1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "irregexp/imported/regexp-bytecode-peephole.h"
#include "irregexp/imported/regexp-bytecodes.h"
namespace v8 {
namespace internal {
namespace {
struct BytecodeArgument {
int offset;
int length;
BytecodeArgument(int offset, int length) : offset(offset), length(length) {}
};
struct BytecodeArgumentMapping : BytecodeArgument {
int new_length;
BytecodeArgumentMapping(int offset, int length, int new_length)
: BytecodeArgument(offset, length), new_length(new_length) {}
};
struct BytecodeArgumentCheck : BytecodeArgument {
enum CheckType { kCheckAddress = 0, kCheckValue };
CheckType type;
int check_offset;
int check_length;
BytecodeArgumentCheck(int offset, int length, int check_offset)
: BytecodeArgument(offset, length),
type(kCheckAddress),
check_offset(check_offset) {}
BytecodeArgumentCheck(int offset, int length, int check_offset,
int check_length)
: BytecodeArgument(offset, length),
type(kCheckValue),
check_offset(check_offset),
check_length(check_length) {}
};
// Trie-Node for storing bytecode sequences we want to optimize.
class BytecodeSequenceNode {
public:
// Dummy bytecode used when we need to store/return a bytecode but it's not a
// valid bytecode in the current context.
static constexpr int kDummyBytecode = -1;
BytecodeSequenceNode(int bytecode, Zone* zone);
// Adds a new node as child of the current node if it isn't a child already.
BytecodeSequenceNode& FollowedBy(int bytecode);
// Marks the end of a sequence and sets optimized bytecode to replace all
// bytecodes of the sequence with.
BytecodeSequenceNode& ReplaceWith(int bytecode);
// Maps arguments of bytecodes in the sequence to the optimized bytecode.
// Order of invocation determines order of arguments in the optimized
// bytecode.
// Invoking this method is only allowed on nodes that mark the end of a valid
// sequence (i.e. after ReplaceWith()).
// bytecode_index_in_sequence: Zero-based index of the referred bytecode
// within the sequence (e.g. the bytecode passed to CreateSequence() has
// index 0).
// argument_offset: Zero-based offset to the argument within the bytecode
// (e.g. the first argument that's not packed with the bytecode has offset 4).
// argument_byte_length: Length of the argument.
// new_argument_byte_length: Length of the argument in the new bytecode
// (= argument_byte_length if omitted).
BytecodeSequenceNode& MapArgument(int bytecode_index_in_sequence,
int argument_offset,
int argument_byte_length,
int new_argument_byte_length = 0);
// Adds a check to the sequence node making it only a valid sequence when the
// argument of the current bytecode at the specified offset matches the offset
// to check against.
// argument_offset: Zero-based offset to the argument within the bytecode
// (e.g. the first argument that's not packed with the bytecode has offset 4).
// argument_byte_length: Length of the argument.
// check_byte_offset: Zero-based offset relative to the beginning of the
// sequence that needs to match the value given by argument_offset. (e.g.
// check_byte_offset 0 matches the address of the first bytecode in the
// sequence).
BytecodeSequenceNode& IfArgumentEqualsOffset(int argument_offset,
int argument_byte_length,
int check_byte_offset);
// Adds a check to the sequence node making it only a valid sequence when the
// argument of the current bytecode at the specified offset matches the
// argument of another bytecode in the sequence.
// This is similar to IfArgumentEqualsOffset, except that this method matches
// the values of both arguments.
BytecodeSequenceNode& IfArgumentEqualsValueAtOffset(
int argument_offset, int argument_byte_length,
int other_bytecode_index_in_sequence, int other_argument_offset,
int other_argument_byte_length);
// Marks an argument as unused.
// All arguments that are not mapped explicitly have to be marked as unused.
// bytecode_index_in_sequence: Zero-based index of the referred bytecode
// within the sequence (e.g. the bytecode passed to CreateSequence() has
// index 0).
// argument_offset: Zero-based offset to the argument within the bytecode
// (e.g. the first argument that's not packed with the bytecode has offset 4).
// argument_byte_length: Length of the argument.
BytecodeSequenceNode& IgnoreArgument(int bytecode_index_in_sequence,
int argument_offset,
int argument_byte_length);
// Checks if the current node is valid for the sequence. I.e. all conditions
// set by IfArgumentEqualsOffset and IfArgumentEquals are fulfilled by this
// node for the actual bytecode sequence.
bool CheckArguments(const uint8_t* bytecode, int pc);
// Returns whether this node marks the end of a valid sequence (i.e. can be
// replaced with an optimized bytecode).
bool IsSequence() const;
// Returns the length of the sequence in bytes.
int SequenceLength() const;
// Returns the optimized bytecode for the node or kDummyBytecode if it is not
// the end of a valid sequence.
int OptimizedBytecode() const;
// Returns the child of the current node matching the given bytecode or
// nullptr if no such child is found.
BytecodeSequenceNode* Find(int bytecode) const;
// Returns number of arguments mapped to the current node.
