1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=4 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef ipc_glue_MessageChannel_h
#define ipc_glue_MessageChannel_h
#include "ipc/EnumSerializer.h"
#include "mozilla/Atomics.h"
#include "mozilla/BaseProfilerMarkers.h"
#include "mozilla/LinkedList.h"
#include "mozilla/Monitor.h"
#include "mozilla/Vector.h"
#if defined(XP_WIN)
# include "mozilla/ipc/Neutering.h"
#endif // defined(XP_WIN)
#include <functional>
#include <map>
#include <stack>
#include <vector>
#include "MessageLink.h" // for HasResultCodes
#include "mozilla/ipc/ScopedPort.h"
#include "nsITargetShutdownTask.h"
#ifdef FUZZING_SNAPSHOT
# include "mozilla/fuzzing/IPCFuzzController.h"
#endif
class MessageLoop;
namespace IPC {
template <typename T>
struct ParamTraits;
}
namespace mozilla {
namespace ipc {
class IToplevelProtocol;
class ActorLifecycleProxy;
class RefCountedMonitor : public Monitor {
public:
RefCountedMonitor() : Monitor("mozilla.ipc.MessageChannel.mMonitor") {}
void AssertSameMonitor(const RefCountedMonitor& aOther) const
MOZ_REQUIRES(*this) MOZ_ASSERT_CAPABILITY(aOther) {
MOZ_ASSERT(this == &aOther);
}
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)
private:
~RefCountedMonitor() = default;
};
enum class MessageDirection {
eSending,
eReceiving,
};
enum class MessagePhase {
Endpoint,
TransferStart,
TransferEnd,
};
enum class SyncSendError {
SendSuccess,
PreviousTimeout,
SendingCPOWWhileDispatchingSync,
SendingCPOWWhileDispatchingUrgent,
NotConnectedBeforeSend,
DisconnectedDuringSend,
CancelledBeforeSend,
CancelledAfterSend,
TimedOut,
ReplyError,
};
enum class ResponseRejectReason {
SendError,
ChannelClosed,
HandlerRejected,
ActorDestroyed,
ResolverDestroyed,
EndGuard_,
};
template <typename T>
using ResolveCallback = std::function<void(T&&)>;
using RejectCallback = std::function<void(ResponseRejectReason)>;
enum ChannelState {
ChannelClosed,
ChannelConnected,
ChannelClosing,
ChannelError
};
class AutoEnterTransaction;
class MessageChannel : HasResultCodes {
friend class PortLink;
typedef mozilla::Monitor Monitor;
public:
using Message = IPC::Message;
struct UntypedCallbackHolder {
UntypedCallbackHolder(int32_t aActorId, Message::msgid_t aReplyMsgId,
RejectCallback&& aReject)
: mActorId(aActorId),
mReplyMsgId(aReplyMsgId),
mReject(std::move(aReject)) {}
virtual ~UntypedCallbackHolder() = default;
void Reject(ResponseRejectReason&& aReason) { mReject(std::move(aReason)); }
int32_t mActorId;
Message::msgid_t mReplyMsgId;
RejectCallback mReject;
};
template <typename Value>
struct CallbackHolder : public UntypedCallbackHolder {
CallbackHolder(int32_t aActorId, Message::msgid_t aReplyMsgId,
ResolveCallback<Value>&& aResolve, RejectCallback&& aReject)
: UntypedCallbackHolder(aActorId, aReplyMsgId, std::move(aReject)),
mResolve(std::move(aResolve)) {}
void Resolve(Value&& aReason) { mResolve(std::move(aReason)); }
ResolveCallback<Value> mResolve;
};
private:
static Atomic<size_t> gUnresolvedResponses;
friend class PendingResponseReporter;
public:
static constexpr int32_t kNoTimeout = INT32_MIN;
using ScopedPort = mozilla::ipc::ScopedPort;
explicit MessageChannel(const char* aName, IToplevelProtocol* aListener);
~MessageChannel();
IToplevelProtocol* Listener() const { return mListener; }
// Returns the event target which the worker lives on and must be used for
// operations on the current thread. Only safe to access after the
// MessageChannel has been opened.
nsISerialEventTarget* GetWorkerEventTarget() const { return mWorkerThread; }
// "Open" a connection using an existing ScopedPort. The ScopedPort must be
// valid and connected to a remote.
