1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
loadRelativeToScript('utility.js');
loadRelativeToScript('annotations.js');
loadRelativeToScript('CFG.js');
// Map from csu => set of immediate subclasses
var subclasses = new Map();
// Map from csu => set of immediate superclasses
var superclasses = new Map();
// Map from "csu.name:nargs" => set of full method name
var virtualDefinitions = new Map();
// Every virtual method declaration, anywhere.
//
// Map from csu => Set of function-info.
// function-info: {
// name : simple string
// typedfield : "name:nargs" ("mangled" field name)
// field: full Field datastructure
// annotations : Set of [annotation-name, annotation-value] 2-element arrays
// inherited : whether the method is inherited from a base class
// pureVirtual : whether the method is pure virtual on this CSU
// dtor : if this is a virtual destructor with a definition in this class or
// a superclass, then the full name of the definition as if it were defined
// in this class. This is weird, but it's how gcc emits it. We will add a
// synthetic call from this function to its immediate base classes' dtors,
// so even if the function does not actually exist and is inherited from a
// base class, we will get a path to the inherited function. (Regular
// virtual methods are *not* claimed to exist when they don't.)
// }
var virtualDeclarations = new Map();
var virtualResolutionsSeen = new Set();
var ID = {
jscode: 1,
anyfunc: 2,
nogcfunc: 3,
gc: 4,
};
// map is a map from names to sets of entries.
function addToNamedSet(map, name, entry)
{
if (!map.has(name))
map.set(name, new Set());
const s = map.get(name);
s.add(entry);
return s;
}
// CSU is "Class/Struct/Union"
function processCSU(csuName, csu)
{
if (!("FunctionField" in csu))
return;
for (const {Base} of (csu.CSUBaseClass || [])) {
addToNamedSet(subclasses, Base, csuName);
addToNamedSet(superclasses, csuName, Base);
}
for (const {Field, Variable} of csu.FunctionField) {
// Virtual method
const info = Field[0];
const name = info.Name[0];
const annotations = new Set();
const funcInfo = {
name,
typedfield: typedField(info),
field: info,
annotations,
inherited: (info.FieldCSU.Type.Name != csuName), // Always false for virtual dtors
pureVirtual: Boolean(Variable),
dtor: false,
};
if (Variable && isSyntheticVirtualDestructor(name)) {
// This is one of gcc's artificial dtors.
funcInfo.dtor = Variable.Name[0];
funcInfo.pureVirtual = false;
}
addToNamedSet(virtualDeclarations, csuName, funcInfo);
if ('Annotation' in info) {
for (const {Name: [annType, annValue]} of info.Annotation) {
annotations.add([annType, annValue]);
}
}
if (Variable) {
// Note: not dealing with overloading correctly.
const name = Variable.Name[0];
addToNamedSet(virtualDefinitions, fieldKey(csuName, Field[0]), name);
}
}
}
// Return a list of all callees that the given edge might be a call to. Each
// one is represented by an object with a 'kind' field that is one of
// ('direct', 'field', 'resolved-field', 'indirect', 'unknown'), though note
// that 'resolved-field' is really a global record of virtual method
// resolutions, indepedent of this particular edge.
function translateCallees(edge)
{
if (edge.Kind != "Call")
return [];
const callee = edge.Exp[0];
if (callee.Kind == "Var") {
assert(callee.Variable.Kind == "Func");
return [{'kind': 'direct', 'name': callee.Variable.Name[0]}];
}
// At some point, we were intentionally invoking invalid function pointers
// (as in, a small integer cast to a function pointer type) to convey a
// small amount of information in the crash address.
if (callee.Kind == "Int")
return []; // Intentional crash
assert(callee.Kind == "Drf");
let called = callee.Exp[0];
let indirection = 1;
if (called.Kind == "Drf") {
// This is probably a reference to a function pointer (`func*&`). It
// would be possible to determine that for certain by looking up the
// variable's type, which is doable but unnecessary. Indirect calls
// are assumed to call anything (any function in the codebase) unless they
// are annotated otherwise, and the `funkyName` annotation applies to
// `(**funkyName)(args)` as well as `(*funkyName)(args)`, it's ok.
called = called.Exp[0];
indirection += 1;
}
if (called.Kind == "Var") {
// indirect call through a variable. Note that the `indirection` field is
// currently unused by the later analysis. It is the number of dereferences
// applied to the variable before invoking the resulting function.
