1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2021 the V8 project authors. All rights reserved.
#include "jit/riscv64/Assembler-riscv64.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include "gc/Marking.h"
#include "jit/AutoWritableJitCode.h"
#include "jit/ExecutableAllocator.h"
#include "jit/riscv64/disasm/Disasm-riscv64.h"
#include "vm/Realm.h"
using mozilla::DebugOnly;
namespace js {
namespace jit {
#define UNIMPLEMENTED_RISCV() MOZ_CRASH("RISC_V not implemented");
bool Assembler::FLAG_riscv_debug = false;
void Assembler::nop() { addi(ToRegister(0), ToRegister(0), 0); }
// Size of the instruction stream, in bytes.
size_t Assembler::size() const { return m_buffer.size(); }
bool Assembler::swapBuffer(wasm::Bytes& bytes) {
// For now, specialize to the one use case. As long as wasm::Bytes is a
// Vector, not a linked-list of chunks, there's not much we can do other
// than copy.
MOZ_ASSERT(bytes.empty());
if (!bytes.resize(bytesNeeded())) {
return false;
}
m_buffer.executableCopy(bytes.begin());
return true;
}
// Size of the relocation table, in bytes.
size_t Assembler::jumpRelocationTableBytes() const {
return jumpRelocations_.length();
}
size_t Assembler::dataRelocationTableBytes() const {
return dataRelocations_.length();
}
// Size of the data table, in bytes.
size_t Assembler::bytesNeeded() const {
return size() + jumpRelocationTableBytes() + dataRelocationTableBytes();
}
void Assembler::executableCopy(uint8_t* buffer) {
MOZ_ASSERT(isFinished);
m_buffer.executableCopy(buffer);
}
uint32_t Assembler::AsmPoolMaxOffset = 1024;
uint32_t Assembler::GetPoolMaxOffset() {
static bool isSet = false;
if (!isSet) {
char* poolMaxOffsetStr = getenv("ASM_POOL_MAX_OFFSET");
uint32_t poolMaxOffset;
if (poolMaxOffsetStr &&
sscanf(poolMaxOffsetStr, "%u", &poolMaxOffset) == 1) {
AsmPoolMaxOffset = poolMaxOffset;
}
isSet = true;
}
return AsmPoolMaxOffset;
}
// Pool callbacks stuff:
void Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index) {
MOZ_CRASH("Unimplement");
}
void Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) {
MOZ_CRASH("Unimplement");
}
void Assembler::processCodeLabels(uint8_t* rawCode) {
for (const CodeLabel& label : codeLabels_) {
Bind(rawCode, label);
}
}
void Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest,
BufferOffset afterPool) {
DEBUG_PRINTF("\tWritePoolGuard\n");
int32_t off = afterPool.getOffset() - branch.getOffset();
if (!is_int21(off) || !((off & 0x1) == 0)) {
printf("%d\n", off);
MOZ_CRASH("imm invalid");
}
// JAL encode is
// 31 | 30 21 | 20 | 19 12 | 11 7 | 6 0 |
// imm[20] | imm[10:1] | imm[11] | imm[19:12] | rd | opcode|
// 1 10 1 8 5 7
// offset[20:1] dest JAL
int32_t imm20 = (off & 0xff000) | // bits 19-12
((off & 0x800) << 9) | // bit 11
((off & 0x7fe) << 20) | // bits 10-1
((off & 0x100000) << 11); // bit 20
Instr instr = JAL | (imm20 & kImm20Mask);
dest->SetInstructionBits(instr);
DEBUG_PRINTF("%p(%x): ", dest, branch.getOffset());
disassembleInstr(dest->InstructionBits(), JitSpew_Codegen);
}
void Assembler::WritePoolHeader(uint8_t* start, Pool* p, bool isNatural) {
static_assert(sizeof(PoolHeader) == 4);
// Get the total size of the pool.
const uintptr_t totalPoolSize = sizeof(PoolHeader) + p->getPoolSize();
const uintptr_t totalPoolInstructions = totalPoolSize / kInstrSize;
MOZ_ASSERT((totalPoolSize & 0x3) == 0);
MOZ_ASSERT(totalPoolInstructions < (1 << 15));
PoolHeader header(totalPoolInstructions, isNatural);
*(PoolHeader*)start = header;
}
void Assembler::copyJumpRelocationTable(uint8_t* dest) {
if (jumpRelocations_.length()) {
memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length());
}
}
void Assembler::copyDataRelocationTable(uint8_t* dest) {
if (dataRelocations_.length()) {
memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length());
}
}
void Assembler::RV_li(Register rd, int64_t imm) {
UseScratchRegisterScope temps(this);
if (RecursiveLiCount(imm) > GeneralLiCount(imm, temps.hasAvailable())) {
GeneralLi(rd, imm);
} else {
RecursiveLi(rd, imm);
}
}
int Assembler::RV_li_count(int64_t imm, bool is_get_temp_reg) {
if (RecursiveLiCount(imm) > GeneralLiCount(imm, is_get_temp_reg)) {
return GeneralLiCount(imm, is_get_temp_reg);
} else {
return RecursiveLiCount(imm);
}
}
void Assembler::GeneralLi(Register rd, int64_t imm) {
// 64-bit imm is put in the register rd.
// In most cases the imm is 32 bit and 2 instructions are generated. If a
// temporary register is available, in the worst case, 6 instructions are
// generated for a full 64-bit immediate. If temporay register is not
// available the maximum will be 8 instructions. If imm is more than 32 bits
// and a temp register is available, imm is divided into two 32-bit parts,
// low_32 and up_32. Each part is built in a separate register. low_32 is
// built before up_32. If low_32 is negative (upper 32 bits are 1), 0xffffffff
// is subtracted from up_32 before up_32 is built. This compensates for 32
// bits of 1's in the lower when the two registers are added. If no temp is
// available, the upper 32 bit is built in rd, and the lower 32 bits are
// devided to 3 parts (11, 11, and 10 bits). The parts are shifted and added
// to the upper part built in rd.
if (is_int32(imm + 0x800)) {
// 32-bit case. Maximum of 2 instructions generated
int64_t high_20 = ((imm + 0x800) >> 12);
int64_t low_12 = imm << 52 >> 52;
if (high_20) {
lui(rd, (int32_t)high_20);
if (low_12) {
addi(rd, rd, low_12);
}
} else {
addi(rd, zero_reg, low_12);
}
return;
} else {
UseScratchRegisterScope temps(this);
BlockTrampolinePoolScope block_trampoline_pool(this, 8);
// 64-bit case: divide imm into two 32-bit parts, upper and lower
int64_t up_32 = imm >> 32;
int64_t low_32 = imm & 0xffffffffull;
Register temp_reg = rd;
// Check if a temporary register is available
if (up_32 == 0 || low_32 == 0) {
// No temp register is needed
} else {
temp_reg = temps.hasAvailable() ? temps.Acquire() : InvalidReg;
}
if (temp_reg != InvalidReg) {
// keep track of hardware behavior for lower part in sim_low
int64_t sim_low = 0;
// Build lower part
if (low_32 != 0) {
int64_t high_20 = ((low_32 + 0x800) >> 12);
int64_t low_12 = low_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
sim_low = ((high_20 << 12) << 32) >> 32;
lui(rd, (int32_t)high_20);
if (low_12) {
sim_low += (low_12 << 52 >> 52) | low_12;
addi(rd, rd, low_12);
}
} else {
sim_low = low_12;
ori(rd, zero_reg, low_12);
}
}
if (sim_low & 0x100000000) {
// Bit 31 is 1. Either an overflow or a negative 64 bit
if (up_32 == 0) {
// Positive number, but overflow because of the add 0x800
slli(rd, rd, 32);
srli(rd, rd, 32);
return;
}
// low_32 is a negative 64 bit after the build
up_32 = (up_32 - 0xffffffff) & 0xffffffff;
}
if (up_32 == 0) {
return;
}
// Build upper part in a temporary register
if (low_32 == 0) {
// Build upper part in rd
temp_reg = rd;
}
int64_t high_20 = (up_32 + 0x800) >> 12;
int64_t low_12 = up_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
lui(temp_reg, (int32_t)high_20);
if (low_12) {
addi(temp_reg, temp_reg, low_12);
}
} else {
ori(temp_reg, zero_reg, low_12);
}
// Put it at the bgining of register
slli(temp_reg, temp_reg, 32);
if (low_32 != 0) {
add(rd, rd, temp_reg);
}
return;
}
// No temp register. Build imm in rd.