//
// The `aEventTarget` parameter must be on the current thread.
bool Open(ScopedPort aPort, Side aSide, const nsID& aMessageChannelId,
nsISerialEventTarget* aEventTarget = nullptr);
// "Open" a connection to another thread in the same process.
//
// Returns true if the transport layer was successfully connected,
// i.e., mChannelState == ChannelConnected.
//
// For more details on the process of opening a channel between
// threads, see the extended comment on this function
// in MessageChannel.cpp.
bool Open(MessageChannel* aTargetChan, nsISerialEventTarget* aEventTarget,
Side aSide);
// "Open" a connection to an actor on the current thread.
//
// Returns true if the transport layer was successfully connected,
// i.e., mChannelState == ChannelConnected.
//
// Same-thread channels may not perform synchronous or blocking message
// sends, to avoid deadlocks.
bool OpenOnSameThread(MessageChannel* aTargetChan, Side aSide);
/**
* This sends a special message that is processed on the IO thread, so that
* other actors can know that the process will soon shutdown.
*/
void NotifyImpendingShutdown() MOZ_EXCLUDES(*mMonitor);
// Close the underlying transport channel.
void Close() MOZ_EXCLUDES(*mMonitor);
// Induce an error in this MessageChannel's connection.
//
// After this method is called, no more message notifications will be
// delivered to the listener, and the channel will be unable to send or
// receive future messages, as if the peer dropped the connection
// unexpectedly.
//
// The OnChannelError notification will be delivered either asynchronously or
// during an explicit call to Close(), whichever happens first.
//
// NOTE: If SetAbortOnError(true) has been called on this MessageChannel,
// calling this function will immediately exit the current process.
void InduceConnectionError() MOZ_EXCLUDES(*mMonitor);
void SetAbortOnError(bool abort) MOZ_EXCLUDES(*mMonitor) {
MonitorAutoLock lock(*mMonitor);
mAbortOnError = abort;
}
// Call aInvoke for each pending message until it returns false.
// XXX: You must get permission from an IPC peer to use this function
// since it requires custom deserialization and re-orders events.
void PeekMessages(const std::function<bool(const Message& aMsg)>& aInvoke)
MOZ_EXCLUDES(*mMonitor);
// Misc. behavioral traits consumers can request for this channel
enum ChannelFlags {
REQUIRE_DEFAULT = 0,
// Windows: if this channel operates on the UI thread, indicates
// WindowsMessageLoop code should enable deferred native message
// handling to prevent deadlocks. Should only be used for protocols
// that manage child processes which might create native UI, like
// plugins.
REQUIRE_DEFERRED_MESSAGE_PROTECTION = 1 << 0,
};
void SetChannelFlags(ChannelFlags aFlags) { mFlags = aFlags; }
ChannelFlags GetChannelFlags() { return mFlags; }
// Asynchronously send a message to the other side of the channel
bool Send(UniquePtr<Message> aMsg) MOZ_EXCLUDES(*mMonitor);
// Asynchronously send a message to the other side of the channel
// and wait for asynchronous reply.