// Invoking this method is only allowed on nodes that mark the end of a valid
// sequence (i.e. if IsSequence())
size_t ArgumentSize() const;
// Returns the argument-mapping of the argument at index.
// Invoking this method is only allowed on nodes that mark the end of a valid
// sequence (i.e. if IsSequence())
BytecodeArgumentMapping ArgumentMapping(size_t index) const;
// Returns an iterator to begin of ignored arguments.
// Invoking this method is only allowed on nodes that mark the end of a valid
// sequence (i.e. if IsSequence())
ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredBegin() const;
// Returns an iterator to end of ignored arguments.
// Invoking this method is only allowed on nodes that mark the end of a valid
// sequence (i.e. if IsSequence())
ZoneLinkedList<BytecodeArgument>::iterator ArgumentIgnoredEnd() const;
// Returns whether the current node has ignored argument or not.
bool HasIgnoredArguments() const;
private:
// Returns a node in the sequence specified by its index within the sequence.
BytecodeSequenceNode& GetNodeByIndexInSequence(int index_in_sequence);
Zone* zone() const;
int bytecode_;
int bytecode_replacement_;
int index_in_sequence_;
int start_offset_;
BytecodeSequenceNode* parent_;
ZoneUnorderedMap<int, BytecodeSequenceNode*> children_;
ZoneVector<BytecodeArgumentMapping>* argument_mapping_;
ZoneLinkedList<BytecodeArgumentCheck>* argument_check_;
ZoneLinkedList<BytecodeArgument>* argument_ignored_;
Zone* zone_;
};
// These definitions are here in order to please the linker, which in debug mode
// sometimes requires static constants to be defined in .cc files.
constexpr int BytecodeSequenceNode::kDummyBytecode;
class RegExpBytecodePeephole {
public:
RegExpBytecodePeephole(Zone* zone, size_t buffer_size,
const ZoneUnorderedMap<int, int>& jump_edges);
// Parses bytecode and fills the internal buffer with the potentially
// optimized bytecode. Returns true when optimizations were performed, false
// otherwise.
bool OptimizeBytecode(const uint8_t* bytecode, int length);
// Copies the internal bytecode buffer to another buffer. The caller is
// responsible for allocating/freeing the memory.
void CopyOptimizedBytecode(uint8_t* to_address) const;
int Length() const;
private:
// Sets up all sequences that are going to be used.
void DefineStandardSequences();
// Starts a new bytecode sequence.
BytecodeSequenceNode& CreateSequence(int bytecode);
// Checks for optimization candidates at pc and emits optimized bytecode to
// the internal buffer. Returns the length of replaced bytecodes in bytes.
int TryOptimizeSequence(const uint8_t* bytecode, int bytecode_length,
int start_pc);
// Emits optimized bytecode to the internal buffer. start_pc points to the
// start of the sequence in bytecode and last_node is the last
// BytecodeSequenceNode of the matching sequence found.
void EmitOptimization(int start_pc, const uint8_t* bytecode,
const BytecodeSequenceNode& last_node);
// Adds a relative jump source fixup at pos.
// Jump source fixups are used to find offsets in the new bytecode that
// contain jump sources.
void AddJumpSourceFixup(int fixup, int pos);
// Adds a relative jump destination fixup at pos.
// Jump destination fixups are used to find offsets in the new bytecode that
// can be jumped to.
void AddJumpDestinationFixup(int fixup, int pos);
// Sets an absolute jump destination fixup at pos.
void SetJumpDestinationFixup(int fixup, int pos);
// Prepare internal structures used to fixup jumps.
void PrepareJumpStructures(const ZoneUnorderedMap<int, int>& jump_edges);
// Updates all jump targets in the new bytecode.
void FixJumps();
// Update a single jump.
void FixJump(int jump_source, int jump_destination);
void AddSentinelFixups(int pos);
template <typename T>
void EmitValue(T value);
template <typename T>
void OverwriteValue(int offset, T value);
void CopyRangeToOutput(const uint8_t* orig_bytecode, int start, int length);
void SetRange(uint8_t value, int count);
void EmitArgument(int start_pc, const uint8_t* bytecode,
BytecodeArgumentMapping arg);
int pc() const;
Zone* zone() const;
ZoneVector<uint8_t> optimized_bytecode_buffer_;
BytecodeSequenceNode* sequences_;
// Jumps used in old bytecode.
// Key: Jump source (offset where destination is stored in old bytecode)
// Value: Destination
ZoneMap<int, int> jump_edges_;
// Jumps used in new bytecode.
// Key: Jump source (offset where destination is stored in new bytecode)
// Value: Destination
ZoneMap<int, int> jump_edges_mapped_;
// Number of times a jump destination is used within the bytecode.
// Key: Jump destination (offset in old bytecode).
// Value: Number of times jump destination is used.
ZoneMap<int, int> jump_usage_counts_;
// Maps offsets in old bytecode to fixups of sources (delta to new bytecode).
// Key: Offset in old bytecode from where the fixup is valid.