// Build upper 32 bits first in rd. Divide lower 32 bits parts and add
// parts to the upper part by doing shift and add.
// First build upper part in rd.
int64_t high_20 = (up_32 + 0x800) >> 12;
int64_t low_12 = up_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
lui(rd, (int32_t)high_20);
if (low_12) {
addi(rd, rd, low_12);
}
} else {
ori(rd, zero_reg, low_12);
}
// upper part already in rd. Each part to be added to rd, has maximum of 11
// bits, and always starts with a 1. rd is shifted by the size of the part
// plus the number of zeros between the parts. Each part is added after the
// left shift.
uint32_t mask = 0x80000000;
int32_t shift_val = 0;
int32_t i;
for (i = 0; i < 32; i++) {
if ((low_32 & mask) == 0) {
mask >>= 1;
shift_val++;
if (i == 31) {
// rest is zero
slli(rd, rd, shift_val);
}
continue;
}
// The first 1 seen
int32_t part;
if ((i + 11) < 32) {
// Pick 11 bits
part = ((uint32_t)(low_32 << i) >> i) >> (32 - (i + 11));
slli(rd, rd, shift_val + 11);
ori(rd, rd, part);
i += 10;
mask >>= 11;
} else {
part = (uint32_t)(low_32 << i) >> i;
slli(rd, rd, shift_val + (32 - i));
ori(rd, rd, part);
break;
}
shift_val = 0;
}
}
}
int Assembler::GeneralLiCount(int64_t imm, bool is_get_temp_reg) {
int count = 0;
// imitate Assembler::RV_li
if (is_int32(imm + 0x800)) {
// 32-bit case. Maximum of 2 instructions generated
int64_t high_20 = ((imm + 0x800) >> 12);
int64_t low_12 = imm << 52 >> 52;
if (high_20) {
count++;
if (low_12) {
count++;
}
} else {
count++;
}
return count;
} else {
// 64-bit case: divide imm into two 32-bit parts, upper and lower
int64_t up_32 = imm >> 32;
int64_t low_32 = imm & 0xffffffffull;
// Check if a temporary register is available
if (is_get_temp_reg) {
// keep track of hardware behavior for lower part in sim_low
int64_t sim_low = 0;
// Build lower part
if (low_32 != 0) {
int64_t high_20 = ((low_32 + 0x800) >> 12);
int64_t low_12 = low_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
sim_low = ((high_20 << 12) << 32) >> 32;
count++;
if (low_12) {
sim_low += (low_12 << 52 >> 52) | low_12;
count++;
}
} else {
sim_low = low_12;
count++;
}
}
if (sim_low & 0x100000000) {
// Bit 31 is 1. Either an overflow or a negative 64 bit
if (up_32 == 0) {
// Positive number, but overflow because of the add 0x800
count++;
count++;
return count;
}
// low_32 is a negative 64 bit after the build
up_32 = (up_32 - 0xffffffff) & 0xffffffff;
}
if (up_32 == 0) {
return count;
}
int64_t high_20 = (up_32 + 0x800) >> 12;
int64_t low_12 = up_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
count++;
if (low_12) {
count++;
}
} else {
count++;
}
// Put it at the bgining of register
count++;
if (low_32 != 0) {
count++;
}
return count;
}
// No temp register. Build imm in rd.
// Build upper 32 bits first in rd. Divide lower 32 bits parts and add
// parts to the upper part by doing shift and add.
// First build upper part in rd.
int64_t high_20 = (up_32 + 0x800) >> 12;
int64_t low_12 = up_32 & 0xfff;
if (high_20) {
// Adjust to 20 bits for the case of overflow
high_20 &= 0xfffff;
count++;
if (low_12) {
count++;
}
} else {
count++;
}
// upper part already in rd. Each part to be added to rd, has maximum of 11
// bits, and always starts with a 1. rd is shifted by the size of the part
// plus the number of zeros between the parts. Each part is added after the
// left shift.
uint32_t mask = 0x80000000;
int32_t i;
for (i = 0; i < 32; i++) {
if ((low_32 & mask) == 0) {
mask >>= 1;
if (i == 31) {
// rest is zero
count++;
}
continue;
}
// The first 1 seen
if ((i + 11) < 32) {
// Pick 11 bits
count++;
count++;
i += 10;
mask >>= 11;
} else {
count++;
count++;
break;
}
}
}
return count;
}
void Assembler::li_ptr(Register rd, int64_t imm) {
m_buffer.enterNoNops();
m_buffer.assertNoPoolAndNoNops();
// Initialize rd with an address
// Pointers are 48 bits
// 6 fixed instructions are generated
DEBUG_PRINTF("li_ptr(%d, %lx <%ld>)\n", ToNumber(rd), imm, imm);
MOZ_ASSERT((imm & 0xfff0000000000000ll) == 0);
int64_t a6 = imm & 0x3f; // bits 0:5. 6 bits
int64_t b11 = (imm >> 6) & 0x7ff; // bits 6:11. 11 bits
int64_t high_31 = (imm >> 17) & 0x7fffffff; // 31 bits
int64_t high_20 = ((high_31 + 0x800) >> 12); // 19 bits
int64_t low_12 = high_31 & 0xfff; // 12 bits
lui(rd, (int32_t)high_20);
addi(rd, rd, low_12); // 31 bits in rd.