template <typename Value>
void Send(UniquePtr<Message> aMsg, int32_t aActorId,
Message::msgid_t aReplyMsgId, ResolveCallback<Value>&& aResolve,
RejectCallback&& aReject) MOZ_EXCLUDES(*mMonitor) {
int32_t seqno = NextSeqno();
aMsg->set_seqno(seqno);
if (!Send(std::move(aMsg))) {
aReject(ResponseRejectReason::SendError);
return;
}
UniquePtr<UntypedCallbackHolder> callback =
MakeUnique<CallbackHolder<Value>>(
aActorId, aReplyMsgId, std::move(aResolve), std::move(aReject));
mPendingResponses.insert(std::make_pair(seqno, std::move(callback)));
gUnresolvedResponses++;
}
bool SendBuildIDsMatchMessage(const char* aParentBuildID)
MOZ_EXCLUDES(*mMonitor);
bool DoBuildIDsMatch() MOZ_EXCLUDES(*mMonitor) {
MonitorAutoLock lock(*mMonitor);
return mBuildIDsConfirmedMatch;
}
// Synchronously send |aMsg| (i.e., wait for |aReply|)
bool Send(UniquePtr<Message> aMsg, UniquePtr<Message>* aReply)
MOZ_EXCLUDES(*mMonitor);
bool CanSend() const MOZ_EXCLUDES(*mMonitor);
// Remove and return a callback that needs reply
UniquePtr<UntypedCallbackHolder> PopCallback(const Message& aMsg,
int32_t aActorId);
// Used to reject and remove pending responses owned by the given
// actor when it's about to be destroyed.
void RejectPendingResponsesForActor(int32_t aActorId);
// If sending a sync message returns an error, this function gives a more
// descriptive error message.
SyncSendError LastSendError() const {
AssertWorkerThread();
return mLastSendError;
}
void SetReplyTimeoutMs(int32_t aTimeoutMs);
bool IsOnCxxStack() const { return mOnCxxStack; }
void CancelCurrentTransaction() MOZ_EXCLUDES(*mMonitor);
// IsClosed and NumQueuedMessages are safe to call from any thread, but
// may provide an out-of-date value.
bool IsClosed() MOZ_EXCLUDES(*mMonitor) {
MonitorAutoLock lock(*mMonitor);
return IsClosedLocked();
}
bool IsClosedLocked() const MOZ_REQUIRES(*mMonitor) {
mMonitor->AssertCurrentThreadOwns();
return mLink ? mLink->IsClosed() : true;
}
static bool IsPumpingMessages() { return sIsPumpingMessages; }
static void SetIsPumpingMessages(bool aIsPumping) {
sIsPumpingMessages = aIsPumping;
}
/**
* Does this MessageChannel currently cross process boundaries?
*/
bool IsCrossProcess() const MOZ_REQUIRES(*mMonitor);
void SetIsCrossProcess(bool aIsCrossProcess) MOZ_REQUIRES(*mMonitor);
nsID GetMessageChannelId() const {
MonitorAutoLock lock(*mMonitor);
return mMessageChannelId;
}
#ifdef FUZZING_SNAPSHOT
Maybe<mojo::core::ports::PortName> GetPortName() {
MonitorAutoLock lock(*mMonitor);
return mLink ? mLink->GetPortName() : Nothing();
}
#endif
#ifdef XP_WIN
struct MOZ_STACK_CLASS SyncStackFrame {
explicit SyncStackFrame(MessageChannel* channel);
~SyncStackFrame();
bool mSpinNestedEvents;
bool mListenerNotified;
MessageChannel* mChannel;
// The previous stack frame for this channel.
SyncStackFrame* mPrev;
// The previous stack frame on any channel.
SyncStackFrame* mStaticPrev;
};
friend struct MessageChannel::SyncStackFrame;
static bool IsSpinLoopActive() {
for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
if (frame->mSpinNestedEvents) return true;
}
return false;
}
protected:
// The deepest sync stack frame for this channel.
SyncStackFrame* mTopFrame = nullptr;
bool mIsSyncWaitingOnNonMainThread = false;
// The deepest sync stack frame on any channel.
static SyncStackFrame* sStaticTopFrame;
public:
void ProcessNativeEventsInInterruptCall();
static void NotifyGeckoEventDispatch();
private:
void SpinInternalEventLoop();
#endif // defined(XP_WIN)
private:
void PostErrorNotifyTask() MOZ_REQUIRES(*mMonitor);
void OnNotifyMaybeChannelError() MOZ_EXCLUDES(*mMonitor);
void ReportConnectionError(const char* aFunctionName,
const uint32_t aMsgTyp) const
MOZ_REQUIRES(*mMonitor);
void ReportMessageRouteError(const char* channelName) const
MOZ_EXCLUDES(*mMonitor);
bool MaybeHandleError(Result code, const Message& aMsg,
const char* channelName) MOZ_EXCLUDES(*mMonitor);
void Clear() MOZ_REQUIRES(*mMonitor);
bool HasPendingEvents() MOZ_REQUIRES(*mMonitor);
void ProcessPendingRequests(ActorLifecycleProxy* aProxy,
AutoEnterTransaction& aTransaction)
MOZ_REQUIRES(*mMonitor);
bool ProcessPendingRequest(ActorLifecycleProxy* aProxy,
UniquePtr<Message> aUrgent)
MOZ_REQUIRES(*mMonitor);
void EnqueuePendingMessages() MOZ_REQUIRES(*mMonitor);
// Dispatches an incoming message to its appropriate handler.