// Value: Delta to map jump source from old bytecode to new bytecode in bytes.
ZoneMap<int, int> jump_source_fixups_;
// Maps offsets in old bytecode to fixups of destinations (delta to new
// bytecode).
// Key: Offset in old bytecode from where the fixup is valid.
// Value: Delta to map jump destinations from old bytecode to new bytecode in
// bytes.
ZoneMap<int, int> jump_destination_fixups_;
Zone* zone_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpBytecodePeephole);
};
template <typename T>
T GetValue(const uint8_t* buffer, int pos) {
DCHECK(IsAligned(reinterpret_cast<Address>(buffer + pos), alignof(T)));
return *reinterpret_cast<const T*>(buffer + pos);
}
int32_t GetArgumentValue(const uint8_t* bytecode, int offset, int length) {
switch (length) {
case 1:
return GetValue<uint8_t>(bytecode, offset);
case 2:
return GetValue<int16_t>(bytecode, offset);
case 4:
return GetValue<int32_t>(bytecode, offset);
default:
UNREACHABLE();
}
}
BytecodeSequenceNode::BytecodeSequenceNode(int bytecode, Zone* zone)
: bytecode_(bytecode),
bytecode_replacement_(kDummyBytecode),
index_in_sequence_(0),
start_offset_(0),
parent_(nullptr),
children_(ZoneUnorderedMap<int, BytecodeSequenceNode*>(zone)),
argument_mapping_(zone->New<ZoneVector<BytecodeArgumentMapping>>(zone)),
argument_check_(zone->New<ZoneLinkedList<BytecodeArgumentCheck>>(zone)),
argument_ignored_(zone->New<ZoneLinkedList<BytecodeArgument>>(zone)),
zone_(zone) {}
BytecodeSequenceNode& BytecodeSequenceNode::FollowedBy(int bytecode) {
DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
if (children_.find(bytecode) == children_.end()) {
BytecodeSequenceNode* new_node =
zone()->New<BytecodeSequenceNode>(bytecode, zone());
// If node is not the first in the sequence, set offsets and parent.
if (bytecode_ != kDummyBytecode) {
new_node->start_offset_ = start_offset_ + RegExpBytecodeLength(bytecode_);
new_node->index_in_sequence_ = index_in_sequence_ + 1;
new_node->parent_ = this;
}
children_[bytecode] = new_node;
}
return *children_[bytecode];
}
BytecodeSequenceNode& BytecodeSequenceNode::ReplaceWith(int bytecode) {
DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
bytecode_replacement_ = bytecode;
return *this;
}
BytecodeSequenceNode& BytecodeSequenceNode::MapArgument(
int bytecode_index_in_sequence, int argument_offset,
int argument_byte_length, int new_argument_byte_length) {
DCHECK(IsSequence());
DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_);
BytecodeSequenceNode& ref_node =
GetNodeByIndexInSequence(bytecode_index_in_sequence);
DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
int absolute_offset = ref_node.start_offset_ + argument_offset;
if (new_argument_byte_length == 0) {
new_argument_byte_length = argument_byte_length;
}
argument_mapping_->push_back(BytecodeArgumentMapping{
absolute_offset, argument_byte_length, new_argument_byte_length});
return *this;
}
BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsOffset(
int argument_offset, int argument_byte_length, int check_byte_offset) {
DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_));
DCHECK(argument_byte_length == 1 || argument_byte_length == 2 ||
argument_byte_length == 4);
int absolute_offset = start_offset_ + argument_offset;
argument_check_->push_back(BytecodeArgumentCheck{
absolute_offset, argument_byte_length, check_byte_offset});
return *this;
}
BytecodeSequenceNode& BytecodeSequenceNode::IfArgumentEqualsValueAtOffset(
int argument_offset, int argument_byte_length,
int other_bytecode_index_in_sequence, int other_argument_offset,
int other_argument_byte_length) {
DCHECK_LT(argument_offset, RegExpBytecodeLength(bytecode_));
DCHECK_LE(other_bytecode_index_in_sequence, index_in_sequence_);
DCHECK_EQ(argument_byte_length, other_argument_byte_length);
BytecodeSequenceNode& ref_node =
GetNodeByIndexInSequence(other_bytecode_index_in_sequence);
DCHECK_LT(other_argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
int absolute_offset = start_offset_ + argument_offset;
int other_absolute_offset = ref_node.start_offset_ + other_argument_offset;
argument_check_->push_back(
BytecodeArgumentCheck{absolute_offset, argument_byte_length,
other_absolute_offset, other_argument_byte_length});
return *this;
