blob: 7bf6054a726f441b326668c3295eb6900c56a658 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_mips64_Architecture_mips64_h
#define jit_mips64_Architecture_mips64_h
#include "mozilla/MathAlgorithms.h"
#include <limits.h>
#include <stdint.h>
#include "jit/mips-shared/Architecture-mips-shared.h"
#include "js/Utility.h"
namespace js {
namespace jit {
// Shadow stack space is not required on MIPS64.
static constexpr uint32_t ShadowStackSpace = 0;
// MIPS64 have 64 bit floating-point coprocessor. There are 32 double
// precision register which can also be used as single precision registers.
class FloatRegisters : public FloatRegistersMIPSShared {
public:
enum ContentType { Single, Double, NumTypes };
static const char* GetName(uint32_t i) {
MOZ_ASSERT(i < TotalPhys);
return FloatRegistersMIPSShared::GetName(Encoding(i));
}
static Encoding FromName(const char* name);
static const uint32_t Total = 32 * NumTypes;
#ifdef MIPSR6
static const uint32_t Allocatable = 60;
#else
static const uint32_t Allocatable = 62;
#endif
// When saving all registers we only need to do is save double registers.
static const uint32_t TotalPhys = 32;
static_assert(sizeof(SetType) * 8 >= Total,
"SetType should be large enough to enumerate all registers.");
// Magic values which are used to duplicate a mask of physical register for
// a specific type of register. A multiplication is used to copy and shift
// the bits of the physical register mask.
static const SetType SpreadSingle = SetType(1)
<< (uint32_t(Single) * TotalPhys);
static const SetType SpreadDouble = SetType(1)
<< (uint32_t(Double) * TotalPhys);
static const SetType SpreadScalar = SpreadSingle | SpreadDouble;
static const SetType SpreadVector = 0;
static const SetType Spread = SpreadScalar | SpreadVector;
static const SetType AllPhysMask = ((SetType(1) << TotalPhys) - 1);
static const SetType AllMask = AllPhysMask * Spread;
static const SetType AllSingleMask = AllPhysMask * SpreadSingle;
static const SetType AllDoubleMask = AllPhysMask * SpreadDouble;
static const SetType NonVolatileMask =
((1U << FloatRegisters::f24) | (1U << FloatRegisters::f25) |
(1U << FloatRegisters::f26) | (1U << FloatRegisters::f27) |
(1U << FloatRegisters::f28) | (1U << FloatRegisters::f29) |
(1U << FloatRegisters::f30) | (1U << FloatRegisters::f31)) *
SpreadScalar |
AllPhysMask * SpreadVector;
static const SetType VolatileMask = AllMask & ~NonVolatileMask;
static const SetType WrapperMask = VolatileMask;
#ifdef MIPSR6
static const SetType NonAllocatableMask =
((1U << FloatRegisters::f23) | (1U << FloatRegisters::f24)) * Spread;
#else
static const SetType NonAllocatableMask =
(1U << FloatRegisters::f23) * Spread;
#endif
static const SetType AllocatableMask = AllMask & ~NonAllocatableMask;
};
template <typename T>
class TypedRegisterSet;
class FloatRegister : public FloatRegisterMIPSShared {
public:
typedef FloatRegisters Codes;
typedef size_t Code;
typedef Codes::Encoding Encoding;
typedef Codes::ContentType ContentType;
Encoding reg_ : 6;
private:
ContentType kind_ : 3;
public:
constexpr FloatRegister(uint32_t r, ContentType kind = Codes::Double)
: reg_(Encoding(r)), kind_(kind) {}
constexpr FloatRegister()
: reg_(Encoding(FloatRegisters::invalid_freg)), kind_(Codes::Double) {}
static uint32_t SetSize(SetType x) {
// Count the number of non-aliased registers.