void DispatchMessage(ActorLifecycleProxy* aProxy, UniquePtr<Message> aMsg)
MOZ_REQUIRES(*mMonitor);
// DispatchMessage will route to one of these functions depending on the
// protocol type of the message.
void DispatchSyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg,
UniquePtr<Message>& aReply) MOZ_EXCLUDES(*mMonitor);
void DispatchAsyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg)
MOZ_EXCLUDES(*mMonitor);
// Return true if the wait ended because a notification was received.
//
// Return false if the time elapsed from when we started the process of
// waiting until afterwards exceeded the currently allotted timeout.
// That *DOES NOT* mean false => "no event" (== timeout); there are many
// circumstances that could cause the measured elapsed time to exceed the
// timeout EVEN WHEN we were notified.
//
// So in sum: true is a meaningful return value; false isn't,
// necessarily.
bool WaitForSyncNotify() MOZ_REQUIRES(*mMonitor);
bool WaitResponse(bool aWaitTimedOut);
bool ShouldContinueFromTimeout() MOZ_REQUIRES(*mMonitor);
void EndTimeout() MOZ_REQUIRES(*mMonitor);
void CancelTransaction(int transaction) MOZ_REQUIRES(*mMonitor);
void RepostAllMessages() MOZ_REQUIRES(*mMonitor);
int32_t NextSeqno() {
AssertWorkerThread();
return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
}
void DebugAbort(const char* file, int line, const char* cond, const char* why,
bool reply = false) MOZ_REQUIRES(*mMonitor);
void AddProfilerMarker(const IPC::Message& aMessage,
MessageDirection aDirection) MOZ_REQUIRES(*mMonitor);
private:
// Returns true if we're dispatching an async message's callback.
bool DispatchingAsyncMessage() const {
AssertWorkerThread();
return mDispatchingAsyncMessage;
}
int DispatchingAsyncMessageNestedLevel() const {
AssertWorkerThread();
return mDispatchingAsyncMessageNestedLevel;
}
// Check if there is still a live connection to our peer. This may change to
// `false` at any time due to the connection to our peer being closed or
// dropped (e.g. due to a crash).
bool Connected() const MOZ_REQUIRES(*mMonitor);
// Check if there is either still a live connection to our peer, or we have
// received a `Goodbye` from our peer, and are actively shutting down our
// connection with our peer.
bool ConnectedOrClosing() const MOZ_REQUIRES(*mMonitor);
private:
// Executed on the IO thread.
void NotifyWorkerThread() MOZ_REQUIRES(*mMonitor);
// Return true if |aMsg| is a special message targeted at the IO
// thread, in which case it shouldn't be delivered to the worker.
bool MaybeInterceptSpecialIOMessage(const Message& aMsg)
MOZ_REQUIRES(*mMonitor);
// Returns true if ShouldDeferMessage(aMsg) is guaranteed to return true.
// Otherwise, the result of ShouldDeferMessage(aMsg) may be true or false,
// depending on context.
static bool IsAlwaysDeferred(const Message& aMsg);
// Helper for sending a message via the link. If the message is [LazySend], it
// will be queued, and if the message is not-[LazySend], it will flush any
// pending [LazySend] messages.
void SendMessageToLink(UniquePtr<Message> aMsg) MOZ_REQUIRES(*mMonitor);
// Called to flush [LazySend] messages to the link.
void FlushLazySendMessages() MOZ_REQUIRES(*mMonitor);
bool WasTransactionCanceled(int transaction);
bool ShouldDeferMessage(const Message& aMsg) MOZ_REQUIRES(*mMonitor);
void OnMessageReceivedFromLink(UniquePtr<Message> aMsg)
MOZ_REQUIRES(*mMonitor);
void OnChannelErrorFromLink() MOZ_REQUIRES(*mMonitor);
private:
// Clear this channel, and notify the listener that the channel has either
// closed or errored.
