /// The number of remaining bands associated with this job. When this is
    /// non-zero and the node has no more parents left, then the node is being
    /// actively used by the composite thread to process jobs. Once it hits
    /// zero, the owning thread (which brought it to zero) can safely retire
    /// the node as no other thread is using it.
    remaining_bands: AtomicU8,
    /// The number of bands that are available for processing.
    available_bands: AtomicI8,
    /// Count of parents this graph node depends on. While this is non-zero the
    /// node must ensure that it is only being actively mutated by the render
    /// thread and otherwise never being accessed by the render thread.
    parents: AtomicU32,
    /// Graph nodes of child jobs that are dependent on this job
    children: Vec<SwCompositeGraphNodeRef>,
}

unsafe impl Sync for SwCompositeGraphNode {}

impl SwCompositeGraphNode {
    fn new() -> SwCompositeGraphNodeRef {
        SwCompositeGraphNodeRef::new(SwCompositeGraphNode {
            job: None,
            remaining_bands: AtomicU8::new(0),
            available_bands: AtomicI8::new(0),
            parents: AtomicU32::new(0),
            children: Vec::new(),
        })
    }

    /// Reset the node's state for a new frame
    fn reset(&mut self) {
        self.job = None;
        self.remaining_bands.store(0, Ordering::SeqCst);
        self.available_bands.store(0, Ordering::SeqCst);
        // Initialize parents to 1 as sentinel dependency for uninitialized job
        // to avoid queuing unitialized job as unblocked child dependency.
        self.parents.store(1, Ordering::SeqCst);
        self.children.clear();
    }

    /// Add a dependent child node to dependency list. Update its parent count.
    fn add_child(&mut self, child: SwCompositeGraphNodeRef) {
        child.parents.fetch_add(1, Ordering::SeqCst);
        self.children.push(child);
    }

    /// Install a job for this node. Return whether or not the job has any unprocessed parents
    /// that would block immediate composition.
    fn set_job(&mut self, job: SwCompositeJob, num_bands: u8) -> bool {
        self.job = Some(job);
        self.remaining_bands.store(num_bands, Ordering::SeqCst);
        self.available_bands.store(num_bands as _, Ordering::SeqCst);
        // Subtract off the sentinel parent dependency now that job is initialized and check
        // whether there are any remaining parent dependencies to see if this job is ready.
        self.parents.fetch_sub(1, Ordering::SeqCst) <= 1
    }

    /// Take an available band if possible. Also return whether there are no more bands left
    /// so the caller may properly clean up after.
    fn take_band(&self) -> (Option<i32>, bool) {
        let available = self.available_bands.fetch_sub(1, Ordering::SeqCst);
        if available > 0 {
            (Some(available as i32 - 1), available == 1)
        } else {
            (None, true)
        }
    }

    /// Try to take the job from this node for processing and then process it within the current band.
    fn process_job(&self, band_index: i32) {
        if let Some(ref job) = self.job {
            job.process(band_index);
        }
    }

    /// After processing a band, check all child dependencies and remove this parent from
    /// their dependency counts. If applicable, queue the new child bands for composition.
    fn unblock_children(&mut self, thread: &SwCompositeThread) {
        if self.remaining_bands.fetch_sub(1, Ordering::SeqCst) > 1 {
            return;
        }
        // Clear the job to release any locked resources.
        self.job = None;
        let mut lock = None;
        for child in self.children.drain(..) {
            // Remove the child's parent dependency on this node. If there are no more
            // parent dependencies left, send the child job bands for composition.
            if child.parents.fetch_sub(1, Ordering::SeqCst) <= 1 {
                if lock.is_none() {
                    lock = Some(thread.lock());
                }
                thread.send_job(lock.as_mut().unwrap(), child);
            }
        }
    }
}

/// The SwComposite thread processes a queue of composite jobs, also signaling
/// via a condition when all available jobs have been processed, as tracked by
/// the job count.
struct SwCompositeThread {
    /// Queue of available composite jobs
    jobs: Mutex<SwCompositeJobQueue>,
    /// Cache of the current job being processed. This maintains a pointer to
    /// the contents of the SwCompositeGraphNodeRef, which is safe due to the
    /// fact that SwCompositor maintains a strong reference to the contents
    /// in an SwTile to keep it alive while this is in use.
    current_job: AtomicPtr<SwCompositeGraphNode>,
    /// Condition signaled when either there are jobs available to process or
    /// there are no more jobs left to process. Otherwise stated, this signals
    /// when the job queue transitions from an empty to non-empty state or from
    /// a non-empty to empty state.
    jobs_available: Condvar,
    /// Whether all available jobs have been processed.
    jobs_completed: AtomicBool,
    /// Whether the main thread is waiting for for job completeion.
    waiting_for_jobs: AtomicBool,
    /// Whether the SwCompositor is shutting down
    shutting_down: AtomicBool,
}

/// The SwCompositeThread struct is shared between the SwComposite thread
/// and the rendering thread so that both ends can access the job queue.
unsafe impl Sync for SwCompositeThread {}

/// A FIFO queue of composite jobs to be processed.
type SwCompositeJobQueue = VecDeque<SwCompositeGraphNodeRef>;