slli(rd, rd, 11); // Space for next 11 bis
ori(rd, rd, b11); // 11 bits are put in. 42 bit in rd
slli(rd, rd, 6); // Space for next 6 bits
ori(rd, rd, a6); // 6 bits are put in. 48 bis in rd
m_buffer.leaveNoNops();
}
void Assembler::li_constant(Register rd, int64_t imm) {
m_buffer.enterNoNops();
m_buffer.assertNoPoolAndNoNops();
DEBUG_PRINTF("li_constant(%d, %lx <%ld>)\n", ToNumber(rd), imm, imm);
lui(rd, (imm + (1LL << 47) + (1LL << 35) + (1LL << 23) + (1LL << 11)) >>
48); // Bits 63:48
addiw(rd, rd,
(imm + (1LL << 35) + (1LL << 23) + (1LL << 11)) << 16 >>
52); // Bits 47:36
slli(rd, rd, 12);
addi(rd, rd, (imm + (1LL << 23) + (1LL << 11)) << 28 >> 52); // Bits 35:24
slli(rd, rd, 12);
addi(rd, rd, (imm + (1LL << 11)) << 40 >> 52); // Bits 23:12
slli(rd, rd, 12);
addi(rd, rd, imm << 52 >> 52); // Bits 11:0
m_buffer.leaveNoNops();
}
ABIArg ABIArgGenerator::next(MIRType type) {
switch (type) {
case MIRType::Int32:
case MIRType::Int64:
case MIRType::Pointer:
case MIRType::WasmAnyRef:
case MIRType::StackResults: {
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uintptr_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_ + a0.encoding()));
intRegIndex_++;
break;
}
case MIRType::Float32:
case MIRType::Double: {
if (floatRegIndex_ == NumFloatArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(double);
break;
}
current_ = ABIArg(FloatRegister(
FloatRegisters::Encoding(floatRegIndex_ + fa0.encoding()),
type == MIRType::Double ? FloatRegisters::Double
: FloatRegisters::Single));
floatRegIndex_++;
break;
}
case MIRType::Simd128: {
MOZ_CRASH("RISCV64 does not support simd yet.");
break;
}
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
bool Assembler::oom() const {
return AssemblerShared::oom() || m_buffer.oom() || jumpRelocations_.oom() ||
dataRelocations_.oom() || !enoughLabelCache_;
}
int Assembler::disassembleInstr(Instr instr, bool enable_spew) {
if (!FLAG_riscv_debug && !enable_spew) return -1;
disasm::NameConverter converter;
disasm::Disassembler disasm(converter);
EmbeddedVector<char, 128> disasm_buffer;
int size =
disasm.InstructionDecode(disasm_buffer, reinterpret_cast<byte*>(&instr));
DEBUG_PRINTF("%s\n", disasm_buffer.start());
if (enable_spew) {
JitSpew(JitSpew_Codegen, "%s", disasm_buffer.start());
}
return size;
}
uintptr_t Assembler::target_address_at(Instruction* pc) {
Instruction* instr0 = pc;
DEBUG_PRINTF("target_address_at: pc: 0x%p\t", instr0);
Instruction* instr1 = pc + 1 * kInstrSize;
Instruction* instr2 = pc + 2 * kInstrSize;
Instruction* instr3 = pc + 3 * kInstrSize;
Instruction* instr4 = pc + 4 * kInstrSize;
Instruction* instr5 = pc + 5 * kInstrSize;
// Interpret instructions for address generated by li: See listing in
// Assembler::set_target_address_at() just below.
if (IsLui(*reinterpret_cast<Instr*>(instr0)) &&
IsAddi(*reinterpret_cast<Instr*>(instr1)) &&
IsSlli(*reinterpret_cast<Instr*>(instr2)) &&
IsOri(*reinterpret_cast<Instr*>(instr3)) &&
IsSlli(*reinterpret_cast<Instr*>(instr4)) &&
IsOri(*reinterpret_cast<Instr*>(instr5))) {
// Assemble the 64 bit value.
int64_t addr = (int64_t)(instr0->Imm20UValue() << kImm20Shift) +
(int64_t)instr1->Imm12Value();
MOZ_ASSERT(instr2->Imm12Value() == 11);
addr <<= 11;
addr |= (int64_t)instr3->Imm12Value();
MOZ_ASSERT(instr4->Imm12Value() == 6);
addr <<= 6;
addr |= (int64_t)instr5->Imm12Value();
DEBUG_PRINTF("addr: %lx\n", addr);
return static_cast<uintptr_t>(addr);
}
// We should never get here, force a bad address if we do.
MOZ_CRASH("RISC-V UNREACHABLE");
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
ImmPtr newValue, ImmPtr expectedValue) {
PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
PatchedImmPtr(expectedValue.value));
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue) {
Instruction* inst = (Instruction*)label.raw();
// Extract old Value
DebugOnly<uint64_t> value = Assembler::ExtractLoad64Value(inst);
MOZ_ASSERT(value == uint64_t(expectedValue.value));
// Replace with new value
Assembler::UpdateLoad64Value(inst, uint64_t(newValue.value));
}
uint64_t Assembler::ExtractLoad64Value(Instruction* inst0) {
DEBUG_PRINTF("\tExtractLoad64Value: \tpc:%p ", inst0);
if (IsJal(*reinterpret_cast<Instr*>(inst0))) {
int offset = inst0->Imm20JValue();
inst0 = inst0 + offset;
}
Instruction* instr1 = inst0 + 1 * kInstrSize;
if (IsAddiw(*reinterpret_cast<Instr*>(instr1))) {
// Li64
Instruction* instr2 = inst0 + 2 * kInstrSize;
Instruction* instr3 = inst0 + 3 * kInstrSize;
Instruction* instr4 = inst0 + 4 * kInstrSize;
Instruction* instr5 = inst0 + 5 * kInstrSize;
Instruction* instr6 = inst0 + 6 * kInstrSize;
Instruction* instr7 = inst0 + 7 * kInstrSize;
if (IsLui(*reinterpret_cast<Instr*>(inst0)) &&
IsAddiw(*reinterpret_cast<Instr*>(instr1)) &&
IsSlli(*reinterpret_cast<Instr*>(instr2)) &&
IsAddi(*reinterpret_cast<Instr*>(instr3)) &&
IsSlli(*reinterpret_cast<Instr*>(instr4)) &&
IsAddi(*reinterpret_cast<Instr*>(instr5)) &&
IsSlli(*reinterpret_cast<Instr*>(instr6)) &&
IsAddi(*reinterpret_cast<Instr*>(instr7))) {
int64_t imm = (int64_t)(inst0->Imm20UValue() << kImm20Shift) +
(int64_t)instr1->Imm12Value();
MOZ_ASSERT(instr2->Imm12Value() == 12);
imm <<= 12;
imm += (int64_t)instr3->Imm12Value();
MOZ_ASSERT(instr4->Imm12Value() == 12);
imm <<= 12;
imm += (int64_t)instr5->Imm12Value();
MOZ_ASSERT(instr6->Imm12Value() == 12);
imm <<= 12;
imm += (int64_t)instr7->Imm12Value();
DEBUG_PRINTF("imm:%lx\n", imm);
return imm;
} else {
FLAG_riscv_debug = true;
disassembleInstr(inst0->InstructionBits());
disassembleInstr(instr1->InstructionBits());
disassembleInstr(instr2->InstructionBits());
disassembleInstr(instr3->InstructionBits());
disassembleInstr(instr4->InstructionBits());
disassembleInstr(instr5->InstructionBits());
disassembleInstr(instr6->InstructionBits());
disassembleInstr(instr7->InstructionBits());
MOZ_CRASH();
}
} else {
DEBUG_PRINTF("\n");
Instruction* instrf1 = (inst0 - 1 * kInstrSize);
Instruction* instr2 = inst0 + 2 * kInstrSize;
Instruction* instr3 = inst0 + 3 * kInstrSize;
Instruction* instr4 = inst0 + 4 * kInstrSize;
Instruction* instr5 = inst0 + 5 * kInstrSize;
Instruction* instr6 = inst0 + 6 * kInstrSize;
