1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright 2021 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef jit_riscv64_Simulator_riscv64_h
#define jit_riscv64_Simulator_riscv64_h
#ifdef JS_SIMULATOR_RISCV64
# include "mozilla/Atomics.h"
# include <vector>
# include "jit/IonTypes.h"
# include "jit/riscv64/constant/Constant-riscv64.h"
# include "jit/riscv64/constant/util-riscv64.h"
# include "jit/riscv64/disasm/Disasm-riscv64.h"
# include "js/ProfilingFrameIterator.h"
# include "threading/Thread.h"
# include "vm/MutexIDs.h"
# include "wasm/WasmSignalHandlers.h"
namespace js {
namespace jit {
template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
static_assert(sizeof(Dest) == sizeof(Source),
"bit_cast requires source and destination to be the same size");
static_assert(std::is_trivially_copyable<Dest>::value,
"bit_cast requires the destination type to be copyable");
static_assert(std::is_trivially_copyable<Source>::value,
"bit_cast requires the source type to be copyable");
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
# define ASSERT_TRIVIALLY_COPYABLE(T) \
static_assert(std::is_trivially_copyable<T>::value, \
#T " should be trivially copyable")
# define ASSERT_NOT_TRIVIALLY_COPYABLE(T) \
static_assert(!std::is_trivially_copyable<T>::value, \
#T " should not be trivially copyable")
constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF;
constexpr uint64_t kHoleNanInt64 =
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
// Safety wrapper for a 32-bit floating-point value to make sure we don't lose
// the exact bit pattern during deoptimization when passing this value.
class Float32 {
public:
Float32() = default;
// This constructor does not guarantee that bit pattern of the input value
// is preserved if the input is a NaN.
explicit Float32(float value) : bit_pattern_(bit_cast<uint32_t>(value)) {
// Check that the provided value is not a NaN, because the bit pattern of a
// NaN may be changed by a bit_cast, e.g. for signalling NaNs on
// ia32.
MOZ_ASSERT(!std::isnan(value));
}
uint32_t get_bits() const { return bit_pattern_; }
float get_scalar() const { return bit_cast<float>(bit_pattern_); }
bool is_nan() const {
// Even though {get_scalar()} might flip the quiet NaN bit, it's ok here,
// because this does not change the is_nan property.
return std::isnan(get_scalar());
}
// Return a pointer to the field storing the bit pattern. Used in code
// generation tests to store generated values there directly.
uint32_t* get_bits_address() { return &bit_pattern_; }
static constexpr Float32 FromBits(uint32_t bits) { return Float32(bits); }
private:
uint32_t bit_pattern_ = 0;
explicit constexpr Float32(uint32_t bit_pattern)
: bit_pattern_(bit_pattern) {}
};
ASSERT_TRIVIALLY_COPYABLE(Float32);
// Safety wrapper for a 64-bit floating-point value to make sure we don't lose
// the exact bit pattern during deoptimization when passing this value.
// TODO(ahaas): Unify this class with Double in double.h
class Float64 {
public:
Float64() = default;
// This constructor does not guarantee that bit pattern of the input value
// is preserved if the input is a NaN.
explicit Float64(double value) : bit_pattern_(bit_cast<uint64_t>(value)) {
// Check that the provided value is not a NaN, because the bit pattern of a
// NaN may be changed by a bit_cast, e.g. for signalling NaNs on
// ia32.
MOZ_ASSERT(!std::isnan(value));
}
uint64_t get_bits() const { return bit_pattern_; }
double get_scalar() const { return bit_cast<double>(bit_pattern_); }
bool is_hole_nan() const { return bit_pattern_ == kHoleNanInt64; }
bool is_nan() const {
// Even though {get_scalar()} might flip the quiet NaN bit, it's ok here,
// because this does not change the is_nan property.
return std::isnan(get_scalar());
}
// Return a pointer to the field storing the bit pattern. Used in code
// generation tests to store generated values there directly.