/// Locked access to the composite job queue.
type SwCompositeThreadLock<'a> = MutexGuard<'a, SwCompositeJobQueue>;

impl SwCompositeThread {
    /// Create the SwComposite thread. Requires a SWGL context in which
    /// to do the composition.
    fn new() -> Arc<SwCompositeThread> {
        let info = Arc::new(SwCompositeThread {
            jobs: Mutex::new(SwCompositeJobQueue::new()),
            current_job: AtomicPtr::new(ptr::null_mut()),
            jobs_available: Condvar::new(),
            jobs_completed: AtomicBool::new(true),
            waiting_for_jobs: AtomicBool::new(false),
            shutting_down: AtomicBool::new(false),
        });
        let result = info.clone();
        let thread_name = "SwComposite";
        thread::Builder::new()
            .name(thread_name.into())
            // The composite thread only calls into SWGL to composite, and we
            // have potentially many composite threads for different windows,
            // so using the default stack size is excessive. A reasonably small
            // stack size should be more than enough for SWGL and reduce memory
            // overhead.
            // Bug 1731569 - Need at least 36K to avoid problems with ASAN.
            .stack_size(40 * 1024)
            .spawn(move || {
                profiler::register_thread(thread_name);
                // Process any available jobs. This will return a non-Ok
                // result when the job queue is dropped, causing the thread
                // to eventually exit.
                while let Some((job, band)) = info.take_job(true) {
                    info.process_job(job, band);
                }
                profiler::unregister_thread();
            })
            .expect("Failed creating SwComposite thread");
        result
    }

    fn deinit(&self) {
        // Signal that the thread needs to exit.
        self.shutting_down.store(true, Ordering::SeqCst);
        // Wake up the thread in case it is blocked waiting for new jobs
        self.jobs_available.notify_all();
    }

    /// Process a job contained in a dependency graph node received from the job queue.
    /// Any child dependencies will be unblocked as appropriate after processing. The
    /// job count will be updated to reflect this.
    fn process_job(&self, graph_node: &mut SwCompositeGraphNode, band: i32) {
        // Do the actual processing of the job contained in this node.
        graph_node.process_job(band);
        // Unblock any child dependencies now that this job has been processed.
        graph_node.unblock_children(self);
    }

    /// Queue a tile for composition by adding to the queue and increasing the job count.
    fn queue_composite(
        &self,
        locked_src: SwCompositeSource,
        locked_dst: swgl::LockedResource,
        src_rect: DeviceIntRect,
        dst_rect: DeviceIntRect,
        clip_rect: DeviceIntRect,
        opaque: bool,
        flip_x: bool,
        flip_y: bool,
        filter: ImageRendering,
        mut graph_node: SwCompositeGraphNodeRef,
        job_queue: &mut SwCompositeJobQueue,
    ) {
        // For jobs that would span a sufficiently large destination rectangle, split
        // it into multiple horizontal bands so that multiple threads can process them.
        let clipped_dst = match dst_rect.intersection(&clip_rect) {
            Some(clipped_dst) => clipped_dst,
            None => return,
        };

        let num_bands = if clipped_dst.width() >= 64 && clipped_dst.height() >= 64 {
            (clipped_dst.height() / 64).min(4) as u8
        } else {
            1
        };
        let job = SwCompositeJob {
            locked_src,
            locked_dst,
            src_rect,
            dst_rect,
            clipped_dst,
            opaque,
            flip_x,
            flip_y,
            filter,
            num_bands,
        };
        if graph_node.set_job(job, num_bands) {
            self.send_job(job_queue, graph_node);
        }
    }

    fn prepare_for_composites(&self) {
        // Initially, the job queue is empty. Trivially, this means we consider all
        // jobs queued so far as completed.
        self.jobs_completed.store(true, Ordering::SeqCst);
    }

    /// Lock the thread for access to the job queue.
    fn lock(&self) -> SwCompositeThreadLock {
        self.jobs.lock().unwrap()
    }

    /// Send a job to the composite thread by adding it to the job queue.
    /// Signal that this job has been added in case the queue was empty and the
    /// SwComposite thread is waiting for jobs.
    fn send_job(&self, queue: &mut SwCompositeJobQueue, job: SwCompositeGraphNodeRef) {
        if queue.is_empty() {
            self.jobs_completed.store(false, Ordering::SeqCst);
            self.jobs_available.notify_all();
        }
        queue.push_back(job);
    }

    /// Try to get a band of work from the currently cached job when available.
    /// If there is a job, but it has no available bands left, null out the job
    /// so that other threads do not bother checking the job.
    fn try_take_job(&self) -> Option<(&mut SwCompositeGraphNode, i32)> {
        let current_job_ptr = self.current_job.load(Ordering::SeqCst);
        if let Some(current_job) = unsafe { current_job_ptr.as_mut() } {
            let (band, done) = current_job.take_band();
            if done {
                let _ = self.current_job.compare_exchange(
                    current_job_ptr,
                    ptr::null_mut(),
                    Ordering::SeqCst,
                    Ordering::SeqCst,
                );
            }
            if let Some(band) = band {
                return Some((current_job, band));
            }
        }
        return None;
    }

    /// Take a job from the queue. Optionally block waiting for jobs to become
    /// available if this is called from the SwComposite thread.
    fn take_job(&self, wait: bool) -> Option<(&mut SwCompositeGraphNode, i32)> {
        // First try checking the cached job outside the scope of the mutex.
        // For jobs that have multiple bands, this allows us to avoid having
        // to lock the mutex multiple times to check the job for each band.
        if let Some((job, band)) = self.try_take_job() {
            return Some((job, band));
        }
        // Lock the job queue while checking for available jobs. The lock
        // won't be held while the job is processed later outside of this
        // function so that other threads can pull from the queue meanwhile.
        let mut jobs = self.lock();
        loop {
            // While inside the mutex, check the cached job again to see if it
            // has been updated.
            if let Some((job, band)) = self.try_take_job() {
                return Some((job, band));
            }
            // If no cached job was available, try to take a job from the queue
            // and install it as the current job.
            if let Some(job) = jobs.pop_front() {
                self.current_job.store(job.get_ptr_mut(), Ordering::SeqCst);
                continue;
            }
            // Otherwise, the job queue is currently empty. Depending on the
            // job status, we may either wait for jobs to become available or exit.
            if wait {
                // For the SwComposite thread, if we arrive here, the job queue
                // is empty. Signal that all available jobs have been completed.
                self.jobs_completed.store(true, Ordering::SeqCst);
                if self.waiting_for_jobs.load(Ordering::SeqCst) {
                    // Wake the main thread if it is waiting for a change in job status.
                    self.jobs_available.notify_all();
                } else if self.shutting_down.load(Ordering::SeqCst) {
                    // If SwComposite thread needs to shut down, then exit and stop
                    // waiting for jobs.
                    return None;
                }
            } else {
                // If all available jobs have been completed by the SwComposite
                // thread, then the main thread no longer needs to wait for any
                // new jobs to appear in the queue and should exit.
                if self.jobs_completed.load(Ordering::SeqCst) {
                    return None;
                }
                // Otherwise, signal that the main thread is waiting for jobs.
                self.waiting_for_jobs.store(true, Ordering::SeqCst);
            }
            // Wait until jobs are added before checking the job queue again.
            jobs = self.jobs_available.wait(jobs).unwrap();
            if !wait {
                // The main thread is done waiting for jobs.
                self.waiting_for_jobs.store(false, Ordering::SeqCst);
            }
        }
    }