Instruction* instr7 = inst0 + 7 * kInstrSize;
disassembleInstr(instrf1->InstructionBits());
disassembleInstr(inst0->InstructionBits());
disassembleInstr(instr1->InstructionBits());
disassembleInstr(instr2->InstructionBits());
disassembleInstr(instr3->InstructionBits());
disassembleInstr(instr4->InstructionBits());
disassembleInstr(instr5->InstructionBits());
disassembleInstr(instr6->InstructionBits());
disassembleInstr(instr7->InstructionBits());
MOZ_ASSERT(IsAddi(*reinterpret_cast<Instr*>(instr1)));
// Li48
return target_address_at(inst0);
}
}
void Assembler::UpdateLoad64Value(Instruction* pc, uint64_t value) {
DEBUG_PRINTF("\tUpdateLoad64Value: pc: %p\tvalue: %lx\n", pc, value);
Instruction* instr1 = pc + 1 * kInstrSize;
if (IsJal(*reinterpret_cast<Instr*>(pc))) {
pc = pc + pc->Imm20JValue();
instr1 = pc + 1 * kInstrSize;
}
if (IsAddiw(*reinterpret_cast<Instr*>(instr1))) {
Instruction* instr0 = pc;
Instruction* instr2 = pc + 2 * kInstrSize;
Instruction* instr3 = pc + 3 * kInstrSize;
Instruction* instr4 = pc + 4 * kInstrSize;
Instruction* instr5 = pc + 5 * kInstrSize;
Instruction* instr6 = pc + 6 * kInstrSize;
Instruction* instr7 = pc + 7 * kInstrSize;
MOZ_ASSERT(IsLui(*reinterpret_cast<Instr*>(pc)) &&
IsAddiw(*reinterpret_cast<Instr*>(instr1)) &&
IsSlli(*reinterpret_cast<Instr*>(instr2)) &&
IsAddi(*reinterpret_cast<Instr*>(instr3)) &&
IsSlli(*reinterpret_cast<Instr*>(instr4)) &&
IsAddi(*reinterpret_cast<Instr*>(instr5)) &&
IsSlli(*reinterpret_cast<Instr*>(instr6)) &&
IsAddi(*reinterpret_cast<Instr*>(instr7)));
// lui(rd, (imm + (1LL << 47) + (1LL << 35) + (1LL << 23) + (1LL << 11)) >>
// 48); // Bits 63:48
// addiw(rd, rd,
// (imm + (1LL << 35) + (1LL << 23) + (1LL << 11)) << 16 >>
// 52); // Bits 47:36
// slli(rd, rd, 12);
// addi(rd, rd, (imm + (1LL << 23) + (1LL << 11)) << 28 >> 52); // Bits
// 35:24 slli(rd, rd, 12); addi(rd, rd, (imm + (1LL << 11)) << 40 >> 52); //
// Bits 23:12 slli(rd, rd, 12); addi(rd, rd, imm << 52 >> 52); // Bits 11:0
*reinterpret_cast<Instr*>(instr0) &= 0xfff;
*reinterpret_cast<Instr*>(instr0) |=
(((value + (1LL << 47) + (1LL << 35) + (1LL << 23) + (1LL << 11)) >> 48)
<< 12);
*reinterpret_cast<Instr*>(instr1) &= 0xfffff;
*reinterpret_cast<Instr*>(instr1) |=
(((value + (1LL << 35) + (1LL << 23) + (1LL << 11)) << 16 >> 52) << 20);
*reinterpret_cast<Instr*>(instr3) &= 0xfffff;
*reinterpret_cast<Instr*>(instr3) |=
(((value + (1LL << 23) + (1LL << 11)) << 28 >> 52) << 20);
*reinterpret_cast<Instr*>(instr5) &= 0xfffff;
*reinterpret_cast<Instr*>(instr5) |=
(((value + (1LL << 11)) << 40 >> 52) << 20);
*reinterpret_cast<Instr*>(instr7) &= 0xfffff;
*reinterpret_cast<Instr*>(instr7) |= ((value << 52 >> 52) << 20);
disassembleInstr(instr0->InstructionBits());
disassembleInstr(instr1->InstructionBits());
disassembleInstr(instr2->InstructionBits());
disassembleInstr(instr3->InstructionBits());
disassembleInstr(instr4->InstructionBits());
disassembleInstr(instr5->InstructionBits());
disassembleInstr(instr6->InstructionBits());
disassembleInstr(instr7->InstructionBits());
MOZ_ASSERT(ExtractLoad64Value(pc) == value);
} else {
Instruction* instr0 = pc;
Instruction* instr2 = pc + 2 * kInstrSize;
Instruction* instr3 = pc + 3 * kInstrSize;
Instruction* instr4 = pc + 4 * kInstrSize;
Instruction* instr5 = pc + 5 * kInstrSize;
Instruction* instr6 = pc + 6 * kInstrSize;
Instruction* instr7 = pc + 7 * kInstrSize;
disassembleInstr(instr0->InstructionBits());
disassembleInstr(instr1->InstructionBits());
disassembleInstr(instr2->InstructionBits());
disassembleInstr(instr3->InstructionBits());
disassembleInstr(instr4->InstructionBits());
disassembleInstr(instr5->InstructionBits());
disassembleInstr(instr6->InstructionBits());
disassembleInstr(instr7->InstructionBits());
MOZ_ASSERT(IsAddi(*reinterpret_cast<Instr*>(instr1)));
set_target_value_at(pc, value);
}
}
void Assembler::set_target_value_at(Instruction* pc, uint64_t target) {
DEBUG_PRINTF("\tset_target_value_at: pc: %p\ttarget: %lx\n", pc, target);
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
MOZ_ASSERT((target & 0xffff000000000000ll) == 0);
#ifdef DEBUG
// Check we have the result from a li macro-instruction.
Instruction* instr0 = pc;
Instruction* instr1 = pc + 1 * kInstrSize;
Instruction* instr3 = pc + 3 * kInstrSize;
Instruction* instr5 = pc + 5 * kInstrSize;
MOZ_ASSERT(IsLui(*reinterpret_cast<Instr*>(instr0)) &&
IsAddi(*reinterpret_cast<Instr*>(instr1)) &&
IsOri(*reinterpret_cast<Instr*>(instr3)) &&
IsOri(*reinterpret_cast<Instr*>(instr5)));
#endif
int64_t a6 = target & 0x3f; // bits 0:6. 6 bits
int64_t b11 = (target >> 6) & 0x7ff; // bits 6:11. 11 bits
int64_t high_31 = (target >> 17) & 0x7fffffff; // 31 bits
int64_t high_20 = ((high_31 + 0x800) >> 12); // 19 bits
int64_t low_12 = high_31 & 0xfff; // 12 bits
*p = *p & 0xfff;
*p = *p | ((int32_t)high_20 << 12);
*(p + 1) = *(p + 1) & 0xfffff;
*(p + 1) = *(p + 1) | ((int32_t)low_12 << 20);
*(p + 2) = *(p + 2) & 0xfffff;
*(p + 2) = *(p + 2) | (11 << 20);
*(p + 3) = *(p + 3) & 0xfffff;
*(p + 3) = *(p + 3) | ((int32_t)b11 << 20);
*(p + 4) = *(p + 4) & 0xfffff;
*(p + 4) = *(p + 4) | (6 << 20);
*(p + 5) = *(p + 5) & 0xfffff;
*(p + 5) = *(p + 5) | ((int32_t)a6 << 20);
MOZ_ASSERT(target_address_at(pc) == target);
}
void Assembler::WriteLoad64Instructions(Instruction* inst0, Register reg,
uint64_t value) {
DEBUG_PRINTF("\tWriteLoad64Instructions\n");
// Initialize rd with an address
// Pointers are 48 bits
// 6 fixed instructions are generated
MOZ_ASSERT((value & 0xfff0000000000000ll) == 0);
int64_t a6 = value & 0x3f; // bits 0:5. 6 bits
int64_t b11 = (value >> 6) & 0x7ff; // bits 6:11. 11 bits
int64_t high_31 = (value >> 17) & 0x7fffffff; // 31 bits
int64_t high_20 = ((high_31 + 0x800) >> 12); // 19 bits
int64_t low_12 = high_31 & 0xfff; // 12 bits
Instr lui_ = LUI | (reg.code() << kRdShift) |
((int32_t)high_20 << kImm20Shift); // lui(rd, (int32_t)high_20);
*reinterpret_cast<Instr*>(inst0) = lui_;
Instr addi_ =
OP_IMM | (reg.code() << kRdShift) | (0b000 << kFunct3Shift) |
(reg.code() << kRs1Shift) |
(low_12 << kImm12Shift); // addi(rd, rd, low_12); // 31 bits in rd.