//
// These methods must be called on the worker thread, passing in a
// `ReleasableMonitorAutoLock`. This lock guard will be reset before the
// listener is called, allowing for the monitor to be unlocked before the
// MessageChannel is potentially destroyed.
void NotifyChannelClosed(ReleasableMonitorAutoLock& aLock)
MOZ_REQUIRES(*mMonitor);
void NotifyMaybeChannelError(ReleasableMonitorAutoLock& aLock)
MOZ_REQUIRES(*mMonitor);
private:
void AssertWorkerThread() const {
MOZ_ASSERT(mWorkerThread, "Channel hasn't been opened yet");
MOZ_RELEASE_ASSERT(mWorkerThread && mWorkerThread->IsOnCurrentThread(),
"not on worker thread!");
}
private:
class MessageTask : public CancelableRunnable,
public LinkedListElement<RefPtr<MessageTask>>,
public nsIRunnablePriority,
public nsIRunnableIPCMessageType {
public:
explicit MessageTask(MessageChannel* aChannel, UniquePtr<Message> aMessage);
MessageTask() = delete;
MessageTask(const MessageTask&) = delete;
NS_DECL_ISUPPORTS_INHERITED
NS_IMETHOD Run() override;
nsresult Cancel() override;
NS_IMETHOD GetPriority(uint32_t* aPriority) override;
NS_DECL_NSIRUNNABLEIPCMESSAGETYPE
void Post() MOZ_REQUIRES(*mMonitor);
bool IsScheduled() const MOZ_REQUIRES(*mMonitor) {
mMonitor->AssertCurrentThreadOwns();
return mScheduled;
}
UniquePtr<Message>& Msg() MOZ_REQUIRES(*mMonitor) {
MOZ_DIAGNOSTIC_ASSERT(mMessage, "message was moved");
return mMessage;
}
const UniquePtr<Message>& Msg() const MOZ_REQUIRES(*mMonitor) {
MOZ_DIAGNOSTIC_ASSERT(mMessage, "message was moved");
return mMessage;
}
void AssertMonitorHeld(const RefCountedMonitor& aMonitor)
MOZ_REQUIRES(aMonitor) MOZ_ASSERT_CAPABILITY(*mMonitor) {
aMonitor.AssertSameMonitor(*mMonitor);
}
private:
~MessageTask();
MessageChannel* Channel() MOZ_REQUIRES(*mMonitor) {
mMonitor->AssertCurrentThreadOwns();
MOZ_RELEASE_ASSERT(isInList());
return mChannel;
}
// The connected MessageChannel's monitor. Guards `mChannel` and
// `mScheduled`.
RefPtr<RefCountedMonitor> const mMonitor;
// The channel which this MessageTask is associated with. Only valid while
// `mMonitor` is held, and this MessageTask `isInList()`.
MessageChannel* const mChannel;
UniquePtr<Message> mMessage MOZ_GUARDED_BY(*mMonitor);
uint32_t const mPriority;
bool mScheduled : 1 MOZ_GUARDED_BY(*mMonitor);
#ifdef FUZZING_SNAPSHOT
const bool mIsFuzzMsg;
bool mFuzzStopped MOZ_GUARDED_BY(*mMonitor);
#endif
};
bool ShouldRunMessage(const Message& aMsg) MOZ_REQUIRES(*mMonitor);
void RunMessage(ActorLifecycleProxy* aProxy, MessageTask& aTask)
MOZ_REQUIRES(*mMonitor);
class WorkerTargetShutdownTask final : public nsITargetShutdownTask {
public:
NS_DECL_THREADSAFE_ISUPPORTS
WorkerTargetShutdownTask(nsISerialEventTarget* aTarget,
MessageChannel* aChannel);
void TargetShutdown() override;
void Clear();
private:
~WorkerTargetShutdownTask() = default;
const nsCOMPtr<nsISerialEventTarget> mTarget;
// Cleared by MessageChannel before it is destroyed.