    /// Wait for all queued composition jobs to be processed.
    /// Instead of blocking on the SwComposite thread to complete all jobs,
    /// this may steal some jobs and attempt to process them while waiting.
    /// This may optionally process jobs synchronously. When normally doing
    /// asynchronous processing, the graph dependencies are relied upon to
    /// properly order the jobs, which makes it safe for the render thread
    /// to steal jobs from the composite thread without violating those
    /// dependencies. Synchronous processing just disables this job stealing
    /// so that the composite thread always handles the jobs in the order
    /// they were queued without having to rely upon possibly unavailable
    /// graph dependencies.
    fn wait_for_composites(&self, sync: bool) {
        // If processing asynchronously, try to steal jobs from the composite
        // thread if it is busy.
        if !sync {
            while let Some((job, band)) = self.take_job(false) {
                self.process_job(job, band);
            }
            // Once there are no more jobs, just fall through to waiting
            // synchronously for the composite thread to finish processing.
        }
        // If processing synchronously, just wait for the composite thread
        // to complete processing any in-flight jobs, then bail.
        let mut jobs = self.lock();
        // Signal that the main thread may wait for job completion so that the
        // SwComposite thread can wake it up if necessary.
        self.waiting_for_jobs.store(true, Ordering::SeqCst);
        // Wait for job completion to ensure there are no more in-flight jobs.
        while !self.jobs_completed.load(Ordering::SeqCst) {
            jobs = self.jobs_available.wait(jobs).unwrap();
        }
        // Done waiting for job completion.
        self.waiting_for_jobs.store(false, Ordering::SeqCst);
    }
}

/// Parameters describing how to composite a surface within a frame
type FrameSurface = (
    NativeSurfaceId,
    CompositorSurfaceTransform,
    DeviceIntRect,
    ImageRendering,
);

/// Adapter for RenderCompositors to work with SWGL that shuttles between
/// WebRender and the RenderCompositr via the Compositor API.
pub struct SwCompositor {
    gl: swgl::Context,
    compositor: Box<dyn MappableCompositor>,
    use_native_compositor: bool,
    surfaces: HashMap<NativeSurfaceId, SwSurface>,
    frame_surfaces: Vec<FrameSurface>,
    /// Any surface added after we're already compositing (i.e. debug overlay)
    /// needs to be processed after those frame surfaces. For simplicity we
    /// store them in a separate queue that gets processed later.
    late_surfaces: Vec<FrameSurface>,
    /// Any composite surfaces that were locked during the frame and need to be
    /// unlocked. frame_surfaces and late_surfaces may be pruned, so we can't
    /// rely on them to contain all surfaces that were actually locked and must
    /// track those separately.
    composite_surfaces: HashMap<ExternalImageId, SWGLCompositeSurfaceInfo>,
    cur_tile: NativeTileId,
    /// The maximum tile size required for any of the allocated surfaces.
    max_tile_size: DeviceIntSize,
    /// Reuse the same depth texture amongst all tiles in all surfaces.
    /// This depth texture must be big enough to accommodate the largest used
    /// tile size for any surface. The maximum requested tile size is tracked
    /// to ensure that this depth texture is at least that big.
    /// This is initialized when the first surface is created and freed when
    /// the last surface is destroyed, to ensure compositors with no surfaces
    /// are not holding on to extra memory.
    depth_id: Option<u32>,
    /// Instance of the SwComposite thread, only created if we are not relying
    /// on a native RenderCompositor.
    composite_thread: Option<Arc<SwCompositeThread>>,
    /// SWGL locked resource for sharing framebuffer with SwComposite thread
    locked_framebuffer: Option<swgl::LockedResource>,
    /// Whether we are currently in the middle of compositing
    is_compositing: bool,
}

impl SwCompositor {
    pub fn new(
        gl: swgl::Context,
        compositor: Box<dyn MappableCompositor>,
        use_native_compositor: bool,
    ) -> Self {
        // Only create the SwComposite thread if we're not using a native render
        // compositor. Thus, we are compositing into the main software framebuffer,
        // which benefits from compositing asynchronously while updating tiles.
        let composite_thread = if !use_native_compositor {
            Some(SwCompositeThread::new())
        } else {
            None
        };
        SwCompositor {
            gl,
            compositor,
            use_native_compositor,
            surfaces: HashMap::new(),
            frame_surfaces: Vec::new(),
            late_surfaces: Vec::new(),
            composite_surfaces: HashMap::new(),
            cur_tile: NativeTileId {
                surface_id: NativeSurfaceId(0),
                x: 0,
                y: 0,
            },
            max_tile_size: DeviceIntSize::zero(),
            depth_id: None,
            composite_thread,
            locked_framebuffer: None,
            is_compositing: false,
        }
    }

    fn deinit_tile(&self, tile: &SwTile) {
        self.gl.delete_framebuffers(&[tile.fbo_id]);
        self.gl.delete_textures(&[tile.color_id]);
    }

    fn deinit_surface(&self, surface: &SwSurface) {
        for tile in &surface.tiles {
            self.deinit_tile(tile);
        }
    }