*reinterpret_cast<Instr*>(inst0 + 1 * kInstrSize) = addi_;
Instr slli_ =
OP_IMM | (reg.code() << kRdShift) | (0b001 << kFunct3Shift) |
(reg.code() << kRs1Shift) |
(11 << kImm12Shift); // slli(rd, rd, 11); // Space for next 11 bis
*reinterpret_cast<Instr*>(inst0 + 2 * kInstrSize) = slli_;
Instr ori_b11 = OP_IMM | (reg.code() << kRdShift) | (0b110 << kFunct3Shift) |
(reg.code() << kRs1Shift) |
(b11 << kImm12Shift); // ori(rd, rd, b11); // 11 bits
// are put in. 42 bit in rd
*reinterpret_cast<Instr*>(inst0 + 3 * kInstrSize) = ori_b11;
slli_ = OP_IMM | (reg.code() << kRdShift) | (0b001 << kFunct3Shift) |
(reg.code() << kRs1Shift) |
(6 << kImm12Shift); // slli(rd, rd, 6); // Space for next 11 bis
*reinterpret_cast<Instr*>(inst0 + 4 * kInstrSize) =
slli_; // slli(rd, rd, 6); // Space for next 6 bits
Instr ori_a6 = OP_IMM | (reg.code() << kRdShift) | (0b110 << kFunct3Shift) |
(reg.code() << kRs1Shift) |
(a6 << kImm12Shift); // ori(rd, rd, a6); // 6 bits are
// put in. 48 bis in rd
*reinterpret_cast<Instr*>(inst0 + 5 * kInstrSize) = ori_a6;
disassembleInstr((inst0 + 0 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 1 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 2 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 3 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 4 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 5 * kInstrSize)->InstructionBits());
disassembleInstr((inst0 + 6 * kInstrSize)->InstructionBits());
MOZ_ASSERT(ExtractLoad64Value(inst0) == value);
}
// This just stomps over memory with 32 bits of raw data. Its purpose is to
// overwrite the call of JITed code with 32 bits worth of an offset. This will
// is only meant to function on code that has been invalidated, so it should
// be totally safe. Since that instruction will never be executed again, a
// ICache flush should not be necessary
void Assembler::PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm) {
// Raw is going to be the return address.
uint32_t* raw = (uint32_t*)label.raw();
// Overwrite the 4 bytes before the return address, which will
// end up being the call instruction.
*(raw - 1) = imm.value;
}
void Assembler::target_at_put(BufferOffset pos, BufferOffset target_pos,
bool trampoline) {
if (m_buffer.oom()) {
return;
}
DEBUG_PRINTF("\ttarget_at_put: %p (%d) to %p (%d)\n",
reinterpret_cast<Instr*>(editSrc(pos)), pos.getOffset(),
reinterpret_cast<Instr*>(editSrc(pos)) + target_pos.getOffset() -
pos.getOffset(),
target_pos.getOffset());
Instruction* instruction = editSrc(pos);
Instr instr = instruction->InstructionBits();
switch (instruction->InstructionOpcodeType()) {
case BRANCH: {
instr = SetBranchOffset(pos.getOffset(), target_pos.getOffset(), instr);
instr_at_put(pos, instr);
} break;
case JAL: {
MOZ_ASSERT(IsJal(instr));
instr = SetJalOffset(pos.getOffset(), target_pos.getOffset(), instr);
instr_at_put(pos, instr);
} break;
case LUI: {
set_target_value_at(instruction,
reinterpret_cast<uintptr_t>(editSrc(target_pos)));
} break;
case AUIPC: {
Instr instr_auipc = instr;
Instr instr_I =
editSrc(BufferOffset(pos.getOffset() + 4))->InstructionBits();
MOZ_ASSERT(IsJalr(instr_I) || IsAddi(instr_I));
intptr_t offset = target_pos.getOffset() - pos.getOffset();
if (is_int21(offset) && IsJalr(instr_I) && trampoline) {
MOZ_ASSERT(is_int21(offset) && ((offset & 1) == 0));
Instr instr = JAL;
instr = SetJalOffset(pos.getOffset(), target_pos.getOffset(), instr);
MOZ_ASSERT(IsJal(instr));
MOZ_ASSERT(JumpOffset(instr) == offset);
instr_at_put(pos, instr);
instr_at_put(BufferOffset(pos.getOffset() + 4), kNopByte);
} else {
MOZ_RELEASE_ASSERT(is_int32(offset + 0x800));
MOZ_ASSERT(instruction->RdValue() ==
editSrc(BufferOffset(pos.getOffset() + 4))->Rs1Value());
int32_t Hi20 = (((int32_t)offset + 0x800) >> 12);
int32_t Lo12 = (int32_t)offset << 20 >> 20;
instr_auipc =
(instr_auipc & ~kImm31_12Mask) | ((Hi20 & kImm19_0Mask) << 12);
instr_at_put(pos, instr_auipc);
const int kImm31_20Mask = ((1 << 12) - 1) << 20;
const int kImm11_0Mask = ((1 << 12) - 1);
instr_I = (instr_I & ~kImm31_20Mask) | ((Lo12 & kImm11_0Mask) << 20);
instr_at_put(BufferOffset(pos.getOffset() + 4), instr_I);
}
} break;
default:
UNIMPLEMENTED_RISCV();
break;
}
}
const int kEndOfChain = -1;
const int32_t kEndOfJumpChain = 0;
int Assembler::target_at(BufferOffset pos, bool is_internal) {
if (oom()) {
return kEndOfChain;
}
Instruction* instruction = editSrc(pos);
Instruction* instruction2 = nullptr;
if (IsAuipc(instruction->InstructionBits())) {
instruction2 = editSrc(BufferOffset(pos.getOffset() + kInstrSize));
}
return target_at(instruction, pos, is_internal, instruction2);
}
int Assembler::target_at(Instruction* instruction, BufferOffset pos,
bool is_internal, Instruction* instruction2) {
DEBUG_PRINTF("\t target_at: %p(%x)\n\t",
reinterpret_cast<Instr*>(instruction), pos.getOffset());
disassembleInstr(instruction->InstructionBits());
Instr instr = instruction->InstructionBits();
switch (instruction->InstructionOpcodeType()) {
case BRANCH: {
int32_t imm13 = BranchOffset(instr);
if (imm13 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
DEBUG_PRINTF("\t target_at: %d %d\n", imm13, pos.getOffset() + imm13);
return pos.getOffset() + imm13;
}
}
case JAL: {
int32_t imm21 = JumpOffset(instr);
if (imm21 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
DEBUG_PRINTF("\t target_at: %d %d\n", imm21, pos.getOffset() + imm21);
return pos.getOffset() + imm21;
}
}
case JALR: {
int32_t imm12 = instr >> 20;
if (imm12 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
DEBUG_PRINTF("\t target_at: %d %d\n", imm12, pos.getOffset() + imm12);
return pos.getOffset() + imm12;
}
}
case LUI: {
uintptr_t imm = target_address_at(instruction);
uintptr_t instr_address = reinterpret_cast<uintptr_t>(instruction);