uint64_t* get_bits_address() { return &bit_pattern_; }
static constexpr Float64 FromBits(uint64_t bits) { return Float64(bits); }
private:
uint64_t bit_pattern_ = 0;
explicit constexpr Float64(uint64_t bit_pattern)
: bit_pattern_(bit_pattern) {}
};
ASSERT_TRIVIALLY_COPYABLE(Float64);
class JitActivation;
class Simulator;
class Redirection;
class CachePage;
class AutoLockSimulator;
// When the SingleStepCallback is called, the simulator is about to execute
// sim->get_pc() and the current machine state represents the completed
// execution of the previous pc.
typedef void (*SingleStepCallback)(void* arg, Simulator* sim, void* pc);
const intptr_t kPointerAlignment = 8;
const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
// Number of general purpose registers.
const int kNumRegisters = 32;
// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 32;
// Number coprocessor registers.
const int kNumFPURegisters = 32;
// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
const int kFCSRRegister = 31;
const int kInvalidFPUControlRegister = -1;
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
const uint64_t kFPUInvalidResult64 = static_cast<uint64_t>(1ULL << 63) - 1;
// FCSR constants.
const uint32_t kFCSRInexactFlagBit = 2;
const uint32_t kFCSRUnderflowFlagBit = 3;
const uint32_t kFCSROverflowFlagBit = 4;
const uint32_t kFCSRDivideByZeroFlagBit = 5;
const uint32_t kFCSRInvalidOpFlagBit = 6;
const uint32_t kFCSRInexactCauseBit = 12;
const uint32_t kFCSRUnderflowCauseBit = 13;
const uint32_t kFCSROverflowCauseBit = 14;
const uint32_t kFCSRDivideByZeroCauseBit = 15;
const uint32_t kFCSRInvalidOpCauseBit = 16;
const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
const uint32_t kFCSRFlagMask =
kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
// -----------------------------------------------------------------------------
// Utility types and functions for RISCV
# ifdef JS_CODEGEN_RISCV32
using sreg_t = int32_t;
using reg_t = uint32_t;
using freg_t = uint64_t;
using sfreg_t = int64_t;
# elif JS_CODEGEN_RISCV64
using sreg_t = int64_t;
using reg_t = uint64_t;
using freg_t = uint64_t;
using sfreg_t = int64_t;
# else
# error "Cannot detect Riscv's bitwidth"
# endif
# define sext32(x) ((sreg_t)(int32_t)(x))
# define zext32(x) ((reg_t)(uint32_t)(x))
# ifdef JS_CODEGEN_RISCV64
# define sext_xlen(x) (((sreg_t)(x) << (64 - xlen)) >> (64 - xlen))
# define zext_xlen(x) (((reg_t)(x) << (64 - xlen)) >> (64 - xlen))
# elif JS_CODEGEN_RISCV32
# define sext_xlen(x) (((sreg_t)(x) << (32 - xlen)) >> (32 - xlen))
# define zext_xlen(x) (((reg_t)(x) << (32 - xlen)) >> (32 - xlen))
# endif
# define BIT(n) (0x1LL << n)
# define QUIET_BIT_S(nan) (bit_cast<int32_t>(nan) & BIT(22))
# define QUIET_BIT_D(nan) (bit_cast<int64_t>(nan) & BIT(51))
static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); }
static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); }
# undef QUIET_BIT_S
# undef QUIET_BIT_D
# ifdef JS_CODEGEN_RISCV64
inline uint64_t mulhu(uint64_t a, uint64_t b) {
__uint128_t full_result = ((__uint128_t)a) * ((__uint128_t)b);
return full_result >> 64;
}
inline int64_t mulh(int64_t a, int64_t b) {