}
BytecodeSequenceNode& BytecodeSequenceNode::IgnoreArgument(
int bytecode_index_in_sequence, int argument_offset,
int argument_byte_length) {
DCHECK(IsSequence());
DCHECK_LE(bytecode_index_in_sequence, index_in_sequence_);
BytecodeSequenceNode& ref_node =
GetNodeByIndexInSequence(bytecode_index_in_sequence);
DCHECK_LT(argument_offset, RegExpBytecodeLength(ref_node.bytecode_));
int absolute_offset = ref_node.start_offset_ + argument_offset;
argument_ignored_->push_back(
BytecodeArgument{absolute_offset, argument_byte_length});
return *this;
}
bool BytecodeSequenceNode::CheckArguments(const uint8_t* bytecode, int pc) {
bool is_valid = true;
for (auto check_iter = argument_check_->begin();
check_iter != argument_check_->end() && is_valid; check_iter++) {
auto value =
GetArgumentValue(bytecode, pc + check_iter->offset, check_iter->length);
if (check_iter->type == BytecodeArgumentCheck::kCheckAddress) {
is_valid &= value == pc + check_iter->check_offset;
} else if (check_iter->type == BytecodeArgumentCheck::kCheckValue) {
auto other_value = GetArgumentValue(
bytecode, pc + check_iter->check_offset, check_iter->check_length);
is_valid &= value == other_value;
} else {
UNREACHABLE();
}
}
return is_valid;
}
bool BytecodeSequenceNode::IsSequence() const {
return bytecode_replacement_ != kDummyBytecode;
}
int BytecodeSequenceNode::SequenceLength() const {
return start_offset_ + RegExpBytecodeLength(bytecode_);
}
int BytecodeSequenceNode::OptimizedBytecode() const {
return bytecode_replacement_;
}
BytecodeSequenceNode* BytecodeSequenceNode::Find(int bytecode) const {
auto found = children_.find(bytecode);
if (found == children_.end()) return nullptr;
return found->second;
}
size_t BytecodeSequenceNode::ArgumentSize() const {
DCHECK(IsSequence());
return argument_mapping_->size();
}
BytecodeArgumentMapping BytecodeSequenceNode::ArgumentMapping(
size_t index) const {
DCHECK(IsSequence());
DCHECK(argument_mapping_ != nullptr);
DCHECK_LT(index, argument_mapping_->size());
return argument_mapping_->at(index);
}
ZoneLinkedList<BytecodeArgument>::iterator
BytecodeSequenceNode::ArgumentIgnoredBegin() const {
DCHECK(IsSequence());
DCHECK(argument_ignored_ != nullptr);
return argument_ignored_->begin();
}
ZoneLinkedList<BytecodeArgument>::iterator
BytecodeSequenceNode::ArgumentIgnoredEnd() const {
DCHECK(IsSequence());
DCHECK(argument_ignored_ != nullptr);
return argument_ignored_->end();
}
bool BytecodeSequenceNode::HasIgnoredArguments() const {
return argument_ignored_ != nullptr;
}
BytecodeSequenceNode& BytecodeSequenceNode::GetNodeByIndexInSequence(
int index_in_sequence) {
DCHECK_LE(index_in_sequence, index_in_sequence_);
if (index_in_sequence < index_in_sequence_) {
DCHECK(parent_ != nullptr);
return parent_->GetNodeByIndexInSequence(index_in_sequence);
} else {
return *this;
}
}
Zone* BytecodeSequenceNode::zone() const { return zone_; }
RegExpBytecodePeephole::RegExpBytecodePeephole(
Zone* zone, size_t buffer_size,
const ZoneUnorderedMap<int, int>& jump_edges)
: optimized_bytecode_buffer_(zone),
sequences_(zone->New<BytecodeSequenceNode>(
BytecodeSequenceNode::kDummyBytecode, zone)),
jump_edges_(zone),
jump_edges_mapped_(zone),
jump_usage_counts_(zone),
jump_source_fixups_(zone),
jump_destination_fixups_(zone),
zone_(zone) {
optimized_bytecode_buffer_.reserve(buffer_size);
PrepareJumpStructures(jump_edges);
DefineStandardSequences();
// Sentinel fixups at beginning of bytecode (position -1) so we don't have to
// check for end of iterator inside the fixup loop.
// In general fixups are deltas of original offsets of jump
// sources/destinations (in the old bytecode) to find them in the new
// bytecode. All jump targets are fixed after the new bytecode is fully
// emitted in the internal buffer.
AddSentinelFixups(-1);
// Sentinel fixups at end of (old) bytecode so we don't have to check for
// end of iterator inside the fixup loop.
DCHECK_LE(buffer_size, std::numeric_limits<int>::max());
AddSentinelFixups(static_cast<int>(buffer_size));
}
void RegExpBytecodePeephole::DefineStandardSequences() {
// Commonly used sequences can be found by creating regexp bytecode traces
// (--trace-regexp-bytecodes) and using v8/tools/regexp-sequences.py.