x |= x >> Codes::TotalPhys;
x &= Codes::AllPhysMask;
static_assert(Codes::AllPhysMask <= 0xffffffff,
"We can safely use CountPopulation32");
return mozilla::CountPopulation32(x);
}
bool operator==(const FloatRegister& other) const {
MOZ_ASSERT(!isInvalid());
MOZ_ASSERT(!other.isInvalid());
return kind_ == other.kind_ && reg_ == other.reg_;
}
bool equiv(const FloatRegister& other) const { return other.kind_ == kind_; }
size_t size() const {
return (kind_ == Codes::Double) ? sizeof(double) : sizeof(float);
}
// Always push doubles to maintain 8-byte stack alignment.
size_t pushSize() const { return sizeof(double); }
bool isInvalid() const { return reg_ == FloatRegisters::invalid_freg; }
bool isSingle() const { return kind_ == Codes::Single; }
bool isDouble() const { return kind_ == Codes::Double; }
bool isSimd128() const { return false; }
FloatRegister singleOverlay() const;
FloatRegister doubleOverlay() const;
FloatRegister asSingle() const { return singleOverlay(); }
FloatRegister asDouble() const { return doubleOverlay(); }
FloatRegister asSimd128() const { MOZ_CRASH("NYI"); }
Code code() const {
MOZ_ASSERT(!isInvalid());
return Code(reg_ | (kind_ << 5));
}
Encoding encoding() const {
MOZ_ASSERT(!isInvalid());
MOZ_ASSERT(uint32_t(reg_) < Codes::TotalPhys);
return reg_;
}
uint32_t id() const { return reg_; }
static FloatRegister FromCode(uint32_t i) {
uint32_t code = i & 0x1f;
uint32_t kind = i >> 5;
return FloatRegister(Code(code), ContentType(kind));
}
bool volatile_() const {
return !!((1 << reg_) & FloatRegisters::VolatileMask);
}
const char* name() const { return FloatRegisters::GetName(reg_); }
bool operator!=(const FloatRegister& other) const {
return kind_ != other.kind_ || reg_ != other.reg_;
}
bool aliases(const FloatRegister& other) { return reg_ == other.reg_; }
uint32_t numAliased() const { return 2; }
FloatRegister aliased(uint32_t aliasIdx) {
if (aliasIdx == 0) {
return *this;
}
MOZ_ASSERT(aliasIdx == 1);
if (isDouble()) {
return singleOverlay();
}
return doubleOverlay();
}
uint32_t numAlignedAliased() const { return 2; }
FloatRegister alignedAliased(uint32_t aliasIdx) {
MOZ_ASSERT(isDouble());
if (aliasIdx == 0) {
return *this;
}
MOZ_ASSERT(aliasIdx == 1);
return singleOverlay();
}
SetType alignedOrDominatedAliasedSet() const { return Codes::Spread << reg_; }
static constexpr RegTypeName DefaultType = RegTypeName::Float64;
template <RegTypeName = DefaultType>
static SetType LiveAsIndexableSet(SetType s) {
return SetType(0);
}
template <RegTypeName Name = DefaultType>
static SetType AllocatableAsIndexableSet(SetType s) {
static_assert(Name != RegTypeName::Any, "Allocatable set are not iterable");
return LiveAsIndexableSet<Name>(s);
}
static Code FromName(const char* name) {
return FloatRegisters::FromName(name);
}
static TypedRegisterSet<FloatRegister> ReduceSetForPush(
const TypedRegisterSet<FloatRegister>& s);
static uint32_t GetPushSizeInBytes(const TypedRegisterSet<FloatRegister>& s);
uint32_t getRegisterDumpOffsetInBytes();
};
template <>
inline FloatRegister::SetType
FloatRegister::LiveAsIndexableSet<RegTypeName::Float32>(SetType set) {
return set & FloatRegisters::AllSingleMask;
}
template <>
inline FloatRegister::SetType
FloatRegister::LiveAsIndexableSet<RegTypeName::Float64>(SetType set) {
return set & FloatRegisters::AllDoubleMask;
}
template <>
inline FloatRegister::SetType
FloatRegister::LiveAsIndexableSet<RegTypeName::Any>(SetType set) {
return set;
}
} // namespace jit
} // namespace js
#endif /* jit_mips64_Architecture_mips64_h */
|