if (imm == kEndOfJumpChain) {
return kEndOfChain;
} else {
MOZ_ASSERT(instr_address - imm < INT_MAX);
int32_t delta = static_cast<int32_t>(instr_address - imm);
MOZ_ASSERT(pos.getOffset() > delta);
return pos.getOffset() - delta;
}
}
case AUIPC: {
MOZ_ASSERT(instruction2 != nullptr);
Instr instr_auipc = instr;
Instr instr_I = instruction2->InstructionBits();
MOZ_ASSERT(IsJalr(instr_I) || IsAddi(instr_I));
int32_t offset = BrachlongOffset(instr_auipc, instr_I);
if (offset == kEndOfJumpChain) return kEndOfChain;
DEBUG_PRINTF("\t target_at: %d %d\n", offset, pos.getOffset() + offset);
return offset + pos.getOffset();
}
default: {
UNIMPLEMENTED_RISCV();
}
}
}
uint32_t Assembler::next_link(Label* L, bool is_internal) {
MOZ_ASSERT(L->used());
BufferOffset pos(L);
int link = target_at(pos, is_internal);
if (link == kEndOfChain) {
L->reset();
return LabelBase::INVALID_OFFSET;
} else {
MOZ_ASSERT(link >= 0);
DEBUG_PRINTF("next: %p to offset %d\n", L, link);
L->use(link);
return link;
}
}
void Assembler::bind(Label* label, BufferOffset boff) {
JitSpew(JitSpew_Codegen, ".set Llabel %p %d", label, currentOffset());
DEBUG_PRINTF(".set Llabel %p\n", label);
// If our caller didn't give us an explicit target to bind to
// then we want to bind to the location of the next instruction
BufferOffset dest = boff.assigned() ? boff : nextOffset();
if (label->used()) {
uint32_t next;
// A used label holds a link to branch that uses it.
do {
BufferOffset b(label);
DEBUG_PRINTF("\tbind next:%d\n", b.getOffset());
// Even a 0 offset may be invalid if we're out of memory.
if (oom()) {
return;
}
int fixup_pos = b.getOffset();
int dist = dest.getOffset() - fixup_pos;
next = next_link(label, false);
DEBUG_PRINTF("\t%p fixup: %d next: %d\n", label, fixup_pos, next);
DEBUG_PRINTF("\t fixup: %d dest: %d dist: %d %d %d\n", fixup_pos,
dest.getOffset(), dist, nextOffset().getOffset(),
currentOffset());
Instruction* instruction = editSrc(b);
Instr instr = instruction->InstructionBits();
if (IsBranch(instr)) {
if (dist > kMaxBranchOffset) {
MOZ_ASSERT(next != LabelBase::INVALID_OFFSET);
MOZ_RELEASE_ASSERT((next - fixup_pos) <= kMaxBranchOffset);
MOZ_ASSERT(IsAuipc(editSrc(BufferOffset(next))->InstructionBits()));
MOZ_ASSERT(
IsJalr(editSrc(BufferOffset(next + 4))->InstructionBits()));
DEBUG_PRINTF("\t\ttrampolining: %d\n", next);
} else {
target_at_put(b, dest);
BufferOffset deadline(b.getOffset() +
ImmBranchMaxForwardOffset(CondBranchRangeType));
m_buffer.unregisterBranchDeadline(CondBranchRangeType, deadline);
}
} else if (IsJal(instr)) {
if (dist > kMaxJumpOffset) {
MOZ_ASSERT(next != LabelBase::INVALID_OFFSET);
MOZ_RELEASE_ASSERT((next - fixup_pos) <= kMaxJumpOffset);
MOZ_ASSERT(IsAuipc(editSrc(BufferOffset(next))->InstructionBits()));
MOZ_ASSERT(
IsJalr(editSrc(BufferOffset(next + 4))->InstructionBits()));
DEBUG_PRINTF("\t\ttrampolining: %d\n", next);
} else {
target_at_put(b, dest);
BufferOffset deadline(
b.getOffset() + ImmBranchMaxForwardOffset(UncondBranchRangeType));
m_buffer.unregisterBranchDeadline(UncondBranchRangeType, deadline);
}
} else {
MOZ_ASSERT(IsAuipc(instr));
target_at_put(b, dest);
}
} while (next != LabelBase::INVALID_OFFSET);
}
label->bind(dest.getOffset());
}
void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) {
if (label.patchAt().bound()) {
auto mode = label.linkMode();
intptr_t offset = label.patchAt().offset();
intptr_t target = label.target().offset();
if (mode == CodeLabel::RawPointer) {
*reinterpret_cast<const void**>(rawCode + offset) = rawCode + target;
} else {
MOZ_ASSERT(mode == CodeLabel::MoveImmediate ||
mode == CodeLabel::JumpImmediate);
Instruction* inst = (Instruction*)(rawCode + offset);
Assembler::UpdateLoad64Value(inst, (uint64_t)(rawCode + target));
}
}
}
bool Assembler::is_near(Label* L) {
MOZ_ASSERT(L->bound());
return is_intn((currentOffset() - L->offset()), kJumpOffsetBits);
}
bool Assembler::is_near(Label* L, OffsetSize bits) {
if (L == nullptr || !L->bound()) return true;
return is_intn((currentOffset() - L->offset()), bits);
}
bool Assembler::is_near_branch(Label* L) {
MOZ_ASSERT(L->bound());
return is_intn((currentOffset() - L->offset()), kBranchOffsetBits);
}
int32_t Assembler::branch_long_offset(Label* L) {
if (oom()) {
return kEndOfJumpChain;
}
intptr_t target_pos;
BufferOffset next_instr_offset = nextInstrOffset(2);
DEBUG_PRINTF("\tbranch_long_offset: %p to (%d)\n", L,
next_instr_offset.getOffset());
if (L->bound()) {
JitSpew(JitSpew_Codegen, ".use Llabel %p on %d", L,
next_instr_offset.getOffset());
target_pos = L->offset();
} else {
if (L->used()) {
LabelCahe::Ptr p = label_cache_.lookup(L->offset());
MOZ_ASSERT(p);
MOZ_ASSERT(p->key() == L->offset());
target_pos = p->value().getOffset();
target_at_put(BufferOffset(target_pos), next_instr_offset);
DEBUG_PRINTF("\tLabel %p added to link: %d\n", L,
next_instr_offset.getOffset());
bool ok = label_cache_.put(L->offset(), next_instr_offset);
if (!ok) {
NoEnoughLabelCache();
}
return kEndOfJumpChain;
} else {
JitSpew(JitSpew_Codegen, ".use Llabel %p on %d", L,
next_instr_offset.getOffset());
L->use(next_instr_offset.getOffset());
DEBUG_PRINTF("\tLabel %p added to link: %d\n", L,
next_instr_offset.getOffset());
bool ok = label_cache_.putNew(L->offset(), next_instr_offset);
if (!ok) {
NoEnoughLabelCache();
}
return kEndOfJumpChain;
}
}
intptr_t offset = target_pos - next_instr_offset.getOffset();
MOZ_ASSERT((offset & 3) == 0);
MOZ_ASSERT(is_int32(offset));
return static_cast<int32_t>(offset);
}
int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
if (oom()) {
return kEndOfJumpChain;
}
int32_t target_pos;
BufferOffset next_instr_offset = nextInstrOffset();
DEBUG_PRINTF("\tbranch_offset_helper: %p to %d\n", L,
next_instr_offset.getOffset());
// This is the last possible branch target.