CreateSequence(BC_LOAD_CURRENT_CHAR)
.FollowedBy(BC_CHECK_BIT_IN_TABLE)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_BIT_IN_TABLE)
.MapArgument(0, 1, 3) // load offset
.MapArgument(2, 1, 3, 4) // advance by
.MapArgument(1, 8, 16) // bit table
.MapArgument(1, 4, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(2, 4, 4); // loop jump
CreateSequence(BC_CHECK_CURRENT_POSITION)
.FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED)
.FollowedBy(BC_CHECK_CHAR)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_CHAR_POS_CHECKED)
.MapArgument(1, 1, 3) // load offset
.MapArgument(3, 1, 3, 2) // advance_by
.MapArgument(2, 1, 3, 2) // c
.MapArgument(0, 1, 3, 4) // eats at least
.MapArgument(2, 4, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(3, 4, 4); // loop jump
CreateSequence(BC_CHECK_CURRENT_POSITION)
.FollowedBy(BC_LOAD_CURRENT_CHAR_UNCHECKED)
.FollowedBy(BC_AND_CHECK_CHAR)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_CHAR_AND)
.MapArgument(1, 1, 3) // load offset
.MapArgument(3, 1, 3, 2) // advance_by
.MapArgument(2, 1, 3, 2) // c
.MapArgument(2, 4, 4) // mask
.MapArgument(0, 1, 3, 4) // eats at least
.MapArgument(2, 8, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(3, 4, 4); // loop jump
// TODO(pthier): It might make sense for short sequences like this one to only
// optimize them if the resulting optimization is not longer than the current
// one. This could be the case if there are jumps inside the sequence and we
// have to replicate parts of the sequence. A method to mark such sequences
// might be useful.
CreateSequence(BC_LOAD_CURRENT_CHAR)
.FollowedBy(BC_CHECK_CHAR)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_CHAR)
.MapArgument(0, 1, 3) // load offset
.MapArgument(2, 1, 3, 2) // advance by
.MapArgument(1, 1, 3, 2) // character
.MapArgument(1, 4, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(2, 4, 4); // loop jump
CreateSequence(BC_LOAD_CURRENT_CHAR)
.FollowedBy(BC_CHECK_CHAR)
.FollowedBy(BC_CHECK_CHAR)
// Sequence is only valid if the jump targets of both CHECK_CHAR bytecodes
// are equal.
.IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_CHAR_OR_CHAR)
.MapArgument(0, 1, 3) // load offset
.MapArgument(3, 1, 3, 4) // advance by
.MapArgument(1, 1, 3, 2) // character 1
.MapArgument(2, 1, 3, 2) // character 2
.MapArgument(1, 4, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(2, 4, 4) // goto when match 2
.IgnoreArgument(3, 4, 4); // loop jump
CreateSequence(BC_LOAD_CURRENT_CHAR)
.FollowedBy(BC_CHECK_GT)
// Sequence is only valid if the jump target of CHECK_GT is the first
// bytecode AFTER the whole sequence.
.IfArgumentEqualsOffset(4, 4, 56)
.FollowedBy(BC_CHECK_BIT_IN_TABLE)
// Sequence is only valid if the jump target of CHECK_BIT_IN_TABLE is
// the ADVANCE_CP_AND_GOTO bytecode at the end of the sequence.
.IfArgumentEqualsOffset(4, 4, 48)
.FollowedBy(BC_GOTO)
// Sequence is only valid if the jump target of GOTO is the same as the
// jump target of CHECK_GT (i.e. both jump to the first bytecode AFTER the
// whole sequence.
.IfArgumentEqualsValueAtOffset(4, 4, 1, 4, 4)
.FollowedBy(BC_ADVANCE_CP_AND_GOTO)
// Sequence is only valid if the jump target of ADVANCE_CP_AND_GOTO is the
// first bytecode in this sequence.
.IfArgumentEqualsOffset(4, 4, 0)
.ReplaceWith(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE)
.MapArgument(0, 1, 3) // load offset
.MapArgument(4, 1, 3, 2) // advance by
.MapArgument(1, 1, 3, 2) // character
.MapArgument(2, 8, 16) // bit table
.MapArgument(1, 4, 4) // goto when match
.MapArgument(0, 4, 4) // goto on failure
.IgnoreArgument(2, 4, 4) // indirect loop jump
.IgnoreArgument(3, 4, 4) // jump out of loop
.IgnoreArgument(4, 4, 4); // loop jump
}
bool RegExpBytecodePeephole::OptimizeBytecode(const uint8_t* bytecode,
int length) {
int old_pc = 0;
bool did_optimize = false;
while (old_pc < length) {
int replaced_len = TryOptimizeSequence(bytecode, length, old_pc);
if (replaced_len > 0) {
old_pc += replaced_len;
did_optimize = true;
} else {
int bc = bytecode[old_pc];
int bc_len = RegExpBytecodeLength(bc);
CopyRangeToOutput(bytecode, old_pc, bc_len);
old_pc += bc_len;
}
}
if (did_optimize) {
FixJumps();
}
return did_optimize;
}
void RegExpBytecodePeephole::CopyOptimizedBytecode(uint8_t* to_address) const {
MemCopy(to_address, &(*optimized_bytecode_buffer_.begin()), Length());
}
int RegExpBytecodePeephole::Length() const { return pc(); }
BytecodeSequenceNode& RegExpBytecodePeephole::CreateSequence(int bytecode) {
DCHECK(sequences_ != nullptr);
DCHECK(0 <= bytecode && bytecode < kRegExpBytecodeCount);
return sequences_->FollowedBy(bytecode);
}
int RegExpBytecodePeephole::TryOptimizeSequence(const uint8_t* bytecode,
int bytecode_length,
int start_pc) {
BytecodeSequenceNode* seq_node = sequences_;
BytecodeSequenceNode* valid_seq_end = nullptr;
int current_pc = start_pc;
// Check for the longest valid sequence matching any of the pre-defined
// sequences in the Trie data structure.
