summaryrefslogtreecommitdiffstats
path: root/js/public/Conversions.h
blob: 63a9c5111eefd09db9c690f462aba982115f896a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* ECMAScript conversion operations. */

#ifndef js_Conversions_h
#define js_Conversions_h

#include "mozilla/Casting.h"
#include "mozilla/Compiler.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/WrappingOperations.h"

#include <cmath>
#include <stddef.h>  // size_t
#include <stdint.h>  // {u,}int{8,16,32,64}_t
#include <type_traits>

#include "jspubtd.h"
#include "jstypes.h"  // JS_PUBLIC_API

#include "js/RootingAPI.h"
#include "js/Value.h"

namespace js {

/* DO NOT CALL THIS. Use JS::ToBoolean. */
extern JS_PUBLIC_API bool ToBooleanSlow(JS::HandleValue v);

/* DO NOT CALL THIS.  Use JS::ToNumber. */
extern JS_PUBLIC_API bool ToNumberSlow(JSContext* cx, JS::HandleValue v,
                                       double* dp);

/* DO NOT CALL THIS. Use JS::ToInt8. */
extern JS_PUBLIC_API bool ToInt8Slow(JSContext* cx, JS::HandleValue v,
                                     int8_t* out);

/* DO NOT CALL THIS. Use JS::ToUint8. */
extern JS_PUBLIC_API bool ToUint8Slow(JSContext* cx, JS::HandleValue v,
                                      uint8_t* out);

/* DO NOT CALL THIS. Use JS::ToInt16. */
extern JS_PUBLIC_API bool ToInt16Slow(JSContext* cx, JS::HandleValue v,
                                      int16_t* out);

/* DO NOT CALL THIS. Use JS::ToInt32. */
extern JS_PUBLIC_API bool ToInt32Slow(JSContext* cx, JS::HandleValue v,
                                      int32_t* out);

/* DO NOT CALL THIS. Use JS::ToUint32. */
extern JS_PUBLIC_API bool ToUint32Slow(JSContext* cx, JS::HandleValue v,
                                       uint32_t* out);

/* DO NOT CALL THIS. Use JS::ToUint16. */
extern JS_PUBLIC_API bool ToUint16Slow(JSContext* cx, JS::HandleValue v,
                                       uint16_t* out);

/* DO NOT CALL THIS. Use JS::ToInt64. */
extern JS_PUBLIC_API bool ToInt64Slow(JSContext* cx, JS::HandleValue v,
                                      int64_t* out);

/* DO NOT CALL THIS. Use JS::ToUint64. */
extern JS_PUBLIC_API bool ToUint64Slow(JSContext* cx, JS::HandleValue v,
                                       uint64_t* out);

/* DO NOT CALL THIS. Use JS::ToString. */
extern JS_PUBLIC_API JSString* ToStringSlow(JSContext* cx, JS::HandleValue v);

/* DO NOT CALL THIS. Use JS::ToObject. */
extern JS_PUBLIC_API JSObject* ToObjectSlow(JSContext* cx, JS::HandleValue v,
                                            bool reportScanStack);

}  // namespace js

namespace JS {

namespace detail {

#ifdef JS_DEBUG
/**
 * Assert that we're not doing GC on cx, that we're in a request as
 * needed, and that the compartments for cx and v are correct.
 * Also check that GC would be safe at this point.
 */
extern JS_PUBLIC_API void AssertArgumentsAreSane(JSContext* cx, HandleValue v);
#else
inline void AssertArgumentsAreSane(JSContext* cx, HandleValue v) {}
#endif /* JS_DEBUG */

}  // namespace detail

/**
 * ES6 draft 20141224, 7.1.1, second algorithm.
 *
 * Most users shouldn't call this -- use JS::ToBoolean, ToNumber, or ToString
 * instead.  This will typically only be called from custom convert hooks that
 * wish to fall back to the ES6 default conversion behavior shared by most
 * objects in JS, codified as OrdinaryToPrimitive.
 */
extern JS_PUBLIC_API bool OrdinaryToPrimitive(JSContext* cx, HandleObject obj,
                                              JSType type,
                                              MutableHandleValue vp);

/* ES6 draft 20141224, 7.1.2. */
MOZ_ALWAYS_INLINE bool ToBoolean(HandleValue v) {
  if (v.isBoolean()) {
    return v.toBoolean();
  }
  if (v.isInt32()) {
    return v.toInt32() != 0;
  }
  if (v.isNullOrUndefined()) {
    return false;
  }
  if (v.isDouble()) {
    double d = v.toDouble();
    return !std::isnan(d) && d != 0;
  }
  if (v.isSymbol()) {
    return true;
  }