    /// Attempt to occlude any queued surfaces with an opaque occluder rect. If
    /// an existing surface is occluded, we attempt to restrict its clip rect
    /// so long as it can remain a single clip rect. Existing frame surfaces
    /// that are opaque will be fused if possible with the supplied occluder
    /// rect to further try and restrict any underlying surfaces.
    fn occlude_surfaces(&mut self) {
        // Check if inner rect is fully included in outer rect
        fn includes(outer: &Range<i32>, inner: &Range<i32>) -> bool {
            outer.start <= inner.start && outer.end >= inner.end
        }

        // Check if outer range overlaps either the start or end of a range. If
        // there is overlap, return the portion of the inner range remaining
        // after the overlap has been removed.
        fn overlaps(outer: &Range<i32>, inner: &Range<i32>) -> Option<Range<i32>> {
            if outer.start <= inner.start && outer.end >= inner.start {
                Some(outer.end..inner.end.max(outer.end))
            } else if outer.start <= inner.end && outer.end >= inner.end {
                Some(inner.start..outer.start.max(inner.start))
            } else {
                None
            }
        }

        fn set_x_range(rect: &mut DeviceIntRect, range: &Range<i32>) {
            rect.min.x = range.start;
            rect.max.x = range.end;
        }

        fn set_y_range(rect: &mut DeviceIntRect, range: &Range<i32>) {
            rect.min.y = range.start;
            rect.max.y = range.end;
        }

        fn union(base: Range<i32>, extra: Range<i32>) -> Range<i32> {
            base.start.min(extra.start)..base.end.max(extra.end)
        }

        // Ensure an occluder surface is both opaque and has all interior tiles.
        fn valid_occluder(surface: &SwSurface) -> bool {
            surface.is_opaque && surface.has_all_tiles()
        }

        // Before we can try to occlude any surfaces, we need to fix their clip rects to tightly
        // bound the valid region. The clip rect might otherwise enclose an invalid area that
        // can't fully occlude anything even if the surface is opaque.
        for &mut (ref id, ref transform, ref mut clip_rect, _) in &mut self.frame_surfaces {
            if let Some(surface) = self.surfaces.get(id) {
                // Restrict the clip rect to fall within the valid region of the surface.
                *clip_rect = surface.device_bounds(transform, clip_rect).unwrap_or_default();
            }
        }

        // For each frame surface, treat it as an occluder if it is non-empty and opaque. Look
        // through the preceding surfaces to see if any can be occluded.
        for occlude_index in 0..self.frame_surfaces.len() {
            let (ref occlude_id, _, ref occlude_rect, _) = self.frame_surfaces[occlude_index];
            match self.surfaces.get(occlude_id) {
                Some(occluder) if valid_occluder(occluder) && !occlude_rect.is_empty() => {}
                _ => continue,
            }

            // Traverse the queued surfaces for this frame in the reverse order of
            // how they are composited, or rather, in order of visibility. For each
            // surface, check if the occluder can restrict the clip rect such that
            // the clip rect can remain a single rect. If the clip rect overlaps
            // the occluder on one axis interval while remaining fully included in
            // the occluder's other axis interval, then we can chop down the edge
            // of the clip rect on the overlapped axis. Further, if the surface is
            // opaque and its clip rect exactly matches the occluder rect on one
            // axis interval while overlapping on the other, fuse it with the
            // occluder rect before considering any underlying surfaces.
            let (mut occlude_x, mut occlude_y) = (occlude_rect.x_range(), occlude_rect.y_range());
            for &mut (ref id, _, ref mut clip_rect, _) in self.frame_surfaces[..occlude_index].iter_mut().rev() {
                if let Some(surface) = self.surfaces.get(id) {
                    let (clip_x, clip_y) = (clip_rect.x_range(), clip_rect.y_range());
                    if includes(&occlude_x, &clip_x) {
                        if let Some(visible) = overlaps(&occlude_y, &clip_y) {
                            set_y_range(clip_rect, &visible);
                            if occlude_x == clip_x && valid_occluder(surface) {
                                occlude_y = union(occlude_y, visible);
                            }
                        }
                    } else if includes(&occlude_y, &clip_y) {
                        if let Some(visible) = overlaps(&occlude_x, &clip_x) {
                            set_x_range(clip_rect, &visible);
                            if occlude_y == clip_y && valid_occluder(surface) {
                                occlude_x = union(occlude_x, visible);
                            }
                        }
                    }
                }
            }
        }
    }

    /// Reset tile dependency state for a new frame.
    fn reset_overlaps(&mut self) {
        for surface in self.surfaces.values_mut() {
            for tile in &mut surface.tiles {
                tile.overlaps.set(0);
                tile.invalid.set(false);
                tile.graph_node.reset();
            }
        }
    }

