summaryrefslogtreecommitdiffstats
path: root/gfx/ycbcr/yuv_convert.cpp
blob: f7d01a3ef8b97889e99472bb948c4544f359f9fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
// YV24 is a full plane of Y and a full height, full width chroma planes
// Y8   is a full plane of Y and no chroma planes (i.e., monochrome)
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.

#include "yuv_convert.h"

#include "mozilla/StaticPrefs_gfx.h"
#include "libyuv.h"
#include "scale_yuv_argb.h"
// Header for low level row functions.
#include "yuv_row.h"
#include "mozilla/SSE.h"
#include "mozilla/IntegerRange.h"

namespace mozilla {

namespace gfx {

// 16.16 fixed point arithmetic
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
const int kFractionMask = ((1 << kFractionBits) - 1);

// clang-format off

libyuv::FourCC FourCCFromYUVType(YUVType aYUVType) {
  switch (aYUVType) {
    case YV24: return libyuv::FOURCC_I444;
    case YV16: return libyuv::FOURCC_I422;
    case YV12: return libyuv::FOURCC_I420;
    case   Y8: return libyuv::FOURCC_I400;
    default:   return libyuv::FOURCC_ANY;
  }
}

int GBRPlanarToARGB(const uint8_t* src_y, int y_pitch,
                     const uint8_t* src_u, int u_pitch,
                     const uint8_t* src_v, int v_pitch,
                     uint8_t* rgb_buf, int rgb_pitch,
                     int pic_width, int pic_height) {
  // libyuv has no native conversion function for this
  // fixme: replace with something less awful
  for (const auto row : IntegerRange(pic_height)) {
    for (const auto col : IntegerRange(pic_width)) {
      rgb_buf[rgb_pitch * row + col * 4 + 0] = src_u[u_pitch * row + col];
      rgb_buf[rgb_pitch * row + col * 4 + 1] = src_y[y_pitch * row + col];
      rgb_buf[rgb_pitch * row + col * 4 + 2] = src_v[v_pitch * row + col];
      rgb_buf[rgb_pitch * row + col * 4 + 3] = 255;
    }
  }
  return 0;
}

// Convert a frame of YUV to 32 bit ARGB.
void ConvertYCbCrToRGB32(const uint8_t* y_buf, const uint8_t* u_buf,
                         const uint8_t* v_buf, uint8_t* rgb_buf, int pic_x,
                         int pic_y, int pic_width, int pic_height, int y_pitch,
                         int uv_pitch, int rgb_pitch, YUVType yuv_type,
                         YUVColorSpace yuv_color_space,
                         ColorRange color_range) {
  // Deprecated function's conversion is accurate.
  // libyuv converion is a bit inaccurate to get performance. It dynamically
  // calculates RGB from YUV to use simd. In it, signed byte is used for
  // conversion's coefficient, but it requests 129. libyuv cut 129 to 127. And
  // only 6 bits are used for a decimal part during the dynamic calculation.
  //
  // The function is still fast on some old intel chips.
  // See Bug 1256475.
  bool use_deprecated = StaticPrefs::gfx_ycbcr_accurate_conversion() ||
                        (supports_mmx() && supports_sse() && !supports_sse3() &&
                         yuv_color_space == YUVColorSpace::BT601 &&
                         color_range == ColorRange::LIMITED);
  // The deprecated function only support BT601.
  // See Bug 1210357.
  if (yuv_color_space != YUVColorSpace::BT601) {
    use_deprecated = false;
  }
  if (use_deprecated) {
    ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, pic_x, pic_y,
                                   pic_width, pic_height, y_pitch, uv_pitch,
                                   rgb_pitch, yuv_type);
    return;
  }

  decltype(libyuv::I420ToARGBMatrix)* fConvertYUVToARGB = nullptr;
  const uint8_t* src_y = nullptr;
  const uint8_t* src_u = nullptr;
  const uint8_t* src_v = nullptr;
  const libyuv::YuvConstants* yuv_constant = nullptr;