  /* The slow path handles strings, BigInts and objects. */
  return js::ToBooleanSlow(v);
}

/* ES6 draft 20141224, 7.1.3. */
MOZ_ALWAYS_INLINE bool ToNumber(JSContext* cx, HandleValue v, double* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isNumber()) {
    *out = v.toNumber();
    return true;
  }
  return js::ToNumberSlow(cx, v, out);
}

// ES2020 draft rev 6b05bc56ba4e3c7a2b9922c4282d9eb844426d9b
// 7.1.5 ToInteger ( argument )
//
// Specialized for double values.
inline double ToInteger(double d) {
  if (d == 0) {
    return 0;
  }

  if (!std::isfinite(d)) {
    if (std::isnan(d)) {
      return 0;
    }
    return d;
  }

  return std::trunc(d) + (+0.0);  // Add zero to convert -0 to +0.
}

/* ES6 draft 20141224, 7.1.5. */
MOZ_ALWAYS_INLINE bool ToInt32(JSContext* cx, JS::HandleValue v, int32_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = v.toInt32();
    return true;
  }
  return js::ToInt32Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.6. */
MOZ_ALWAYS_INLINE bool ToUint32(JSContext* cx, HandleValue v, uint32_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint32_t(v.toInt32());
    return true;
  }
  return js::ToUint32Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.7. */
MOZ_ALWAYS_INLINE bool ToInt16(JSContext* cx, JS::HandleValue v, int16_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int16_t(v.toInt32());
    return true;
  }
  return js::ToInt16Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.8. */
MOZ_ALWAYS_INLINE bool ToUint16(JSContext* cx, HandleValue v, uint16_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint16_t(v.toInt32());
    return true;
  }
  return js::ToUint16Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.9 */
MOZ_ALWAYS_INLINE bool ToInt8(JSContext* cx, JS::HandleValue v, int8_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int8_t(v.toInt32());
    return true;
  }
  return js::ToInt8Slow(cx, v, out);
}

/* ES6 ECMA-262, 7.1.10 */
MOZ_ALWAYS_INLINE bool ToUint8(JSContext* cx, JS::HandleValue v, uint8_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint8_t(v.toInt32());
    return true;
  }
  return js::ToUint8Slow(cx, v, out);
}

/*
 * Non-standard, with behavior similar to that of ToInt32, except in its
 * producing an int64_t.
 */
MOZ_ALWAYS_INLINE bool ToInt64(JSContext* cx, HandleValue v, int64_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = int64_t(v.toInt32());
    return true;
  }
  return js::ToInt64Slow(cx, v, out);
}

/*
 * Non-standard, with behavior similar to that of ToUint32, except in its
 * producing a uint64_t.
 */
MOZ_ALWAYS_INLINE bool ToUint64(JSContext* cx, HandleValue v, uint64_t* out) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isInt32()) {
    *out = uint64_t(v.toInt32());
    return true;
  }
  return js::ToUint64Slow(cx, v, out);
}

/* ES6 draft 20141224, 7.1.12. */
MOZ_ALWAYS_INLINE JSString* ToString(JSContext* cx, HandleValue v) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isString()) {
    return v.toString();
  }
  return js::ToStringSlow(cx, v);
}

/* ES6 draft 20141224, 7.1.13. */
inline JSObject* ToObject(JSContext* cx, HandleValue v) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.isObject()) {
    return &v.toObject();
  }
  return js::ToObjectSlow(cx, v, false);
}

#ifdef ENABLE_RECORD_TUPLE
inline JSObject* ToObjectOrGetObjectPayload(JSContext* cx, HandleValue v) {
  detail::AssertArgumentsAreSane(cx, v);

  if (v.hasObjectPayload()) {
    return &v.getObjectPayload();
  }
  return js::ToObjectSlow(cx, v, false);
}
#endif