if (L->bound()) {
JitSpew(JitSpew_Codegen, ".use Llabel %p on %d", L,
next_instr_offset.getOffset());
target_pos = L->offset();
} else {
BufferOffset deadline(next_instr_offset.getOffset() +
ImmBranchMaxForwardOffset(bits));
DEBUG_PRINTF("\tregisterBranchDeadline %d type %d\n", deadline.getOffset(),
OffsetSizeToImmBranchRangeType(bits));
m_buffer.registerBranchDeadline(OffsetSizeToImmBranchRangeType(bits),
deadline);
if (L->used()) {
LabelCahe::Ptr p = label_cache_.lookup(L->offset());
MOZ_ASSERT(p);
MOZ_ASSERT(p->key() == L->offset());
target_pos = p->value().getOffset();
target_at_put(BufferOffset(target_pos), next_instr_offset);
DEBUG_PRINTF("\tLabel %p added to link: %d\n", L,
next_instr_offset.getOffset());
bool ok = label_cache_.put(L->offset(), next_instr_offset);
if (!ok) {
NoEnoughLabelCache();
}
return kEndOfJumpChain;
} else {
JitSpew(JitSpew_Codegen, ".use Llabel %p on %d", L,
next_instr_offset.getOffset());
L->use(next_instr_offset.getOffset());
bool ok = label_cache_.putNew(L->offset(), next_instr_offset);
if (!ok) {
NoEnoughLabelCache();
}
DEBUG_PRINTF("\tLabel %p added to link: %d\n", L,
next_instr_offset.getOffset());
return kEndOfJumpChain;
}
}
int32_t offset = target_pos - next_instr_offset.getOffset();
DEBUG_PRINTF("\toffset = %d\n", offset);
MOZ_ASSERT(is_intn(offset, bits));
MOZ_ASSERT((offset & 1) == 0);
return offset;
}
Assembler::Condition Assembler::InvertCondition(Condition cond) {
switch (cond) {
case Equal:
return NotEqual;
case NotEqual:
return Equal;
case Zero:
return NonZero;
case NonZero:
return Zero;
case LessThan:
return GreaterThanOrEqual;
case LessThanOrEqual:
return GreaterThan;
case GreaterThan:
return LessThanOrEqual;
case GreaterThanOrEqual:
return LessThan;
case Above:
return BelowOrEqual;
case AboveOrEqual:
return Below;
case Below:
return AboveOrEqual;
case BelowOrEqual:
return Above;
case Signed:
return NotSigned;
case NotSigned:
return Signed;
default:
MOZ_CRASH("unexpected condition");
}
}
Assembler::DoubleCondition Assembler::InvertCondition(DoubleCondition cond) {
switch (cond) {
case DoubleOrdered:
return DoubleUnordered;
case DoubleEqual:
return DoubleNotEqualOrUnordered;
case DoubleNotEqual:
return DoubleEqualOrUnordered;
case DoubleGreaterThan:
return DoubleLessThanOrEqualOrUnordered;
case DoubleGreaterThanOrEqual:
return DoubleLessThanOrUnordered;
case DoubleLessThan:
return DoubleGreaterThanOrEqualOrUnordered;
case DoubleLessThanOrEqual:
return DoubleGreaterThanOrUnordered;
case DoubleUnordered:
return DoubleOrdered;
case DoubleEqualOrUnordered:
return DoubleNotEqual;
case DoubleNotEqualOrUnordered:
return DoubleEqual;
case DoubleGreaterThanOrUnordered:
return DoubleLessThanOrEqual;
case DoubleGreaterThanOrEqualOrUnordered:
return DoubleLessThan;
case DoubleLessThanOrUnordered:
return DoubleGreaterThanOrEqual;
case DoubleLessThanOrEqualOrUnordered:
return DoubleGreaterThan;
default:
MOZ_CRASH("unexpected condition");
}
}
// Break / Trap instructions.
void Assembler::break_(uint32_t code, bool break_as_stop) {
// We need to invalidate breaks that could be stops as well because the
// simulator expects a char pointer after the stop instruction.
// See constants-mips.h for explanation.
MOZ_ASSERT(
(break_as_stop && code <= kMaxStopCode && code > kMaxTracepointCode) ||
(!break_as_stop && (code > kMaxStopCode || code <= kMaxTracepointCode)));
// since ebreak does not allow additional immediate field, we use the
// immediate field of lui instruction immediately following the ebreak to
// encode the "code" info
ebreak();
MOZ_ASSERT(is_uint20(code));
lui(zero_reg, code);
}
void Assembler::ToggleToJmp(CodeLocationLabel inst_) {
Instruction* inst = (Instruction*)inst_.raw();
MOZ_ASSERT(IsAddi(inst->InstructionBits()));
int32_t offset = inst->Imm12Value();
MOZ_ASSERT(is_int12(offset));
Instr jal_ = JAL | (0b000 << kFunct3Shift) |
(offset & 0xff000) | // bits 19-12
((offset & 0x800) << 9) | // bit 11
((offset & 0x7fe) << 20) | // bits 10-1
((offset & 0x100000) << 11); // bit 20
// jal(zero, offset);
*reinterpret_cast<Instr*>(inst) = jal_;
}
void Assembler::ToggleToCmp(CodeLocationLabel inst_) {
Instruction* inst = (Instruction*)inst_.raw();
// toggledJump is allways used for short jumps.
MOZ_ASSERT(IsJal(inst->InstructionBits()));
// Replace "jal zero_reg, offset" with "addi $zero, $zero, offset"
int32_t offset = inst->Imm20JValue();
MOZ_ASSERT(is_int12(offset));
Instr addi_ = OP_IMM | (0b000 << kFunct3Shift) |
(offset << kImm12Shift); // addi(zero, zero, low_12);
*reinterpret_cast<Instr*>(inst) = addi_;
}
bool Assembler::reserve(size_t size) {
// This buffer uses fixed-size chunks so there's no point in reserving
// now vs. on-demand.
return !oom();
}
static JitCode* CodeFromJump(Instruction* jump) {
uint8_t* target = (uint8_t*)Assembler::ExtractLoad64Value(jump);
return JitCode::FromExecutable(target);
}
void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
while (reader.more()) {
JitCode* child =
CodeFromJump((Instruction*)(code->raw() + reader.readUnsigned()));
TraceManuallyBarrieredEdge(trc, &child, "rel32");
}
}
static void TraceOneDataRelocation(JSTracer* trc,
mozilla::Maybe<AutoWritableJitCode>& awjc,
JitCode* code, Instruction* inst) {
void* ptr = (void*)Assembler::ExtractLoad64Value(inst);
void* prior = ptr;
// Data relocations can be for Values or for raw pointers. If a Value is
// zero-tagged, we can trace it as if it were a raw pointer. If a Value
// is not zero-tagged, we have to interpret it as a Value to ensure that the
// tag bits are masked off to recover the actual pointer.
uintptr_t word = reinterpret_cast<uintptr_t>(ptr);
if (word >> JSVAL_TAG_SHIFT) {
// This relocation is a Value with a non-zero tag.