    /// Computes an overlap count for a tile that falls within the given composite
    /// destination rectangle. This requires checking all surfaces currently queued for
    /// composition so far in this frame and seeing if they have any invalidated tiles
    /// whose destination rectangles would also overlap the supplied tile. If so, then the
    /// increment the overlap count to account for all such dependencies on invalid tiles.
    /// Tiles with the same overlap count will still be drawn with a stable ordering in
    /// the order the surfaces were queued, so it is safe to ignore other possible sources
    /// of composition ordering dependencies, as the later queued tile will still be drawn
    /// later than the blocking tiles within that stable order. We assume that the tile's
    /// surface hasn't yet been added to the current frame list of surfaces to composite
    /// so that we only process potential blockers from surfaces that would come earlier
    /// in composition.
    fn init_overlaps(
        &self,
        overlap_id: &NativeSurfaceId,
        overlap_surface: &SwSurface,
        overlap_tile: &SwTile,
        overlap_transform: &CompositorSurfaceTransform,
        overlap_clip_rect: &DeviceIntRect,
    ) {
        // Record an extra overlap for an invalid tile to track the tile's dependency
        // on its own future update.
        let mut overlaps = if overlap_tile.invalid.get() { 1 } else { 0 };

        let overlap_rect = match overlap_tile.overlap_rect(overlap_surface, overlap_transform, overlap_clip_rect) {
            Some(overlap_rect) => overlap_rect,
            None => {
                overlap_tile.overlaps.set(overlaps);
                return;
            }
        };

        for &(ref id, ref transform, ref clip_rect, _) in &self.frame_surfaces {
            // We only want to consider surfaces that were added before the current one we're
            // checking for overlaps. If we find that surface, then we're done.
            if id == overlap_id {
                break;
            }
            // If the surface's clip rect doesn't overlap the tile's rect,
            // then there is no need to check any tiles within the surface.
            if !overlap_rect.intersects(clip_rect) {
                continue;
            }
            if let Some(surface) = self.surfaces.get(id) {
                for tile in &surface.tiles {
                    // If there is a deferred tile that might overlap the destination rectangle,
                    // record the overlap.
                    if tile.may_overlap(surface, transform, clip_rect, &overlap_rect) {
                        if tile.overlaps.get() > 0 {
                            overlaps += 1;
                        }
                        // Regardless of whether this tile is deferred, if it has dependency
                        // overlaps, then record that it is potentially a dependency parent.
                        tile.graph_node.get_mut().add_child(overlap_tile.graph_node.clone());
                    }
                }
            }
        }
        if overlaps > 0 {
            // Has a dependency on some invalid tiles, so need to defer composition.
            overlap_tile.overlaps.set(overlaps);
        }
    }

    /// Helper function that queues a composite job to the current locked framebuffer
    fn queue_composite(
        &self,
        surface: &SwSurface,
        transform: &CompositorSurfaceTransform,
        clip_rect: &DeviceIntRect,
        filter: ImageRendering,
        tile: &SwTile,
        job_queue: &mut SwCompositeJobQueue,
    ) {
        if let Some(ref composite_thread) = self.composite_thread {
            if let Some((src_rect, dst_rect, flip_x, flip_y)) = tile.composite_rects(surface, transform, clip_rect) {
                let source = if let Some(ref external_image) = surface.external_image {
                    // If the surface has an attached external image, lock any textures supplied in the descriptor.
                    match self.composite_surfaces.get(external_image) {
                        Some(ref info) => match info.yuv_planes {
                            0 => match self.gl.lock_texture(info.textures[0]) {
                                Some(texture) => SwCompositeSource::BGRA(texture),
                                None => return,
                            },
                            3 => match (
                                self.gl.lock_texture(info.textures[0]),
                                self.gl.lock_texture(info.textures[1]),
                                self.gl.lock_texture(info.textures[2]),
                            ) {
                                (Some(y_texture), Some(u_texture), Some(v_texture)) => SwCompositeSource::YUV(
                                    y_texture,
                                    u_texture,
                                    v_texture,
                                    info.color_space,
                                    info.color_depth,
                                ),
                                _ => return,
                            },
                            _ => panic!("unsupported number of YUV planes: {}", info.yuv_planes),
                        },
                        None => return,
                    }
                } else if let Some(texture) = self.gl.lock_texture(tile.color_id) {
                    // Lock the texture representing the picture cache tile.
                    SwCompositeSource::BGRA(texture)
                } else {
                    return;
                };
                if let Some(ref framebuffer) = self.locked_framebuffer {
                    composite_thread.queue_composite(
                        source,
                        framebuffer.clone(),
                        src_rect,
                        dst_rect,
                        *clip_rect,
                        surface.is_opaque,
                        flip_x,
                        flip_y,
                        filter,
                        tile.graph_node.clone(),
                        job_queue,
                    );
                }
            }
        }
    }

    /// Lock a surface with an attached external image for compositing.
    fn try_lock_composite_surface(&mut self, device: &mut Device, id: &NativeSurfaceId) {
        if let Some(surface) = self.surfaces.get_mut(id) {
            if let Some(external_image) = surface.external_image {
                assert!(!surface.tiles.is_empty());
                let tile = &mut surface.tiles[0];
                if let Some(info) = self.composite_surfaces.get(&external_image) {
                    tile.valid_rect = DeviceIntRect::from_size(info.size);
                    return;
                }
                // If the surface has an attached external image, attempt to lock the external image
                // for compositing. Yields a descriptor of textures and data necessary for their
                // interpretation on success.
                let mut info = SWGLCompositeSurfaceInfo {
                    yuv_planes: 0,
                    textures: [0; 3],
                    color_space: YuvRangedColorSpace::GbrIdentity,
                    color_depth: ColorDepth::Color8,
                    size: DeviceIntSize::zero(),
                };
                if self.compositor.lock_composite_surface(device, self.gl.into(), external_image, &mut info) {
                    tile.valid_rect = DeviceIntRect::from_size(info.size);
                    self.composite_surfaces.insert(external_image, info);
                } else {
                    tile.valid_rect = DeviceIntRect::zero();
                }
            }
        }
    }

    /// Look for any attached external images that have been locked and then unlock them.
    fn unlock_composite_surfaces(&mut self, device: &mut Device) {
        for &external_image in self.composite_surfaces.keys() {
            self.compositor.unlock_composite_surface(device, self.gl.into(), external_image);
        }
        self.composite_surfaces.clear();
    }

    /// Issue composites for any tiles that are no longer blocked following a tile update.
    /// We process all surfaces and tiles in the order they were queued.
    fn flush_composites(&self, tile_id: &NativeTileId, surface: &SwSurface, tile: &SwTile) {
        let composite_thread = match &self.composite_thread {
            Some(composite_thread) => composite_thread,
            None => return,
        };