//
// The variable name passed through is the simplified one, since that is
// what annotations.js uses and we don't want the annotation to be missed
// if eg there is another variable of the same name in a sibling scope such
// that the fully decorated name no longer matches.
const [decorated, bare] = called.Variable.Name;
return [{'kind': "indirect", 'variable': bare, indirection}];
}
if (called.Kind != "Fld") {
// unknown call target.
return [{'kind': "unknown"}];
}
// Return one 'field' callee record giving the full description of what's
// happening here (which is either a virtual method call, or a call through
// a function pointer stored in a field), and then boil the call down to a
// synthetic function that incorporates both the name of the field and the
// static type of whatever you're calling the method on. Both refer to the
// same call; they're just different ways of describing it.
const callees = [];
const field = called.Field;
const staticCSU = getFieldCallInstanceCSU(edge, field);
callees.push({'kind': "field", 'csu': field.FieldCSU.Type.Name, staticCSU,
'field': field.Name[0], 'fieldKey': fieldKey(staticCSU, field),
'isVirtual': ("FieldInstanceFunction" in field)});
callees.push({'kind': "direct", 'name': fieldKey(staticCSU, field)});
return callees;
}
function getCallees(body, edge, scopeAttrs, functionBodies) {
const calls = [];
// getCallEdgeProperties can set the ATTR_REPLACED attribute, which
// means that the call in the edge has been replaced by zero or
// more edges to other functions. This is used when the original
// edge will end up calling through a function pointer or something
// (eg ~shared_ptr<T> calls a function pointer that can only be
// T::~T()). The original call edges are left in the graph in case
// they are useful for other purposes.
for (const callee of translateCallees(edge)) {
if (callee.kind != "direct") {
calls.push({ callee, attrs: scopeAttrs });
} else {
const edgeInfo = getCallEdgeProperties(body, edge, callee.name, functionBodies);
for (const extra of (edgeInfo.extraCalls || [])) {
calls.push({ attrs: scopeAttrs | extra.attrs, callee: { name: extra.name, 'kind': "direct", } });
}
calls.push({ callee, attrs: scopeAttrs | edgeInfo.attrs});
}
}
return calls;
}
function loadTypes(type_xdb_filename) {
const xdb = xdbLibrary();
xdb.open(type_xdb_filename);
const minStream = xdb.min_data_stream();
const maxStream = xdb.max_data_stream();
for (var csuIndex = minStream; csuIndex <= maxStream; csuIndex++) {
const csu = xdb.read_key(csuIndex);
const data = xdb.read_entry(csu);
const json = JSON.parse(data.readString());
processCSU(csu.readString(), json[0]);
xdb.free_string(csu);
xdb.free_string(data);
}
}
function loadTypesWithCache(type_xdb_filename, cache_filename) {
try {
const cacheAB = os.file.readFile(cache_filename, "binary");
const cb = serialize();
cb.clonebuffer = cacheAB.buffer;
const cacheData = deserialize(cb);
subclasses = cacheData.subclasses;
superclasses = cacheData.superclasses;
virtualDefinitions = cacheData.virtualDefinitions;
} catch (e) {
loadTypes(type_xdb_filename);
const cb = serialize({subclasses, superclasses, virtualDefinitions});
os.file.writeTypedArrayToFile(cache_filename,
new Uint8Array(cb.arraybuffer));
}
}
|