1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/InstructionReordering.h"
#include "jit/MIRGraph.h"
using namespace js;
using namespace js::jit;
static void MoveBefore(MBasicBlock* block, MInstruction* at,
MInstruction* ins) {
if (at == ins) {
return;
}
// Update instruction numbers.
for (MInstructionIterator iter(block->begin(at)); *iter != ins; iter++) {
MOZ_ASSERT(iter->id() < ins->id());
iter->setId(iter->id() + 1);
}
ins->setId(at->id() - 1);
block->moveBefore(at, ins);
}
static bool IsLastUse(MDefinition* ins, MDefinition* input,
MBasicBlock* loopHeader) {
// If we are in a loop, this cannot be the last use of any definitions from
// outside the loop, as those definitions can be used in future iterations.
if (loopHeader && input->block()->id() < loopHeader->id()) {
return false;
}
for (MUseDefIterator iter(input); iter; iter++) {
// Watch for uses defined in blocks which ReorderInstructions hasn't
// processed yet. These nodes have not had their ids set yet.
if (iter.def()->block()->id() > ins->block()->id()) {
return false;
}
if (iter.def()->id() > ins->id()) {
return false;
}
}
return true;
}
static void MoveConstantsToStart(MBasicBlock* block,
MInstruction* insertionPoint) {
// Move constants with a single use in the current block to the start of the
// block. Constants won't be reordered by ReorderInstructions, as they have no
// inputs. Moving them up as high as possible can allow their use to be moved
// up further, though, and has no cost if the constant is emitted at its use.
MInstructionIterator iter(block->begin(insertionPoint));
while (iter != block->end()) {
MInstruction* ins = *iter;
iter++;
if (!ins->isConstant() || !ins->hasOneUse() ||
ins->usesBegin()->consumer()->block() != block ||
IsFloatingPointType(ins->type())) {
continue;
}
MOZ_ASSERT(ins->isMovable());
MOZ_ASSERT(insertionPoint != ins);
// Note: we don't need to use MoveBefore here because MoveConstantsToStart
// is called right before we renumber all instructions in this block.
block->moveBefore(insertionPoint, ins);
}
}
bool jit::ReorderInstructions(MIRGraph& graph) {
// Renumber all instructions in the graph as we go.
size_t nextId = 0;
// List of the headers of any loops we are in.
Vector<MBasicBlock*, 4, SystemAllocPolicy> loopHeaders;
for (ReversePostorderIterator block(graph.rpoBegin());
block != graph.rpoEnd(); block++) {
// Don't reorder instructions within entry blocks, which have special
// requirements.
bool isEntryBlock =
*block == graph.entryBlock() || *block == graph.osrBlock();
MInstruction* insertionPoint = nullptr;
if (!isEntryBlock) {
// Move constants to the start of the block before renumbering all
// instructions.
insertionPoint = block->safeInsertTop();
MoveConstantsToStart(*block, insertionPoint);
}
// Renumber all definitions inside the basic blocks.
for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd();
iter++) {
iter->setId(nextId++);
}
for (MInstructionIterator iter(block->begin()); iter != block->end();
iter++) {
iter->setId(nextId++);
}
if (isEntryBlock) {
continue;
}
if (block->isLoopHeader()) {
if (!loopHeaders.append(*block)) {
return false;
}
}
MBasicBlock* innerLoop = loopHeaders.empty() ? nullptr : loopHeaders.back();
MInstructionReverseIterator rtop = ++block->rbegin(insertionPoint);
for (MInstructionIterator iter(block->begin(insertionPoint));
iter != block->end();) {
MInstruction* ins = *iter;
// Filter out some instructions which are never reordered.
if (ins->isEffectful() || !ins->isMovable() || ins->resumePoint() ||
ins == block->lastIns()) {
iter++;
continue;
}
// Look for inputs where this instruction is the last use of that
// input. If we move this instruction up, the input's lifetime will
// be shortened, modulo resume point uses (which don't need to be
// stored in a register, and can be handled by the register
// allocator by just spilling at some point with no reload).
Vector<MDefinition*, 4, SystemAllocPolicy> lastUsedInputs;
for (size_t i = 0; i < ins->numOperands(); i++) {
MDefinition* input = ins->getOperand(i);
if (!input->isConstant() && IsLastUse(ins, input, innerLoop)) {
if (!lastUsedInputs.append(input)) {
return false;
}
}
}
// Don't try to move instructions which aren't the last use of any
// of their inputs (we really ought to move these down instead).
if (lastUsedInputs.length() < 2) {
iter++;
continue;
}
MInstruction* target = ins;
MInstruction* postCallTarget = nullptr;
for (MInstructionReverseIterator riter = ++block->rbegin(ins);
riter != rtop; riter++) {
MInstruction* prev = *riter;
if (prev->isInterruptCheck()) {
break;
}
if (prev->isSetInitializedLength()) {
break;
}
// The instruction can't be moved before any of its uses.
bool isUse = false;
for (size_t i = 0; i < ins->numOperands(); i++) {
if (ins->getOperand(i) == prev) {
isUse = true;
break;
}
}
if (isUse) {
break;
}
// The instruction can't be moved before an instruction that
// stores to a location read by the instruction.
if (prev->isEffectful() &&
(ins->getAliasSet().flags() & prev->getAliasSet().flags()) &&
ins->mightAlias(prev) != MDefinition::AliasType::NoAlias) {
break;
}
// Make sure the instruction will still be the last use of one
// of its inputs when moved up this far.
for (size_t i = 0; i < lastUsedInputs.length();) {
bool found = false;
for (size_t j = 0; j < prev->numOperands(); j++) {
if (prev->getOperand(j) == lastUsedInputs[i]) {
found = true;
break;
}
}
if (found) {
lastUsedInputs[i] = lastUsedInputs.back();
lastUsedInputs.popBack();
} else {
i++;
}
}
if (lastUsedInputs.length() < 2) {
break;
}
// If we see a captured call result, either move the instruction before
// the corresponding call or don't move it at all.
if (prev->isCallResultCapture()) {
if (!postCallTarget) {
postCallTarget = target;
}
} else if (postCallTarget) {
MOZ_ASSERT(MWasmCallBase::IsWasmCall(prev) ||
prev->isIonToWasmCall());
postCallTarget = nullptr;
}
// We can move the instruction before this one.
target = prev;
}
if (postCallTarget) {
// We would have plonked this instruction between a call and its
// captured return value. Instead put it after the last corresponding
// return value.
target = postCallTarget;
}
iter++;
MoveBefore(*block, target, ins);
// Instruction reordering can move a bailing instruction up past a call
// that throws an exception, causing spurious bailouts. This should rarely
// be an issue in practice, so we only update the bailout kind if we don't
// have anything more specific.
if (ins->bailoutKind() == BailoutKind::TranspiledCacheIR) {
ins->setBailoutKind(BailoutKind::InstructionReordering);
}
}
if (block->isLoopBackedge()) {
loopHeaders.popBack();
}
}
return true;
}
|