/**
 * Convert a double value to UnsignedInteger (an unsigned integral type) using
 * ECMAScript-style semantics (that is, in like manner to how ECMAScript's
 * ToInt32 converts to int32_t).
 *
 *   If d is infinite or NaN, return 0.
 *   Otherwise compute d2 = sign(d) * floor(abs(d)), and return the
 *   UnsignedInteger value congruent to d2 % 2**(bit width of UnsignedInteger).
 *
 * The algorithm below is inspired by that found in
 * <https://trac.webkit.org/changeset/67825/webkit/trunk/JavaScriptCore/runtime/JSValue.cpp>
 * but has been generalized to all integer widths.
 */
template <typename UnsignedInteger>
inline UnsignedInteger ToUnsignedInteger(double d) {
  static_assert(std::is_unsigned_v<UnsignedInteger>,
                "UnsignedInteger must be an unsigned type");

  uint64_t bits = mozilla::BitwiseCast<uint64_t>(d);
  unsigned DoubleExponentShift = mozilla::FloatingPoint<double>::kExponentShift;

  // Extract the exponent component.  (Be careful here!  It's not technically
  // the exponent in NaN, infinities, and subnormals.)
  int_fast16_t exp =
      int_fast16_t((bits & mozilla::FloatingPoint<double>::kExponentBits) >>
                   DoubleExponentShift) -
      int_fast16_t(mozilla::FloatingPoint<double>::kExponentBias);

  // If the exponent's less than zero, abs(d) < 1, so the result is 0.  (This
  // also handles subnormals.)
  if (exp < 0) {
    return 0;
  }

  uint_fast16_t exponent = mozilla::AssertedCast<uint_fast16_t>(exp);

  // If the exponent is greater than or equal to the bits of precision of a
  // double plus UnsignedInteger's width, the number is either infinite, NaN,
  // or too large to have lower-order bits in the congruent value.  (Example:
  // 2**84 is exactly representable as a double.  The next exact double is
  // 2**84 + 2**32.  Thus if UnsignedInteger is uint32_t, an exponent >= 84
  // implies floor(abs(d)) == 0 mod 2**32.)  Return 0 in all these cases.
  constexpr size_t ResultWidth = CHAR_BIT * sizeof(UnsignedInteger);
  if (exponent >= DoubleExponentShift + ResultWidth) {
    return 0;
  }

  // The significand contains the bits that will determine the final result.
  // Shift those bits left or right, according to the exponent, to their
  // locations in the unsigned binary representation of floor(abs(d)).
  static_assert(sizeof(UnsignedInteger) <= sizeof(uint64_t),
                "left-shifting below would lose upper bits");
  UnsignedInteger result =
      (exponent > DoubleExponentShift)
          ? UnsignedInteger(bits << (exponent - DoubleExponentShift))
          : UnsignedInteger(bits >> (DoubleExponentShift - exponent));

  // Two further complications remain.  First, |result| may contain bogus
  // sign/exponent bits.  Second, IEEE-754 numbers' significands (excluding
  // subnormals, but we already handled those) have an implicit leading 1
  // which may affect the final result.
  //
  // It may appear that there's complexity here depending on how ResultWidth
  // and DoubleExponentShift relate, but it turns out there's not.
  //
  // Assume ResultWidth < DoubleExponentShift:
  //   Only right-shifts leave bogus bits in |result|.  For this to happen,
  //   we must right-shift by > |DoubleExponentShift - ResultWidth|, implying
  //   |exponent < ResultWidth|.
  //   The implicit leading bit only matters if it appears in the final
  //   result -- if |2**exponent mod 2**ResultWidth != 0|.  This implies
  //   |exponent < ResultWidth|.
  // Otherwise assume ResultWidth >= DoubleExponentShift:
  //   Any left-shift less than |ResultWidth - DoubleExponentShift| leaves
  //   bogus bits in |result|.  This implies |exponent < ResultWidth|.  Any
  //   right-shift less than |ResultWidth| does too, which implies
  //   |DoubleExponentShift - ResultWidth < exponent|.  By assumption, then,
  //   |exponent| is negative, but we excluded that above.  So bogus bits
  //   need only |exponent < ResultWidth|.
  //   The implicit leading bit matters identically to the other case, so
  //   again, |exponent < ResultWidth|.
  if (exponent < ResultWidth) {
    const auto implicitOne =
        static_cast<UnsignedInteger>(UnsignedInteger{1} << exponent);
    result &= implicitOne - 1;  // remove bogus bits
    result += implicitOne;      // add the implicit bit
  }