Value v = Value::fromRawBits(word);
TraceManuallyBarrieredEdge(trc, &v, "jit-masm-value");
ptr = (void*)v.bitsAsPunboxPointer();
} else {
// This relocation is a raw pointer or a Value with a zero tag.
// No barrier needed since these are constants.
TraceManuallyBarrieredGenericPointerEdge(
trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr");
}
if (ptr != prior) {
if (awjc.isNothing()) {
awjc.emplace(code);
}
Assembler::UpdateLoad64Value(inst, uint64_t(ptr));
}
}
/* static */
void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
mozilla::Maybe<AutoWritableJitCode> awjc;
while (reader.more()) {
size_t offset = reader.readUnsigned();
Instruction* inst = (Instruction*)(code->raw() + offset);
TraceOneDataRelocation(trc, awjc, code, inst);
}
}
UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
: available_(assembler->GetScratchRegisterList()),
old_available_(*available_) {}
UseScratchRegisterScope::~UseScratchRegisterScope() {
*available_ = old_available_;
}
Register UseScratchRegisterScope::Acquire() {
MOZ_ASSERT(available_ != nullptr);
MOZ_ASSERT(!available_->empty());
Register index = GeneralRegisterSet::FirstRegister(available_->bits());
available_->takeRegisterIndex(index);
return index;
}
bool UseScratchRegisterScope::hasAvailable() const {
return (available_->size()) != 0;
}
void Assembler::retarget(Label* label, Label* target) {
spew("retarget %p -> %p", label, target);
if (label->used() && !oom()) {
if (target->bound()) {
bind(label, BufferOffset(target));
} else if (target->used()) {
// The target is not bound but used. Prepend label's branch list
// onto target's.
int32_t next;
BufferOffset labelBranchOffset(label);
// Find the head of the use chain for label.
do {
next = next_link(label, false);
labelBranchOffset = BufferOffset(next);
} while (next != LabelBase::INVALID_OFFSET);
// Then patch the head of label's use chain to the tail of
// target's use chain, prepending the entire use chain of target.
target->use(label->offset());
target_at_put(labelBranchOffset, BufferOffset(target));
MOZ_CRASH("check");
} else {
// The target is unbound and unused. We can just take the head of
// the list hanging off of label, and dump that into target.
target->use(label->offset());
}
}
label->reset();
}
bool Assembler::appendRawCode(const uint8_t* code, size_t numBytes) {
if (m_buffer.oom()) {
return false;
}
while (numBytes > SliceSize) {
m_buffer.putBytes(SliceSize, code);
numBytes -= SliceSize;
code += SliceSize;
}
m_buffer.putBytes(numBytes, code);
return !m_buffer.oom();
}
void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) {
Instruction* i0 = (Instruction*)inst_.raw();
Instruction* i1 = (Instruction*)(inst_.raw() + 1 * kInstrSize);
Instruction* i2 = (Instruction*)(inst_.raw() + 2 * kInstrSize);
Instruction* i3 = (Instruction*)(inst_.raw() + 3 * kInstrSize);
Instruction* i4 = (Instruction*)(inst_.raw() + 4 * kInstrSize);
Instruction* i5 = (Instruction*)(inst_.raw() + 5 * kInstrSize);
Instruction* i6 = (Instruction*)(inst_.raw() + 6 * kInstrSize);
MOZ_ASSERT(IsLui(i0->InstructionBits()));
MOZ_ASSERT(IsAddi(i1->InstructionBits()));
MOZ_ASSERT(IsSlli(i2->InstructionBits()));
MOZ_ASSERT(IsOri(i3->InstructionBits()));
MOZ_ASSERT(IsSlli(i4->InstructionBits()));
MOZ_ASSERT(IsOri(i5->InstructionBits()));
if (enabled) {
Instr jalr_ = JALR | (ra.code() << kRdShift) | (0x0 << kFunct3Shift) |
(i5->RdValue() << kRs1Shift) | (0x0 << kImm12Shift);
*((Instr*)i6) = jalr_;
} else {
*((Instr*)i6) = kNopByte;
}
}
void Assembler::PatchShortRangeBranchToVeneer(Buffer* buffer, unsigned rangeIdx,
BufferOffset deadline,
BufferOffset veneer) {
if (buffer->oom()) {
return;
}
DEBUG_PRINTF("\tPatchShortRangeBranchToVeneer\n");
// Reconstruct the position of the branch from (rangeIdx, deadline).
ImmBranchRangeType branchRange = static_cast<ImmBranchRangeType>(rangeIdx);
BufferOffset branch(deadline.getOffset() -
ImmBranchMaxForwardOffset(branchRange));
Instruction* branchInst = buffer->getInst(branch);
Instruction* veneerInst_1 = buffer->getInst(veneer);
Instruction* veneerInst_2 =
buffer->getInst(BufferOffset(veneer.getOffset() + 4));
// Verify that the branch range matches what's encoded.
DEBUG_PRINTF("\t%p(%x): ", branchInst, branch.getOffset());
disassembleInstr(branchInst->InstructionBits(), JitSpew_Codegen);
DEBUG_PRINTF("\t instert veneer %x, branch:%x deadline: %x\n",
veneer.getOffset(), branch.getOffset(), deadline.getOffset());
MOZ_ASSERT(branchRange <= UncondBranchRangeType);
MOZ_ASSERT(branchInst->GetImmBranchRangeType() == branchRange);
// emit a long jump slot
Instr auipc = AUIPC | (t6.code() << kRdShift) | (0x0 << kImm20Shift);
Instr jalr = JALR | (zero_reg.code() << kRdShift) | (0x0 << kFunct3Shift) |
(t6.code() << kRs1Shift) | (0x0 << kImm12Shift);
// We want to insert veneer after branch in the linked list of instructions
// that use the same unbound label.
// The veneer should be an unconditional branch.
int32_t nextElemOffset = target_at(buffer->getInst(branch), branch, false);
int32_t dist;
// If offset is 0, this is the end of the linked list.
if (nextElemOffset != kEndOfChain) {
// Make the offset relative to veneer so it targets the same instruction
// as branchInst.
dist = nextElemOffset - veneer.getOffset();
} else {
dist = 0;
}
int32_t Hi20 = (((int32_t)dist + 0x800) >> 12);
int32_t Lo12 = (int32_t)dist << 20 >> 20;
auipc = SetAuipcOffset(Hi20, auipc);
jalr = SetJalrOffset(Lo12, jalr);
// insert veneer
veneerInst_1->SetInstructionBits(auipc);
veneerInst_2->SetInstructionBits(jalr);
// Now link branchInst to veneer.
if (IsBranch(branchInst->InstructionBits())) {
branchInst->SetInstructionBits(SetBranchOffset(
branch.getOffset(), veneer.getOffset(), branchInst->InstructionBits()));
} else {
MOZ_ASSERT(IsJal(branchInst->InstructionBits()));
branchInst->SetInstructionBits(SetJalOffset(
branch.getOffset(), veneer.getOffset(), branchInst->InstructionBits()));
}
DEBUG_PRINTF("\tfix to veneer:");
disassembleInstr(branchInst->InstructionBits());
}
} // namespace jit
} // namespace js
|