  switch (yuv_color_space) {
    case YUVColorSpace::BT2020:
      yuv_constant = color_range == ColorRange::LIMITED
        ? &libyuv::kYuv2020Constants
        : &libyuv::kYuvV2020Constants;
      break;
    case YUVColorSpace::BT709:
      yuv_constant = color_range == ColorRange::LIMITED
        ? &libyuv::kYuvH709Constants
        : &libyuv::kYuvF709Constants;
      break;
    case YUVColorSpace::Identity:
      MOZ_ASSERT(yuv_type == YV24, "Identity (aka RGB) with chroma subsampling is unsupported");
      if (yuv_type == YV24) {
        break;
      }
      [[fallthrough]]; // Assuming BT601 for unsupported input is better than crashing
    default:
      MOZ_FALLTHROUGH_ASSERT("Unsupported YUVColorSpace");
    case YUVColorSpace::BT601:
      yuv_constant = color_range == ColorRange::LIMITED
        ? &libyuv::kYuvI601Constants
        : &libyuv::kYuvJPEGConstants;
      break;
  }

  switch (yuv_type) {
    case YV24: {
      src_y = y_buf + y_pitch * pic_y + pic_x;
      src_u = u_buf + uv_pitch * pic_y + pic_x;
      src_v = v_buf + uv_pitch * pic_y + pic_x;

      if (yuv_color_space == YUVColorSpace::Identity) {
        // Special case for RGB image
        DebugOnly<int> err =
          GBRPlanarToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch,
                            rgb_buf, rgb_pitch, pic_width, pic_height);
        MOZ_ASSERT(!err);
        return;
      }

      fConvertYUVToARGB = libyuv::I444ToARGBMatrix;
      break;
    }
    case YV16: {
      src_y = y_buf + y_pitch * pic_y + pic_x;
      src_u = u_buf + uv_pitch * pic_y + pic_x / 2;
      src_v = v_buf + uv_pitch * pic_y + pic_x / 2;

      fConvertYUVToARGB = libyuv::I422ToARGBMatrix;
      break;
    }
    case YV12: {
      src_y = y_buf + y_pitch * pic_y + pic_x;
      src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2;
      src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2;

      fConvertYUVToARGB = libyuv::I420ToARGBMatrix;
      break;
    }
    case Y8: {
      src_y = y_buf + y_pitch * pic_y + pic_x;
      MOZ_ASSERT(u_buf == nullptr);
      MOZ_ASSERT(v_buf == nullptr);

      if (color_range == ColorRange::LIMITED) {
        DebugOnly<int> err =
            libyuv::I400ToARGB(src_y, y_pitch, rgb_buf, rgb_pitch, pic_width,
                              pic_height);
        MOZ_ASSERT(!err);
      } else {
        DebugOnly<int> err =
            libyuv::J400ToARGB(src_y, y_pitch, rgb_buf, rgb_pitch, pic_width,
                              pic_height);
        MOZ_ASSERT(!err);
      }

      return;
    }
    default:
      MOZ_ASSERT_UNREACHABLE("Unsupported YUV type");
  }

  DebugOnly<int> err =
    fConvertYUVToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch,
                      rgb_buf, rgb_pitch, yuv_constant, pic_width, pic_height);
  MOZ_ASSERT(!err);
}

// Convert a frame of YUV to 32 bit ARGB.
void ConvertYCbCrToRGB32_deprecated(const uint8_t* y_buf,
                                    const uint8_t* u_buf,
                                    const uint8_t* v_buf,
                                    uint8_t* rgb_buf,
                                    int pic_x,
                                    int pic_y,
                                    int pic_width,
                                    int pic_height,
                                    int y_pitch,
                                    int uv_pitch,
                                    int rgb_pitch,
                                    YUVType yuv_type) {
  unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
  unsigned int x_shift = yuv_type == YV24 ? 0 : 1;
  // Test for SSE because the optimized code uses movntq, which is not part of MMX.
  bool has_sse = supports_mmx() && supports_sse();
  // There is no optimized YV24 SSE routine so we check for this and
  // fall back to the C code.
  has_sse &= yuv_type != YV24;
  bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0;
  int x_width = odd_pic_x ? pic_width - 1 : pic_width;