MessageChannel* MOZ_NON_OWNING_REF mChannel;
};
class FlushLazySendMessagesRunnable final : public CancelableRunnable {
public:
explicit FlushLazySendMessagesRunnable(MessageChannel* aChannel);
NS_DECL_ISUPPORTS_INHERITED
NS_IMETHOD Run() override;
nsresult Cancel() override;
void PushMessage(UniquePtr<Message> aMsg);
nsTArray<UniquePtr<Message>> TakeMessages();
private:
~FlushLazySendMessagesRunnable() = default;
// Cleared by MessageChannel before it is destroyed.
MessageChannel* MOZ_NON_OWNING_REF mChannel;
// LazySend messages which haven't been sent yet, but will be sent as soon
// as a non-LazySend message is sent, or this runnable is executed.
nsTArray<UniquePtr<Message>> mQueue;
};
typedef LinkedList<RefPtr<MessageTask>> MessageQueue;
typedef std::map<size_t, UniquePtr<UntypedCallbackHolder>> CallbackMap;
typedef IPC::Message::msgid_t msgid_t;
private:
// This will be a string literal, so lifetime is not an issue.
const char* const mName;
// ID for each MessageChannel. Set when it is opened, and never cleared
// afterwards.
//
// This ID is only intended for diagnostics, debugging, and reporting
// purposes, and shouldn't be used for message routing or permissions checks.
nsID mMessageChannelId MOZ_GUARDED_BY(*mMonitor) = {};
// Based on presumption the listener owns and overlives the channel,
// this is never nullified.
IToplevelProtocol* const mListener;
// This monitor guards all state in this MessageChannel, except where
// otherwise noted. It is refcounted so a reference to it can be shared with
// IPC listener objects which need to access weak references to this
// `MessageChannel`.
RefPtr<RefCountedMonitor> const mMonitor;
ChannelState mChannelState MOZ_GUARDED_BY(*mMonitor) = ChannelClosed;
Side mSide = UnknownSide;
bool mIsCrossProcess MOZ_GUARDED_BY(*mMonitor) = false;
UniquePtr<MessageLink> mLink MOZ_GUARDED_BY(*mMonitor);
// NotifyMaybeChannelError runnable
RefPtr<CancelableRunnable> mChannelErrorTask MOZ_GUARDED_BY(*mMonitor);
// Thread we are allowed to send and receive on. Set in Open(); never
// changed, and we can only call Open() once. We shouldn't be accessing
// from multiple threads before Open().
nsCOMPtr<nsISerialEventTarget> mWorkerThread;
// Shutdown task to close the channel before mWorkerThread goes away.
RefPtr<WorkerTargetShutdownTask> mShutdownTask MOZ_GUARDED_BY(*mMonitor);
// Task to force sending lazy messages when mQueuedLazyMessages is non-empty.
RefPtr<FlushLazySendMessagesRunnable> mFlushLazySendTask
MOZ_GUARDED_BY(*mMonitor);
// Timeout periods are broken up in two to prevent system suspension from
// triggering an abort. This method (called by WaitForEvent with a 'did
// timeout' flag) decides if we should wait again for half of mTimeoutMs
// or give up.
// only accessed on WorkerThread
int32_t mTimeoutMs = kNoTimeout;
bool mInTimeoutSecondHalf = false;
// Worker-thread only; sequence numbers for messages that require
// replies.
int32_t mNextSeqno = 0;
static bool sIsPumpingMessages;
// If ::Send returns false, this gives a more descriptive error.