while (current_pc < bytecode_length) {
seq_node = seq_node->Find(bytecode[current_pc]);
if (seq_node == nullptr) break;
if (!seq_node->CheckArguments(bytecode, start_pc)) break;
if (seq_node->IsSequence()) valid_seq_end = seq_node;
current_pc += RegExpBytecodeLength(bytecode[current_pc]);
}
if (valid_seq_end) {
EmitOptimization(start_pc, bytecode, *valid_seq_end);
return valid_seq_end->SequenceLength();
}
return 0;
}
void RegExpBytecodePeephole::EmitOptimization(
int start_pc, const uint8_t* bytecode,
const BytecodeSequenceNode& last_node) {
#ifdef DEBUG
int optimized_start_pc = pc();
#endif
// Jump sources that are mapped or marked as unused will be deleted at the end
// of this method. We don't delete them immediately as we might need the
// information when we have to preserve bytecodes at the end.
// TODO(pthier): Replace with a stack-allocated data structure.
ZoneLinkedList<int> delete_jumps = ZoneLinkedList<int>(zone());
uint32_t bc = last_node.OptimizedBytecode();
EmitValue(bc);
for (size_t arg = 0; arg < last_node.ArgumentSize(); arg++) {
BytecodeArgumentMapping arg_map = last_node.ArgumentMapping(arg);
int arg_pos = start_pc + arg_map.offset;
// If we map any jump source we mark the old source for deletion and insert
// a new jump.
auto jump_edge_iter = jump_edges_.find(arg_pos);
if (jump_edge_iter != jump_edges_.end()) {
int jump_source = jump_edge_iter->first;
int jump_destination = jump_edge_iter->second;
// Add new jump edge add current position.
jump_edges_mapped_.emplace(Length(), jump_destination);
// Mark old jump edge for deletion.
delete_jumps.push_back(jump_source);
// Decrement usage count of jump destination.
auto jump_count_iter = jump_usage_counts_.find(jump_destination);
DCHECK(jump_count_iter != jump_usage_counts_.end());
int& usage_count = jump_count_iter->second;
--usage_count;
}
// TODO(pthier): DCHECK that mapped arguments are never sources of jumps
// to destinations inside the sequence.
EmitArgument(start_pc, bytecode, arg_map);
}
DCHECK_EQ(pc(), optimized_start_pc +
RegExpBytecodeLength(last_node.OptimizedBytecode()));
// Remove jumps from arguments we ignore.
if (last_node.HasIgnoredArguments()) {
for (auto ignored_arg = last_node.ArgumentIgnoredBegin();
ignored_arg != last_node.ArgumentIgnoredEnd(); ignored_arg++) {
auto jump_edge_iter = jump_edges_.find(start_pc + ignored_arg->offset);
if (jump_edge_iter != jump_edges_.end()) {
int jump_source = jump_edge_iter->first;
int jump_destination = jump_edge_iter->second;
// Mark old jump edge for deletion.
delete_jumps.push_back(jump_source);
// Decrement usage count of jump destination.
auto jump_count_iter = jump_usage_counts_.find(jump_destination);
DCHECK(jump_count_iter != jump_usage_counts_.end());
int& usage_count = jump_count_iter->second;
--usage_count;
}
}
}
int fixup_length = RegExpBytecodeLength(bc) - last_node.SequenceLength();
// Check if there are any jumps inside the old sequence.
// If so we have to keep the bytecodes that are jumped to around.
auto jump_destination_candidate = jump_usage_counts_.upper_bound(start_pc);
int jump_candidate_destination = jump_destination_candidate->first;
int jump_candidate_count = jump_destination_candidate->second;
// Jump destinations only jumped to from inside the sequence will be ignored.
while (jump_destination_candidate != jump_usage_counts_.end() &&
jump_candidate_count == 0) {
++jump_destination_candidate;
jump_candidate_destination = jump_destination_candidate->first;
jump_candidate_count = jump_destination_candidate->second;
}
int preserve_from = start_pc + last_node.SequenceLength();
if (jump_destination_candidate != jump_usage_counts_.end() &&
jump_candidate_destination < start_pc + last_node.SequenceLength()) {
preserve_from = jump_candidate_destination;
// Check if any jump in the sequence we are preserving has a jump
// destination inside the optimized sequence before the current position we
// want to preserve. If so we have to preserve all bytecodes starting at
// this jump destination.
for (auto jump_iter = jump_edges_.lower_bound(preserve_from);
jump_iter != jump_edges_.end() &&
jump_iter->first /* jump source */ <
start_pc + last_node.SequenceLength();
++jump_iter) {
int jump_destination = jump_iter->second;
if (jump_destination > start_pc && jump_destination < preserve_from) {
preserve_from = jump_destination;
}
}
// We preserve everything to the end of the sequence. This is conservative
// since it would be enough to preserve all bytecudes up to an unconditional
// jump.
int preserve_length = start_pc + last_node.SequenceLength() - preserve_from;
fixup_length += preserve_length;
// Jumps after the start of the preserved sequence need fixup.