  // Compute the congruent value in the signed range.
  return (bits & mozilla::FloatingPoint<double>::kSignBit) ? ~result + 1
                                                           : result;
}

template <typename SignedInteger>
inline SignedInteger ToSignedInteger(double d) {
  static_assert(std::is_signed_v<SignedInteger>,
                "SignedInteger must be a signed type");

  using UnsignedInteger = std::make_unsigned_t<SignedInteger>;
  UnsignedInteger u = ToUnsignedInteger<UnsignedInteger>(d);

  return mozilla::WrapToSigned(u);
}

// clang crashes compiling this when targeting arm:
// https://llvm.org/bugs/show_bug.cgi?id=22974
#if defined(__arm__) && MOZ_IS_GCC

template <>
inline int32_t ToSignedInteger<int32_t>(double d) {
  int32_t i;
  uint32_t tmp0;
  uint32_t tmp1;
  uint32_t tmp2;
  asm(
      // We use a pure integer solution here. In the 'softfp' ABI, the argument
      // will start in r0 and r1, and VFP can't do all of the necessary ECMA
      // conversions by itself so some integer code will be required anyway. A
      // hybrid solution is faster on A9, but this pure integer solution is
      // notably faster for A8.

      // %0 is the result register, and may alias either of the %[QR]1
      //    registers.
      // %Q4 holds the lower part of the mantissa.
      // %R4 holds the sign, exponent, and the upper part of the mantissa.
      // %1, %2 and %3 are used as temporary values.

      // Extract the exponent.
      "   mov     %1, %R4, LSR #20\n"
      "   bic     %1, %1, #(1 << 11)\n"  // Clear the sign.

      // Set the implicit top bit of the mantissa. This clobbers a bit of the
      // exponent, but we have already extracted that.
      "   orr     %R4, %R4, #(1 << 20)\n"

      // Special Cases
      //   We should return zero in the following special cases:
      //    - Exponent is 0x000 - 1023: +/-0 or subnormal.
      //    - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
      //      - This case is implicitly handled by the standard code path
      //        anyway, as shifting the mantissa up by the exponent will
      //        result in '0'.
      //
      // The result is composed of the mantissa, prepended with '1' and
      // bit-shifted left by the (decoded) exponent. Note that because the
      // r1[20] is the bit with value '1', r1 is effectively already shifted
      // (left) by 20 bits, and r0 is already shifted by 52 bits.

      // Adjust the exponent to remove the encoding offset. If the decoded
      // exponent is negative, quickly bail out with '0' as such values round to
      // zero anyway. This also catches +/-0 and subnormals.
      "   sub     %1, %1, #0xff\n"
      "   subs    %1, %1, #0x300\n"
      "   bmi     8f\n"

      //  %1 = (decoded) exponent >= 0
      //  %R4 = upper mantissa and sign

      // ---- Lower Mantissa ----
      "   subs    %3, %1, #52\n"  // Calculate exp-52
      "   bmi     1f\n"

      // Shift r0 left by exp-52.
      // Ensure that we don't overflow ARM's 8-bit shift operand range.
      // We need to handle anything up to an 11-bit value here as we know that
      // 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
      // anyway, so as long as we don't touch the bottom 5 bits, we can use
      // a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255
      // range.
      "   bic     %2, %3, #0xff\n"
      "   orr     %3, %3, %2, LSR #3\n"
      // We can now perform a straight shift, avoiding the need for any
      // conditional instructions or extra branches.
      "   mov     %Q4, %Q4, LSL %3\n"
      "   b       2f\n"
      "1:\n"  // Shift r0 right by 52-exp.
              // We know that 0 <= exp < 52, and we can shift up to 255 bits so
              // 52-exp will always be a valid shift and we can sk%3 the range
              // check for this case.
      "   rsb     %3, %1, #52\n"
      "   mov     %Q4, %Q4, LSR %3\n"

      //  %1 = (decoded) exponent
      //  %R4 = upper mantissa and sign
      //  %Q4 = partially-converted integer

      "2:\n"
      // ---- Upper Mantissa ----
      // This is much the same as the lower mantissa, with a few different
      // boundary checks and some masking to hide the exponent & sign bit in the
      // upper word.
      // Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
      // it left more to remove the sign and exponent so it is effectively
      // pre-shifted by 31 bits.
      "   subs    %3, %1, #31\n"       // Calculate exp-31
      "   mov     %1, %R4, LSL #11\n"  // Re-use %1 as a temporary register.
      "   bmi     3f\n"

      // Shift %R4 left by exp-31.
      // Avoid overflowing the 8-bit shift range, as before.
      "   bic     %2, %3, #0xff\n"
      "   orr     %3, %3, %2, LSR #3\n"
      // Perform the shift.
      "   mov     %2, %1, LSL %3\n"
      "   b       4f\n"
      "3:\n"  // Shift r1 right by 31-exp.
              // We know that 0 <= exp < 31, and we can shift up to 255 bits so
              // 31-exp will always be a valid shift and we can skip the range
              // check for this case.
      "   rsb     %3, %3, #0\n"      // Calculate 31-exp from -(exp-31)
      "   mov     %2, %1, LSR %3\n"  // Thumb-2 can't do "LSR %3" in "orr".