        // Look for the tile in the frame list and composite it if it has no dependencies.
        let mut frame_surfaces = self
            .frame_surfaces
            .iter()
            .skip_while(|&(ref id, _, _, _)| *id != tile_id.surface_id);
        let (overlap_rect, mut lock) = match frame_surfaces.next() {
            Some(&(_, ref transform, ref clip_rect, filter)) => {
                // Remove invalid tile's update dependency.
                if tile.invalid.get() {
                    tile.overlaps.set(tile.overlaps.get() - 1);
                }
                // If the tile still has overlaps, keep deferring it till later.
                if tile.overlaps.get() > 0 {
                    return;
                }
                // Otherwise, the tile's dependencies are all resolved, so composite it.
                let mut lock = composite_thread.lock();
                self.queue_composite(surface, transform, clip_rect, filter, tile, &mut lock);
                // Finally, get the tile's overlap rect used for tracking dependencies
                match tile.overlap_rect(surface, transform, clip_rect) {
                    Some(overlap_rect) => (overlap_rect, lock),
                    None => return,
                }
            }
            None => return,
        };

        // Accumulate rects whose dependencies have been satisfied from this update.
        // Store the union of all these bounds to quickly reject unaffected tiles.
        let mut flushed_bounds = overlap_rect;
        let mut flushed_rects = vec![overlap_rect];

        // Check surfaces following the update in the frame list and see if they would overlap it.
        for &(ref id, ref transform, ref clip_rect, filter) in frame_surfaces {
            // If the clip rect doesn't overlap the conservative bounds, we can skip the whole surface.
            if !flushed_bounds.intersects(clip_rect) {
                continue;
            }
            if let Some(surface) = self.surfaces.get(&id) {
                // Search through the surface's tiles for any blocked on this update and queue jobs for them.
                for tile in &surface.tiles {
                    let mut overlaps = tile.overlaps.get();
                    // Only check tiles that have existing unresolved dependencies
                    if overlaps == 0 {
                        continue;
                    }
                    // Get this tile's overlap rect for tracking dependencies
                    let overlap_rect = match tile.overlap_rect(surface, transform, clip_rect) {
                        Some(overlap_rect) => overlap_rect,
                        None => continue,
                    };
                    // Do a quick check to see if the tile overlaps the conservative bounds.
                    if !overlap_rect.intersects(&flushed_bounds) {
                        continue;
                    }
                    // Decrement the overlap count if this tile is dependent on any flushed rects.
                    for flushed_rect in &flushed_rects {
                        if overlap_rect.intersects(flushed_rect) {
                            overlaps -= 1;
                        }
                    }
                    if overlaps != tile.overlaps.get() {
                        // If the overlap count changed, this tile had a dependency on some flush rects.
                        // If the count hit zero, it is ready to composite.
                        tile.overlaps.set(overlaps);
                        if overlaps == 0 {
                            self.queue_composite(surface, transform, clip_rect, filter, tile, &mut lock);
                            // Record that the tile got flushed to update any downwind dependencies.
                            flushed_bounds = flushed_bounds.union(&overlap_rect);
                            flushed_rects.push(overlap_rect);
                        }
                    }
                }
            }
        }
    }
}

impl Compositor for SwCompositor {
    fn create_surface(
        &mut self,
        device: &mut Device,
        id: NativeSurfaceId,
        virtual_offset: DeviceIntPoint,
        tile_size: DeviceIntSize,
        is_opaque: bool,
    ) {
        if self.use_native_compositor {
            self.compositor.create_surface(device, id, virtual_offset, tile_size, is_opaque);
        }
        self.max_tile_size = DeviceIntSize::new(
            self.max_tile_size.width.max(tile_size.width),
            self.max_tile_size.height.max(tile_size.height),
        );
        if self.depth_id.is_none() {
            self.depth_id = Some(self.gl.gen_textures(1)[0]);
        }
        self.surfaces.insert(id, SwSurface::new(tile_size, is_opaque));
    }

    fn create_external_surface(&mut self, device: &mut Device, id: NativeSurfaceId, is_opaque: bool) {
        if self.use_native_compositor {
            self.compositor.create_external_surface(device, id, is_opaque);
        }
        self.surfaces
            .insert(id, SwSurface::new(DeviceIntSize::zero(), is_opaque));
    }

    fn create_backdrop_surface(&mut self, _device: &mut Device, _id: NativeSurfaceId, _color: ColorF) {
        unreachable!("Not implemented.")
    }

    fn destroy_surface(&mut self, device: &mut Device, id: NativeSurfaceId) {
        if let Some(surface) = self.surfaces.remove(&id) {
            self.deinit_surface(&surface);
        }
        if self.use_native_compositor {
            self.compositor.destroy_surface(device, id);
        }
        if self.surfaces.is_empty() {
            if let Some(depth_id) = self.depth_id.take() {
                self.gl.delete_textures(&[depth_id]);
            }
        }
    }

    fn deinit(&mut self, device: &mut Device) {
        if let Some(ref composite_thread) = self.composite_thread {
            composite_thread.deinit();
        }

        for surface in self.surfaces.values() {
            self.deinit_surface(surface);
        }

        if let Some(depth_id) = self.depth_id.take() {
            self.gl.delete_textures(&[depth_id]);
        }

        if self.use_native_compositor {
            self.compositor.deinit(device);
        }
    }