AddJumpSourceFixup(fixup_length,
start_pc + last_node.SequenceLength() - preserve_length);
// All jump targets after the start of the optimized sequence need to be
// fixed relative to the length of the optimized sequence including
// bytecodes we preserved.
AddJumpDestinationFixup(fixup_length, start_pc + 1);
// Jumps to the sequence we preserved need absolute fixup as they could
// occur before or after the sequence.
SetJumpDestinationFixup(pc() - preserve_from, preserve_from);
CopyRangeToOutput(bytecode, preserve_from, preserve_length);
} else {
AddJumpDestinationFixup(fixup_length, start_pc + 1);
// Jumps after the end of the old sequence need fixup.
AddJumpSourceFixup(fixup_length, start_pc + last_node.SequenceLength());
}
// Delete jumps we definitely don't need anymore
for (int del : delete_jumps) {
if (del < preserve_from) {
jump_edges_.erase(del);
}
}
}
void RegExpBytecodePeephole::AddJumpSourceFixup(int fixup, int pos) {
auto previous_fixup = jump_source_fixups_.lower_bound(pos);
DCHECK(previous_fixup != jump_source_fixups_.end());
DCHECK(previous_fixup != jump_source_fixups_.begin());
int previous_fixup_value = (--previous_fixup)->second;
jump_source_fixups_[pos] = previous_fixup_value + fixup;
}
void RegExpBytecodePeephole::AddJumpDestinationFixup(int fixup, int pos) {
auto previous_fixup = jump_destination_fixups_.lower_bound(pos);
DCHECK(previous_fixup != jump_destination_fixups_.end());
DCHECK(previous_fixup != jump_destination_fixups_.begin());
int previous_fixup_value = (--previous_fixup)->second;
jump_destination_fixups_[pos] = previous_fixup_value + fixup;
}
void RegExpBytecodePeephole::SetJumpDestinationFixup(int fixup, int pos) {
auto previous_fixup = jump_destination_fixups_.lower_bound(pos);
DCHECK(previous_fixup != jump_destination_fixups_.end());
DCHECK(previous_fixup != jump_destination_fixups_.begin());
int previous_fixup_value = (--previous_fixup)->second;
jump_destination_fixups_.emplace(pos, fixup);
jump_destination_fixups_.emplace(pos + 1, previous_fixup_value);
}
void RegExpBytecodePeephole::PrepareJumpStructures(
const ZoneUnorderedMap<int, int>& jump_edges) {
for (auto jump_edge : jump_edges) {
int jump_source = jump_edge.first;
int jump_destination = jump_edge.second;
jump_edges_.emplace(jump_source, jump_destination);
jump_usage_counts_[jump_destination]++;
}
}
void RegExpBytecodePeephole::FixJumps() {
int position_fixup = 0;
// Next position where fixup changes.
auto next_source_fixup = jump_source_fixups_.lower_bound(0);
int next_source_fixup_offset = next_source_fixup->first;
int next_source_fixup_value = next_source_fixup->second;
for (auto jump_edge : jump_edges_) {
int jump_source = jump_edge.first;
int jump_destination = jump_edge.second;
while (jump_source >= next_source_fixup_offset) {
position_fixup = next_source_fixup_value;
++next_source_fixup;
next_source_fixup_offset = next_source_fixup->first;
next_source_fixup_value = next_source_fixup->second;
}
jump_source += position_fixup;
FixJump(jump_source, jump_destination);
}
// Mapped jump edges don't need source fixups, as the position already is an
// offset in the new bytecode.
for (auto jump_edge : jump_edges_mapped_) {
int jump_source = jump_edge.first;
int jump_destination = jump_edge.second;
FixJump(jump_source, jump_destination);
}
}
void RegExpBytecodePeephole::FixJump(int jump_source, int jump_destination) {
int fixed_jump_destination =
jump_destination +
(--jump_destination_fixups_.upper_bound(jump_destination))->second;
DCHECK_LT(fixed_jump_destination, Length());
#ifdef DEBUG
// TODO(pthier): This check could be better if we track the bytecodes
// actually used and check if we jump to one of them.