SyncSendError mLastSendError = SyncSendError::SendSuccess;
template <class T>
class AutoSetValue {
public:
explicit AutoSetValue(T& var, const T& newValue)
: mVar(var), mPrev(var), mNew(newValue) {
mVar = newValue;
}
~AutoSetValue() {
// The value may have been zeroed if the transaction was
// canceled. In that case we shouldn't return it to its previous
// value.
if (mVar == mNew) {
mVar = mPrev;
}
}
private:
T& mVar;
T mPrev;
T mNew;
};
bool mDispatchingAsyncMessage = false;
int mDispatchingAsyncMessageNestedLevel = 0;
// When we send an urgent request from the parent process, we could race
// with an RPC message that was issued by the child beforehand. In this
// case, if the parent were to wake up while waiting for the urgent reply,
// and process the RPC, it could send an additional urgent message. The
// child would wake up to process the urgent message (as it always will),
// then send a reply, which could be received by the parent out-of-order
// with respect to the first urgent reply.
//
// To address this problem, urgent or RPC requests are associated with a
// "transaction". Whenever one side of the channel wishes to start a
// chain of RPC/urgent messages, it allocates a new transaction ID. Any
// messages the parent receives, not apart of this transaction, are
// deferred. When issuing RPC/urgent requests on top of a started
// transaction, the initiating transaction ID is used.
//
// To ensure IDs are unique, we use sequence numbers for transaction IDs,
// which grow in opposite directions from child to parent.
friend class AutoEnterTransaction;
AutoEnterTransaction* mTransactionStack MOZ_GUARDED_BY(*mMonitor) = nullptr;
int32_t CurrentNestedInsideSyncTransaction() const MOZ_REQUIRES(*mMonitor);
bool AwaitingSyncReply() const MOZ_REQUIRES(*mMonitor);
int AwaitingSyncReplyNestedLevel() const MOZ_REQUIRES(*mMonitor);
bool DispatchingSyncMessage() const MOZ_REQUIRES(*mMonitor);
int DispatchingSyncMessageNestedLevel() const MOZ_REQUIRES(*mMonitor);
#ifdef DEBUG
void AssertMaybeDeferredCountCorrect() MOZ_REQUIRES(*mMonitor);
#else
void AssertMaybeDeferredCountCorrect() MOZ_REQUIRES(*mMonitor) {}
#endif
// If a sync message times out, we store its sequence number here. Any
// future sync messages will fail immediately. Once the reply for original
// sync message is received, we allow sync messages again.
//
// When a message times out, nothing is done to inform the other side. The
// other side will eventually dispatch the message and send a reply. Our
// side is responsible for replying to all sync messages sent by the other
// side when it dispatches the timed out message. The response is always an
// error.
//
// A message is only timed out if it initiated a transaction. This avoids
// hitting a lot of corner cases with message nesting that we don't really
// care about.
int32_t mTimedOutMessageSeqno MOZ_GUARDED_BY(*mMonitor) = 0;
int mTimedOutMessageNestedLevel MOZ_GUARDED_BY(*mMonitor) = 0;
// Queue of all incoming messages.
//
// If both this side and the other side are functioning correctly, the other
// side can send as many async messages as it wants before sending us a
// blocking message. After sending a blocking message, the other side must be
// blocked, and thus can't send us any more messages until we process the sync
// in-msg.
//
MessageQueue mPending MOZ_GUARDED_BY(*mMonitor);
// The number of messages in mPending for which IsAlwaysDeferred is false
// (i.e., the number of messages that might not be deferred, depending on
// context).
size_t mMaybeDeferredPendingCount MOZ_GUARDED_BY(*mMonitor) = 0;
// Is there currently MessageChannel logic for this channel on the C++ stack?
// This member is only accessed on the worker thread, and so is not protected
// by mMonitor.
bool mOnCxxStack = false;
// Map of async Callbacks that are still waiting replies.