    fn create_tile(&mut self, device: &mut Device, id: NativeTileId) {
        if self.use_native_compositor {
            self.compositor.create_tile(device, id);
        }
        if let Some(surface) = self.surfaces.get_mut(&id.surface_id) {
            let mut tile = SwTile::new(id.x, id.y);
            tile.color_id = self.gl.gen_textures(1)[0];
            tile.fbo_id = self.gl.gen_framebuffers(1)[0];
            let mut prev_fbo = [0];
            unsafe {
                self.gl.get_integer_v(gl::DRAW_FRAMEBUFFER_BINDING, &mut prev_fbo);
            }
            self.gl.bind_framebuffer(gl::DRAW_FRAMEBUFFER, tile.fbo_id);
            self.gl.framebuffer_texture_2d(
                gl::DRAW_FRAMEBUFFER,
                gl::COLOR_ATTACHMENT0,
                gl::TEXTURE_2D,
                tile.color_id,
                0,
            );
            self.gl.framebuffer_texture_2d(
                gl::DRAW_FRAMEBUFFER,
                gl::DEPTH_ATTACHMENT,
                gl::TEXTURE_2D,
                self.depth_id.expect("depth texture should be initialized"),
                0,
            );
            self.gl.bind_framebuffer(gl::DRAW_FRAMEBUFFER, prev_fbo[0] as gl::GLuint);

            surface.tiles.push(tile);
        }
    }

    fn destroy_tile(&mut self, device: &mut Device, id: NativeTileId) {
        if let Some(surface) = self.surfaces.get_mut(&id.surface_id) {
            if let Some(idx) = surface.tiles.iter().position(|t| t.x == id.x && t.y == id.y) {
                let tile = surface.tiles.remove(idx);
                self.deinit_tile(&tile);
            }
        }
        if self.use_native_compositor {
            self.compositor.destroy_tile(device, id);
        }
    }

    fn attach_external_image(&mut self, device: &mut Device, id: NativeSurfaceId, external_image: ExternalImageId) {
        if self.use_native_compositor {
            self.compositor.attach_external_image(device, id, external_image);
        }
        if let Some(surface) = self.surfaces.get_mut(&id) {
            // Surfaces with attached external images have a single tile at the origin encompassing
            // the entire surface.
            assert!(surface.tile_size.is_empty());
            surface.external_image = Some(external_image);
            if surface.tiles.is_empty() {
                surface.tiles.push(SwTile::new(0, 0));
            }
        }
    }

    fn invalidate_tile(&mut self, device: &mut Device, id: NativeTileId, valid_rect: DeviceIntRect) {
        if self.use_native_compositor {
            self.compositor.invalidate_tile(device, id, valid_rect);
        }
        if let Some(surface) = self.surfaces.get_mut(&id.surface_id) {
            if let Some(tile) = surface.tiles.iter_mut().find(|t| t.x == id.x && t.y == id.y) {
                tile.invalid.set(true);
                tile.valid_rect = valid_rect;
            }
        }
    }

    fn bind(&mut self, device: &mut Device, id: NativeTileId, dirty_rect: DeviceIntRect, valid_rect: DeviceIntRect) -> NativeSurfaceInfo {
        let mut surface_info = NativeSurfaceInfo {
            origin: DeviceIntPoint::zero(),
            fbo_id: 0,
        };

        self.cur_tile = id;

        if let Some(surface) = self.surfaces.get_mut(&id.surface_id) {
            if let Some(tile) = surface.tiles.iter_mut().find(|t| t.x == id.x && t.y == id.y) {
                assert_eq!(tile.valid_rect, valid_rect);
                if valid_rect.is_empty() {
                    return surface_info;
                }

                let mut stride = 0;
                let mut buf = ptr::null_mut();
                if self.use_native_compositor {
                    if let Some(tile_info) = self.compositor.map_tile(device, id, dirty_rect, valid_rect) {
                        stride = tile_info.stride;
                        buf = tile_info.data;
                    }
                }
                self.gl.set_texture_buffer(
                    tile.color_id,
                    gl::RGBA8,
                    valid_rect.width(),
                    valid_rect.height(),
                    stride,
                    buf,
                    surface.tile_size.width,
                    surface.tile_size.height,
                );
                // Reallocate the shared depth buffer to fit the valid rect, but within
                // a buffer sized to actually fit at least the maximum possible tile size.
                // The maximum tile size is supplied to avoid reallocation by ensuring the
                // allocated buffer is actually big enough to accommodate the largest tile
                // size requested by any used surface, even though supplied valid rect may
                // actually be much smaller than this. This will only force a texture
                // reallocation inside SWGL if the maximum tile size has grown since the
                // last time it was supplied, instead simply reusing the buffer if the max
                // tile size is not bigger than what was previously allocated.
                self.gl.set_texture_buffer(
                    self.depth_id.expect("depth texture should be initialized"),
                    gl::DEPTH_COMPONENT,
                    valid_rect.width(),
                    valid_rect.height(),
                    0,
                    ptr::null_mut(),
                    self.max_tile_size.width,
                    self.max_tile_size.height,
                );
                surface_info.fbo_id = tile.fbo_id;
                surface_info.origin -= valid_rect.min.to_vector();
            }
        }

        surface_info
    }

    fn unbind(&mut self, device: &mut Device) {
        let id = self.cur_tile;
        if let Some(surface) = self.surfaces.get(&id.surface_id) {
            if let Some(tile) = surface.tiles.iter().find(|t| t.x == id.x && t.y == id.y) {
                if tile.valid_rect.is_empty() {
                    // If we didn't actually render anything, then just queue any
                    // dependencies.
                    self.flush_composites(&id, surface, tile);
                    return;
                }