  for (int y = pic_y; y < pic_height + pic_y; ++y) {
    uint8_t* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch;
    const uint8_t* y_ptr = y_buf + y * y_pitch + pic_x;
    const uint8_t* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
    const uint8_t* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);

    if (odd_pic_x) {
      // Handle the single odd pixel manually and use the
      // fast routines for the remaining.
      FastConvertYUVToRGB32Row_C(y_ptr++,
                                 u_ptr++,
                                 v_ptr++,
                                 rgb_row,
                                 1,
                                 x_shift);
      rgb_row += 4;
    }

    if (has_sse) {
      FastConvertYUVToRGB32Row(y_ptr,
                               u_ptr,
                               v_ptr,
                               rgb_row,
                               x_width);
    }
    else {
      FastConvertYUVToRGB32Row_C(y_ptr,
                                 u_ptr,
                                 v_ptr,
                                 rgb_row,
                                 x_width,
                                 x_shift);
    }
  }

  // MMX used for FastConvertYUVToRGB32Row requires emms instruction.
  if (has_sse)
    EMMS();
}

// C version does 8 at a time to mimic MMX code
static void FilterRows_C(uint8_t* ybuf, const uint8_t* y0_ptr, const uint8_t* y1_ptr,
                         int source_width, int source_y_fraction) {
  int y1_fraction = source_y_fraction;
  int y0_fraction = 256 - y1_fraction;
  uint8_t* end = ybuf + source_width;
  do {
    ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8;
    ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8;
    ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8;
    ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8;
    ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8;
    ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8;
    ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8;
    ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8;
    y0_ptr += 8;
    y1_ptr += 8;
    ybuf += 8;
  } while (ybuf < end);
}

#ifdef MOZILLA_MAY_SUPPORT_MMX
void FilterRows_MMX(uint8_t* ybuf, const uint8_t* y0_ptr, const uint8_t* y1_ptr,
                    int source_width, int source_y_fraction);
#endif

#ifdef MOZILLA_MAY_SUPPORT_SSE2
void FilterRows_SSE2(uint8_t* ybuf, const uint8_t* y0_ptr, const uint8_t* y1_ptr,
                     int source_width, int source_y_fraction);
#endif

static inline void FilterRows(uint8_t* ybuf, const uint8_t* y0_ptr,
                              const uint8_t* y1_ptr, int source_width,
                              int source_y_fraction) {
#ifdef MOZILLA_MAY_SUPPORT_SSE2
  if (mozilla::supports_sse2()) {
    FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
    return;
  }
#endif

#ifdef MOZILLA_MAY_SUPPORT_MMX
  if (mozilla::supports_mmx()) {
    FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
    return;
  }
#endif

  FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
}


// Scale a frame of YUV to 32 bit ARGB.
void ScaleYCbCrToRGB32(const uint8_t* y_buf,
                       const uint8_t* u_buf,
                       const uint8_t* v_buf,
                       uint8_t* rgb_buf,
                       int source_width,
                       int source_height,
                       int width,
                       int height,
                       int y_pitch,
                       int uv_pitch,
                       int rgb_pitch,
                       YUVType yuv_type,
                       YUVColorSpace yuv_color_space,
                       ScaleFilter filter) {
  bool use_deprecated =
      StaticPrefs::gfx_ycbcr_accurate_conversion() ||
#if defined(XP_WIN) && defined(_M_X64)
      // libyuv does not support SIMD scaling on win 64bit. See Bug 1295927.
      supports_sse3() ||
#endif
      (supports_mmx() && supports_sse() && !supports_sse3());
  // The deprecated function only support BT601.
  // See Bug 1210357.
  if (yuv_color_space != YUVColorSpace::BT601) {
    use_deprecated = false;
  }
  if (use_deprecated) {
    ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf,
                                 rgb_buf,
                                 source_width, source_height,
                                 width, height,
                                 y_pitch, uv_pitch,
                                 rgb_pitch,
                                 yuv_type,
                                 ROTATE_0,
                                 filter);
    return;
  }