CallbackMap mPendingResponses;
#ifdef XP_WIN
HANDLE mEvent;
#endif
// Should the channel abort the process from the I/O thread when
// a channel error occurs?
bool mAbortOnError MOZ_GUARDED_BY(*mMonitor) = false;
// True if the listener has already been notified of a channel close or
// error.
bool mNotifiedChannelDone MOZ_GUARDED_BY(*mMonitor) = false;
// See SetChannelFlags
ChannelFlags mFlags = REQUIRE_DEFAULT;
bool mBuildIDsConfirmedMatch MOZ_GUARDED_BY(*mMonitor) = false;
// If this is true, both ends of this message channel have event targets
// on the same thread.
bool mIsSameThreadChannel = false;
};
void CancelCPOWs();
} // namespace ipc
} // namespace mozilla
namespace IPC {
template <>
struct ParamTraits<mozilla::ipc::ResponseRejectReason>
: public ContiguousEnumSerializer<
mozilla::ipc::ResponseRejectReason,
mozilla::ipc::ResponseRejectReason::SendError,
mozilla::ipc::ResponseRejectReason::EndGuard_> {};
} // namespace IPC
namespace geckoprofiler::markers {
struct IPCMarker {
static constexpr mozilla::Span<const char> MarkerTypeName() {
return mozilla::MakeStringSpan("IPC");
}
static void StreamJSONMarkerData(
mozilla::baseprofiler::SpliceableJSONWriter& aWriter,
mozilla::TimeStamp aStart, mozilla::TimeStamp aEnd, int32_t aOtherPid,
int32_t aMessageSeqno, IPC::Message::msgid_t aMessageType,
mozilla::ipc::Side aSide, mozilla::ipc::MessageDirection aDirection,
mozilla::ipc::MessagePhase aPhase, bool aSync,
mozilla::MarkerThreadId aOriginThreadId) {
using namespace mozilla::ipc;
// This payload still streams a startTime and endTime property because it
// made the migration to MarkerTiming on the front-end easier.
aWriter.TimeProperty("startTime", aStart);
aWriter.TimeProperty("endTime", aEnd);
aWriter.IntProperty("otherPid", aOtherPid);
aWriter.IntProperty("messageSeqno", aMessageSeqno);
aWriter.StringProperty(
"messageType",
mozilla::MakeStringSpan(IPC::StringFromIPCMessageType(aMessageType)));
aWriter.StringProperty("side", IPCSideToString(aSide));
aWriter.StringProperty("direction",
aDirection == MessageDirection::eSending
? mozilla::MakeStringSpan("sending")
: mozilla::MakeStringSpan("receiving"));
aWriter.StringProperty("phase", IPCPhaseToString(aPhase));
aWriter.BoolProperty("sync", aSync);
if (!aOriginThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is acceptable
// here, because this is a one-way conversion to a unique identifier
// that's used to visually separate data by thread on the front-end.
aWriter.IntProperty(
"threadId",
static_cast<int64_t>(aOriginThreadId.ThreadId().ToNumber()));
}
}
static mozilla::MarkerSchema MarkerTypeDisplay() {
return mozilla::MarkerSchema::SpecialFrontendLocation{};
}
private:
static mozilla::Span<const char> IPCSideToString(mozilla::ipc::Side aSide) {
switch (aSide) {
case mozilla::ipc::ParentSide:
return mozilla::MakeStringSpan("parent");
case mozilla::ipc::ChildSide:
return mozilla::MakeStringSpan("child");
case mozilla::ipc::UnknownSide:
return mozilla::MakeStringSpan("unknown");
default:
MOZ_ASSERT_UNREACHABLE("Invalid IPC side");
return mozilla::MakeStringSpan("<invalid IPC side>");
}
}
static mozilla::Span<const char> IPCPhaseToString(
mozilla::ipc::MessagePhase aPhase) {
switch (aPhase) {
case mozilla::ipc::MessagePhase::Endpoint:
return mozilla::MakeStringSpan("endpoint");
case mozilla::ipc::MessagePhase::TransferStart:
return mozilla::MakeStringSpan("transferStart");
case mozilla::ipc::MessagePhase::TransferEnd:
return mozilla::MakeStringSpan("transferEnd");
default:
MOZ_ASSERT_UNREACHABLE("Invalid IPC phase");
return mozilla::MakeStringSpan("<invalid IPC phase>");
}
}
};
} // namespace geckoprofiler::markers
#endif // ifndef ipc_glue_MessageChannel_h
|