uint8_t jump_bc = optimized_bytecode_buffer_[fixed_jump_destination];
DCHECK_GT(jump_bc, 0);
DCHECK_LT(jump_bc, kRegExpBytecodeCount);
#endif
if (jump_destination != fixed_jump_destination) {
OverwriteValue<uint32_t>(jump_source, fixed_jump_destination);
}
}
void RegExpBytecodePeephole::AddSentinelFixups(int pos) {
jump_source_fixups_.emplace(pos, 0);
jump_destination_fixups_.emplace(pos, 0);
}
template <typename T>
void RegExpBytecodePeephole::EmitValue(T value) {
DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
optimized_bytecode_buffer_.end());
uint8_t* value_byte_iter = reinterpret_cast<uint8_t*>(&value);
optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(),
value_byte_iter,
value_byte_iter + sizeof(T));
}
template <typename T>
void RegExpBytecodePeephole::OverwriteValue(int offset, T value) {
uint8_t* value_byte_iter = reinterpret_cast<uint8_t*>(&value);
uint8_t* value_byte_iter_end = value_byte_iter + sizeof(T);
while (value_byte_iter < value_byte_iter_end) {
optimized_bytecode_buffer_[offset++] = *value_byte_iter++;
}
}
void RegExpBytecodePeephole::CopyRangeToOutput(const uint8_t* orig_bytecode,
int start, int length) {
DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
optimized_bytecode_buffer_.end());
optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(),
orig_bytecode + start,
orig_bytecode + start + length);
}
void RegExpBytecodePeephole::SetRange(uint8_t value, int count) {
DCHECK(optimized_bytecode_buffer_.begin() + pc() ==
optimized_bytecode_buffer_.end());
optimized_bytecode_buffer_.insert(optimized_bytecode_buffer_.end(), count,
value);
}
void RegExpBytecodePeephole::EmitArgument(int start_pc, const uint8_t* bytecode,
BytecodeArgumentMapping arg) {
int arg_pos = start_pc + arg.offset;
switch (arg.length) {
case 1:
DCHECK_EQ(arg.new_length, arg.length);
EmitValue(GetValue<uint8_t>(bytecode, arg_pos));
break;
case 2:
DCHECK_EQ(arg.new_length, arg.length);
EmitValue(GetValue<uint16_t>(bytecode, arg_pos));
break;
case 3: {
// Length 3 only occurs in 'packed' arguments where the lowermost byte is
// the current bytecode, and the remaining 3 bytes are the packed value.
//
// We load 4 bytes from position - 1 and shift out the bytecode.
#ifdef V8_TARGET_BIG_ENDIAN
UNIMPLEMENTED();
int32_t val = 0;
#else
int32_t val = GetValue<int32_t>(bytecode, arg_pos - 1) >> kBitsPerByte;
#endif // V8_TARGET_BIG_ENDIAN
switch (arg.new_length) {
case 2:
EmitValue<uint16_t>(val);
break;
case 3: {
// Pack with previously emitted value.
auto prev_val =
GetValue<int32_t>(&(*optimized_bytecode_buffer_.begin()),
Length() - sizeof(uint32_t));
#ifdef V8_TARGET_BIG_ENDIAN
UNIMPLEMENTED();
USE(prev_val);
#else
DCHECK_EQ(prev_val & 0xFFFFFF00, 0);
OverwriteValue<uint32_t>(
pc() - sizeof(uint32_t),
(static_cast<uint32_t>(val) << 8) | (prev_val & 0xFF));
#endif // V8_TARGET_BIG_ENDIAN
break;
}
case 4:
EmitValue<uint32_t>(val);
break;
}
break;
}
case 4:
DCHECK_EQ(arg.new_length, arg.length);
EmitValue(GetValue<uint32_t>(bytecode, arg_pos));
break;
case 8:
DCHECK_EQ(arg.new_length, arg.length);
EmitValue(GetValue<uint64_t>(bytecode, arg_pos));
break;
default:
CopyRangeToOutput(bytecode, arg_pos,
std::min(arg.length, arg.new_length));
if (arg.length < arg.new_length) {
SetRange(0x00, arg.new_length - arg.length);
}
break;
}
}
int RegExpBytecodePeephole::pc() const {
DCHECK_LE(optimized_bytecode_buffer_.size(), std::numeric_limits<int>::max());
return static_cast<int>(optimized_bytecode_buffer_.size());
}
Zone* RegExpBytecodePeephole::zone() const { return zone_; }
} // namespace
// static
Handle<ByteArray> RegExpBytecodePeepholeOptimization::OptimizeBytecode(
Isolate* isolate, Zone* zone, Handle<String> source,
const uint8_t* bytecode, int length,
const ZoneUnorderedMap<int, int>& jump_edges) {
RegExpBytecodePeephole peephole(zone, length, jump_edges);
bool did_optimize = peephole.OptimizeBytecode(bytecode, length);
Handle<ByteArray> array = isolate->factory()->NewByteArray(peephole.Length());
peephole.CopyOptimizedBytecode(array->begin());
if (did_optimize && v8_flags.trace_regexp_peephole_optimization) {
PrintF("Original Bytecode:\n");
RegExpBytecodeDisassemble(bytecode, length, source->ToCString().get());
PrintF("Optimized Bytecode:\n");
RegExpBytecodeDisassemble(array->begin(), peephole.Length(),
source->ToCString().get());
}
return array;
}
} // namespace internal
} // namespace v8
|