  DebugOnly<int> err =
    libyuv::YUVToARGBScale(y_buf, y_pitch,
                           u_buf, uv_pitch,
                           v_buf, uv_pitch,
                           FourCCFromYUVType(yuv_type),
                           yuv_color_space,
                           source_width, source_height,
                           rgb_buf, rgb_pitch,
                           width, height,
                           libyuv::kFilterBilinear);
  MOZ_ASSERT(!err);
  return;
}

// Scale a frame of YUV to 32 bit ARGB.
void ScaleYCbCrToRGB32_deprecated(const uint8_t* y_buf,
                                  const uint8_t* u_buf,
                                  const uint8_t* v_buf,
                                  uint8_t* rgb_buf,
                                  int source_width,
                                  int source_height,
                                  int width,
                                  int height,
                                  int y_pitch,
                                  int uv_pitch,
                                  int rgb_pitch,
                                  YUVType yuv_type,
                                  Rotate view_rotate,
                                  ScaleFilter filter) {
  bool has_mmx = supports_mmx();

  // 4096 allows 3 buffers to fit in 12k.
  // Helps performance on CPU with 16K L1 cache.
  // Large enough for 3830x2160 and 30" displays which are 2560x1600.
  const int kFilterBufferSize = 4096;
  // Disable filtering if the screen is too big (to avoid buffer overflows).
  // This should never happen to regular users: they don't have monitors
  // wider than 4096 pixels.
  // TODO(fbarchard): Allow rotated videos to filter.
  if (source_width > kFilterBufferSize || view_rotate)
    filter = FILTER_NONE;

  unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
  // Diagram showing origin and direction of source sampling.
  // ->0   4<-
  // 7       3
  //
  // 6       5
  // ->1   2<-
  // Rotations that start at right side of image.
  if ((view_rotate == ROTATE_180) ||
      (view_rotate == ROTATE_270) ||
      (view_rotate == MIRROR_ROTATE_0) ||
      (view_rotate == MIRROR_ROTATE_90)) {
    y_buf += source_width - 1;
    u_buf += source_width / 2 - 1;
    v_buf += source_width / 2 - 1;
    source_width = -source_width;
  }
  // Rotations that start at bottom of image.
  if ((view_rotate == ROTATE_90) ||
      (view_rotate == ROTATE_180) ||
      (view_rotate == MIRROR_ROTATE_90) ||
      (view_rotate == MIRROR_ROTATE_180)) {
    y_buf += (source_height - 1) * y_pitch;
    u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
    v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
    source_height = -source_height;
  }

  // Handle zero sized destination.
  if (width == 0 || height == 0)
    return;
  int source_dx = source_width * kFractionMax / width;
  int source_dy = source_height * kFractionMax / height;
  int source_dx_uv = source_dx;

  if ((view_rotate == ROTATE_90) ||
      (view_rotate == ROTATE_270)) {
    int tmp = height;
    height = width;
    width = tmp;
    tmp = source_height;
    source_height = source_width;
    source_width = tmp;
    int original_dx = source_dx;
    int original_dy = source_dy;
    source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
    source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
    source_dy = original_dx;
    if (view_rotate == ROTATE_90) {
      y_pitch = -1;
      uv_pitch = -1;
      source_height = -source_height;
    } else {
      y_pitch = 1;
      uv_pitch = 1;
    }
  }

  // Need padding because FilterRows() will write 1 to 16 extra pixels
  // after the end for SSE2 version.
  uint8_t yuvbuf[16 + kFilterBufferSize * 3 + 16];
  uint8_t* ybuf =
      reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
  uint8_t* ubuf = ybuf + kFilterBufferSize;
  uint8_t* vbuf = ubuf + kFilterBufferSize;
  // TODO(fbarchard): Fixed point math is off by 1 on negatives.
  int yscale_fixed = (source_height << kFractionBits) / height;

