blob: 892ba3a069f72e45182866ea6f4a6b88c4d5b9f8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
// Copyright 2009 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "irregexp/imported/regexp-stack.h"
namespace v8 {
namespace internal {
RegExpStackScope::RegExpStackScope(Isolate* isolate)
: regexp_stack_(isolate->regexp_stack()),
old_sp_top_delta_(regexp_stack_->sp_top_delta()) {
DCHECK(regexp_stack_->IsValid());
}
RegExpStackScope::~RegExpStackScope() {
CHECK_EQ(old_sp_top_delta_, regexp_stack_->sp_top_delta());
regexp_stack_->ResetIfEmpty();
}
RegExpStack::RegExpStack() : thread_local_(this) {}
RegExpStack::~RegExpStack() { thread_local_.FreeAndInvalidate(); }
char* RegExpStack::ArchiveStack(char* to) {
if (!thread_local_.owns_memory_) {
// Force dynamic stacks prior to archiving. Any growth will do. A dynamic
// stack is needed because stack archival & restoration rely on `memory_`
// pointing at a fixed-location backing store, whereas the static stack is
// tied to a RegExpStack instance.
EnsureCapacity(thread_local_.memory_size_ + 1);
DCHECK(thread_local_.owns_memory_);
}
MemCopy(reinterpret_cast<void*>(to), &thread_local_, kThreadLocalSize);
thread_local_ = ThreadLocal(this);
return to + kThreadLocalSize;
}
char* RegExpStack::RestoreStack(char* from) {
MemCopy(&thread_local_, reinterpret_cast<void*>(from), kThreadLocalSize);
return from + kThreadLocalSize;
}
void RegExpStack::ThreadLocal::ResetToStaticStack(RegExpStack* regexp_stack) {
if (owns_memory_) DeleteArray(memory_);
memory_ = regexp_stack->static_stack_;
memory_top_ = regexp_stack->static_stack_ + kStaticStackSize;
memory_size_ = kStaticStackSize;
stack_pointer_ = memory_top_;
limit_ = reinterpret_cast<Address>(regexp_stack->static_stack_) +
kStackLimitSlack * kSystemPointerSize;
owns_memory_ = false;
}
void RegExpStack::ThreadLocal::FreeAndInvalidate() {
if (owns_memory_) DeleteArray(memory_);
// This stack may not be used after being freed. Just reset to invalid values
// to ensure we don't accidentally use old memory areas.
memory_ = nullptr;
memory_top_ = nullptr;
memory_size_ = 0;
stack_pointer_ = nullptr;
limit_ = kMemoryTop;
}
Address RegExpStack::EnsureCapacity(size_t size) {
if (size > kMaximumStackSize) return kNullAddress;
if (thread_local_.memory_size_ < size) {
if (size < kMinimumDynamicStackSize) size = kMinimumDynamicStackSize;
uint8_t* new_memory = NewArray<uint8_t>(size);
if (thread_local_.memory_size_ > 0) {
// Copy original memory into top of new memory.
MemCopy(new_memory + size - thread_local_.memory_size_,
thread_local_.memory_, thread_local_.memory_size_);
if (thread_local_.owns_memory_) DeleteArray(thread_local_.memory_);
}
ptrdiff_t delta = sp_top_delta();
thread_local_.memory_ = new_memory;
thread_local_.memory_top_ = new_memory + size;
thread_local_.memory_size_ = size;
thread_local_.stack_pointer_ = thread_local_.memory_top_ + delta;
thread_local_.limit_ = reinterpret_cast<Address>(new_memory) +
kStackLimitSlack * kSystemPointerSize;
thread_local_.owns_memory_ = true;
}
return reinterpret_cast<Address>(thread_local_.memory_top_);
}
} // namespace internal
} // namespace v8
|