      //  %Q4 = partially-converted integer (lower)
      //  %R4 = upper mantissa and sign
      //  %2 = partially-converted integer (upper)

      "4:\n"
      // Combine the converted parts.
      "   orr     %Q4, %Q4, %2\n"
      // Negate the result if we have to, and move it to %0 in the process. To
      // avoid conditionals, we can do this by inverting on %R4[31], then adding
      // %R4[31]>>31.
      "   eor     %Q4, %Q4, %R4, ASR #31\n"
      "   add     %0, %Q4, %R4, LSR #31\n"
      "   b       9f\n"
      "8:\n"
      // +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range
      // that will result in a conversion of '0'.
      "   mov     %0, #0\n"
      "9:\n"
      : "=r"(i), "=&r"(tmp0), "=&r"(tmp1), "=&r"(tmp2), "=&r"(d)
      : "4"(d)
      : "cc");
  return i;
}

#endif  // defined (__arm__) && MOZ_IS_GCC

namespace detail {

template <typename IntegerType,
          bool IsUnsigned = std::is_unsigned_v<IntegerType>>
struct ToSignedOrUnsignedInteger;

template <typename IntegerType>
struct ToSignedOrUnsignedInteger<IntegerType, true> {
  static IntegerType compute(double d) {
    return ToUnsignedInteger<IntegerType>(d);
  }
};

template <typename IntegerType>
struct ToSignedOrUnsignedInteger<IntegerType, false> {
  static IntegerType compute(double d) {
    return ToSignedInteger<IntegerType>(d);
  }
};

}  // namespace detail

template <typename IntegerType>
inline IntegerType ToSignedOrUnsignedInteger(double d) {
  return detail::ToSignedOrUnsignedInteger<IntegerType>::compute(d);
}

/* WEBIDL 4.2.4 */
inline int8_t ToInt8(double d) { return ToSignedInteger<int8_t>(d); }

/* ECMA-262 7.1.10 ToUInt8() specialized for doubles. */
inline int8_t ToUint8(double d) { return ToUnsignedInteger<uint8_t>(d); }

/* WEBIDL 4.2.6 */
inline int16_t ToInt16(double d) { return ToSignedInteger<int16_t>(d); }

inline uint16_t ToUint16(double d) { return ToUnsignedInteger<uint16_t>(d); }

/* ES5 9.5 ToInt32 (specialized for doubles). */
inline int32_t ToInt32(double d) { return ToSignedInteger<int32_t>(d); }

/* ES5 9.6 (specialized for doubles). */
inline uint32_t ToUint32(double d) { return ToUnsignedInteger<uint32_t>(d); }

/* WEBIDL 4.2.10 */
inline int64_t ToInt64(double d) { return ToSignedInteger<int64_t>(d); }

/* WEBIDL 4.2.11 */
inline uint64_t ToUint64(double d) { return ToUnsignedInteger<uint64_t>(d); }

/**
 * An amount of space large enough to store the null-terminated result of
 * |ToString| on any Number.
 *
 * The <https://tc39.es/ecma262/#sec-tostring-applied-to-the-number-type>
 * |NumberToString| algorithm is specified in terms of results, not an
 * algorithm.  It is extremely unclear from the algorithm's definition what its
 * longest output can be.  |-(2**-19 - 2**-72)| requires 25 + 1 characters and
 * is believed to be at least *very close* to the upper bound, so we round that
 * *very generously* upward to a 64-bit pointer-size boundary (to be extra
 * cautious) and assume that's adequate.
 *
 * If you can supply better reasoning for a tighter bound, file a bug to improve
 * this!
 */
static constexpr size_t MaximumNumberToStringLength = 31 + 1;

/**
 * Store in |out| the null-terminated, base-10 result of |ToString| applied to
 * |d| per <https://tc39.es/ecma262/#sec-tostring-applied-to-the-number-type>.
 * (This will produce "NaN", "-Infinity", or "Infinity" for non-finite |d|.)
 */
extern JS_PUBLIC_API void NumberToString(
    double d, char (&out)[MaximumNumberToStringLength]);

}  // namespace JS

#endif /* js_Conversions_h */