  // TODO(fbarchard): Split this into separate function for better efficiency.
  for (int y = 0; y < height; ++y) {
    uint8_t* dest_pixel = rgb_buf + y * rgb_pitch;
    int source_y_subpixel = (y * yscale_fixed);
    if (yscale_fixed >= (kFractionMax * 2)) {
      source_y_subpixel += kFractionMax / 2;  // For 1/2 or less, center filter.
    }
    int source_y = source_y_subpixel >> kFractionBits;

    const uint8_t* y0_ptr = y_buf + source_y * y_pitch;
    const uint8_t* y1_ptr = y0_ptr + y_pitch;

    const uint8_t* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
    const uint8_t* u1_ptr = u0_ptr + uv_pitch;
    const uint8_t* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
    const uint8_t* v1_ptr = v0_ptr + uv_pitch;

    // vertical scaler uses 16.8 fixed point
    int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
    int source_uv_fraction =
        ((source_y_subpixel >> y_shift) & kFractionMask) >> 8;

    const uint8_t* y_ptr = y0_ptr;
    const uint8_t* u_ptr = u0_ptr;
    const uint8_t* v_ptr = v0_ptr;
    // Apply vertical filtering if necessary.
    // TODO(fbarchard): Remove memcpy when not necessary.
    if (filter & mozilla::gfx::FILTER_BILINEAR_V) {
      if (yscale_fixed != kFractionMax &&
          source_y_fraction && ((source_y + 1) < source_height)) {
        FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
      } else {
        memcpy(ybuf, y0_ptr, source_width);
      }
      y_ptr = ybuf;
      ybuf[source_width] = ybuf[source_width-1];
      int uv_source_width = (source_width + 1) / 2;
      if (yscale_fixed != kFractionMax &&
          source_uv_fraction &&
          (((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
        FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
        FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
      } else {
        memcpy(ubuf, u0_ptr, uv_source_width);
        memcpy(vbuf, v0_ptr, uv_source_width);
      }
      u_ptr = ubuf;
      v_ptr = vbuf;
      ubuf[uv_source_width] = ubuf[uv_source_width - 1];
      vbuf[uv_source_width] = vbuf[uv_source_width - 1];
    }
    if (source_dx == kFractionMax) {  // Not scaled
      FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
                               dest_pixel, width);
    } else if (filter & FILTER_BILINEAR_H) {
        LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
                                 dest_pixel, width, source_dx);
    } else {
// Specialized scalers and rotation.
#if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) && !defined(__clang__)
      if(mozilla::supports_sse()) {
        if (width == (source_width * 2)) {
          DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
                                  dest_pixel, width);
        } else if ((source_dx & kFractionMask) == 0) {
          // Scaling by integer scale factor. ie half.
          ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
                                   dest_pixel, width,
                                   source_dx >> kFractionBits);
        } else if (source_dx_uv == source_dx) {  // Not rotated.
          ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
                             dest_pixel, width, source_dx);
        } else {
          RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
                                         dest_pixel, width,
                                         source_dx >> kFractionBits,
                                         source_dx_uv >> kFractionBits);
        }
      }
      else {
        ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr,
                             dest_pixel, width, source_dx);
      }
#else
      (void)source_dx_uv;
      ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
                         dest_pixel, width, source_dx);
#endif
    }
  }
  // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms.
  if (has_mmx)
    EMMS();
}
void ConvertI420AlphaToARGB32(const uint8_t* y_buf,
                              const uint8_t* u_buf,
                              const uint8_t* v_buf,
                              const uint8_t* a_buf,
                              uint8_t* argb_buf,
                              int pic_width,
                              int pic_height,
                              int ya_pitch,
                              int uv_pitch,
                              int argb_pitch) {

  // The downstream graphics stack expects an attenuated input, hence why the
  // attenuation parameter is set.
  DebugOnly<int> err = libyuv::I420AlphaToARGB(y_buf, ya_pitch,
                                               u_buf, uv_pitch,
                                               v_buf, uv_pitch,
                                               a_buf, ya_pitch,
                                               argb_buf, argb_pitch,
                                               pic_width, pic_height, 1);
  MOZ_ASSERT(!err);
}

} // namespace gfx
} // namespace mozilla