                // Force any delayed clears to be resolved.
                self.gl.resolve_framebuffer(tile.fbo_id);

                if self.use_native_compositor {
                    self.compositor.unmap_tile(device);
                } else {
                    // If we're not relying on a native compositor, then composite
                    // any tiles that are dependent on this tile being updated but
                    // are otherwise ready to composite.
                    self.flush_composites(&id, surface, tile);
                }
            }
        }
    }

    fn begin_frame(&mut self, device: &mut Device) {
        self.reset_overlaps();

        if self.use_native_compositor {
            self.compositor.begin_frame(device);
        }
    }

    fn add_surface(
        &mut self,
        device: &mut Device,
        id: NativeSurfaceId,
        transform: CompositorSurfaceTransform,
        clip_rect: DeviceIntRect,
        filter: ImageRendering,
    ) {
        if self.use_native_compositor {
            self.compositor.add_surface(device, id, transform, clip_rect, filter);
        }

        if self.composite_thread.is_some() {
            // If the surface has an attached external image, try to lock that now.
            self.try_lock_composite_surface(device, &id);

            // If we're already busy compositing, then add to the queue of late
            // surfaces instead of trying to sort into the main frame queue.
            // These late surfaces will not have any overlap tracking done for
            // them and must be processed synchronously at the end of the frame.
            if self.is_compositing {
                self.late_surfaces.push((id, transform, clip_rect, filter));
                return;
            }
        }

        self.frame_surfaces.push((id, transform, clip_rect, filter));
    }

    /// Now that all the dependency graph nodes have been built, start queuing
    /// composition jobs. Any surfaces that get added after this point in the
    /// frame will not have overlap dependencies assigned and so must instead
    /// be added to the late_surfaces queue to be processed at the end of the
    /// frame.
    fn start_compositing(&mut self, device: &mut Device, clear_color: ColorF, dirty_rects: &[DeviceIntRect], _opaque_rects: &[DeviceIntRect]) {
        self.is_compositing = true;

        // Opaque rects are currently only computed here, not by WR itself, so we
        // ignore the passed parameter and forward our own version onto the native
        // compositor.
        let mut opaque_rects: Vec<DeviceIntRect> = Vec::new();
        for &(ref id, ref transform, ref clip_rect, _filter) in &self.frame_surfaces {
            if let Some(surface) = self.surfaces.get(id) {
                if !surface.is_opaque {
                    continue;
                }

                for tile in &surface.tiles {
                    if let Some(rect) = tile.overlap_rect(surface, transform, clip_rect) {
                        opaque_rects.push(rect);
                    }
                }
            }
        }

        self.compositor.start_compositing(device, clear_color, dirty_rects, &opaque_rects);

        if let Some(dirty_rect) = dirty_rects
            .iter()
            .fold(DeviceIntRect::zero(), |acc, dirty_rect| acc.union(dirty_rect))
            .to_non_empty()
        {
            // Factor dirty rect into surface clip rects
            for &mut (_, _, ref mut clip_rect, _) in &mut self.frame_surfaces {
                *clip_rect = clip_rect.intersection(&dirty_rect).unwrap_or_default();
            }
        }

        self.occlude_surfaces();

        // Discard surfaces that are entirely clipped out
        self.frame_surfaces
            .retain(|&(_, _, ref clip_rect, _)| !clip_rect.is_empty());

        if let Some(ref composite_thread) = self.composite_thread {
            // Compute overlap dependencies for surfaces.
            for &(ref id, ref transform, ref clip_rect, _filter) in &self.frame_surfaces {
                if let Some(surface) = self.surfaces.get(id) {
                    for tile in &surface.tiles {
                        self.init_overlaps(id, surface, tile, transform, clip_rect);
                    }
                }
            }

            self.locked_framebuffer = self.gl.lock_framebuffer(0);

            composite_thread.prepare_for_composites();

            // Issue any initial composite jobs for the SwComposite thread.
            let mut lock = composite_thread.lock();
            for &(ref id, ref transform, ref clip_rect, filter) in &self.frame_surfaces {
                if let Some(surface) = self.surfaces.get(id) {
                    for tile in &surface.tiles {
                        if tile.overlaps.get() == 0 {
                            // Not dependent on any tiles, so go ahead and composite now.
                            self.queue_composite(surface, transform, clip_rect, filter, tile, &mut lock);
                        }
                    }
                }
            }
        }
    }

    fn end_frame(&mut self, device: &mut Device,) {
        self.is_compositing = false;

        if self.use_native_compositor {
            self.compositor.end_frame(device);
        } else if let Some(ref composite_thread) = self.composite_thread {
            // Need to wait for the SwComposite thread to finish any queued jobs.
            composite_thread.wait_for_composites(false);

            if !self.late_surfaces.is_empty() {
                // All of the main frame surface have been processed by now. But if there
                // are any late surfaces, we need to kick off a new synchronous composite
                // phase. These late surfaces don't have any overlap/dependency tracking,
                // so we just queue them directly and wait synchronously for the composite
                // thread to process them in order.
                composite_thread.prepare_for_composites();
                {
                    let mut lock = composite_thread.lock();
                    for &(ref id, ref transform, ref clip_rect, filter) in &self.late_surfaces {
                        if let Some(surface) = self.surfaces.get(id) {
                            for tile in &surface.tiles {
                                self.queue_composite(surface, transform, clip_rect, filter, tile, &mut lock);
                            }
                        }
                    }
                }
                composite_thread.wait_for_composites(true);
            }

            self.locked_framebuffer = None;

            self.unlock_composite_surfaces(device);
        }

        self.frame_surfaces.clear();
        self.late_surfaces.clear();

        self.reset_overlaps();
    }

    fn enable_native_compositor(&mut self, device: &mut Device, enable: bool) {
        // TODO: The SwComposite thread is not properly instantiated if this is
        // ever actually toggled.
        assert_eq!(self.use_native_compositor, enable);
        self.compositor.enable_native_compositor(device, enable);
        self.use_native_compositor = enable;
    }

    fn get_capabilities(&self, device: &mut Device) -> CompositorCapabilities {
        self.compositor.get_capabilities(device)
    }

    fn get_window_visibility(&self, device: &mut Device) -> WindowVisibility {
        self.compositor.get_window_visibility(device)
    }
}