__int128_t full_result = ((__int128_t)a) * ((__int128_t)b);
return full_result >> 64;
}
inline int64_t mulhsu(int64_t a, uint64_t b) {
__int128_t full_result = ((__int128_t)a) * ((__uint128_t)b);
return full_result >> 64;
}
# elif JS_CODEGEN_RISCV32
inline uint32_t mulhu(uint32_t a, uint32_t b) {
uint64_t full_result = ((uint64_t)a) * ((uint64_t)b);
uint64_t upper_part = full_result >> 32;
return (uint32_t)upper_part;
}
inline int32_t mulh(int32_t a, int32_t b) {
int64_t full_result = ((int64_t)a) * ((int64_t)b);
int64_t upper_part = full_result >> 32;
return (int32_t)upper_part;
}
inline int32_t mulhsu(int32_t a, uint32_t b) {
int64_t full_result = ((int64_t)a) * ((uint64_t)b);
int64_t upper_part = full_result >> 32;
return (int32_t)upper_part;
}
# endif
// Floating point helpers
# define F32_SIGN ((uint32_t)1 << 31)
union u32_f32 {
uint32_t u;
float f;
};
inline float fsgnj32(float rs1, float rs2, bool n, bool x) {
u32_f32 a = {.f = rs1}, b = {.f = rs2};
u32_f32 res;
res.u = (a.u & ~F32_SIGN) | ((((x) ? a.u
: (n) ? F32_SIGN
: 0) ^
b.u) &
F32_SIGN);
return res.f;
}
inline Float32 fsgnj32(Float32 rs1, Float32 rs2, bool n, bool x) {
u32_f32 a = {.u = rs1.get_bits()}, b = {.u = rs2.get_bits()};
u32_f32 res;
if (x) { // RO_FSQNJX_S
res.u = (a.u & ~F32_SIGN) | ((a.u ^ b.u) & F32_SIGN);
} else {
if (n) { // RO_FSGNJN_S
res.u = (a.u & ~F32_SIGN) | ((F32_SIGN ^ b.u) & F32_SIGN);
} else { // RO_FSGNJ_S
res.u = (a.u & ~F32_SIGN) | ((0 ^ b.u) & F32_SIGN);
}
}
return Float32::FromBits(res.u);
}
# define F64_SIGN ((uint64_t)1 << 63)
union u64_f64 {
uint64_t u;
double d;
};
inline double fsgnj64(double rs1, double rs2, bool n, bool x) {
u64_f64 a = {.d = rs1}, b = {.d = rs2};
u64_f64 res;
res.u = (a.u & ~F64_SIGN) | ((((x) ? a.u
: (n) ? F64_SIGN
: 0) ^
b.u) &
F64_SIGN);
return res.d;
}
inline Float64 fsgnj64(Float64 rs1, Float64 rs2, bool n, bool x) {
u64_f64 a = {.d = rs1.get_scalar()}, b = {.d = rs2.get_scalar()};
u64_f64 res;
if (x) { // RO_FSQNJX_D
res.u = (a.u & ~F64_SIGN) | ((a.u ^ b.u) & F64_SIGN);
} else {
if (n) { // RO_FSGNJN_D
res.u = (a.u & ~F64_SIGN) | ((F64_SIGN ^ b.u) & F64_SIGN);
} else { // RO_FSGNJ_D
res.u = (a.u & ~F64_SIGN) | ((0 ^ b.u) & F64_SIGN);
}
}
return Float64::FromBits(res.u);
}
inline bool is_boxed_float(int64_t v) { return (uint32_t)((v >> 32) + 1) == 0; }
inline int64_t box_float(float v) {
return (0xFFFFFFFF00000000 | bit_cast<int32_t>(v));
}
inline uint64_t box_float(uint32_t v) { return (0xFFFFFFFF00000000 | v); }
// -----------------------------------------------------------------------------
// Utility functions
class SimInstructionBase : public InstructionBase {
public:
Type InstructionType() const { return type_; }
inline Instruction* instr() const { return instr_; }
inline int32_t operand() const { return operand_; }
protected:
SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {}
explicit SimInstructionBase(Instruction* instr) {}
int32_t operand_;
Instruction* instr_;
Type type_;
private:
SimInstructionBase& operator=(const SimInstructionBase&) = delete;
};
class SimInstruction : public InstructionGetters<SimInstructionBase> {
public:
SimInstruction() {}
explicit SimInstruction(Instruction* instr) { *this = instr; }
SimInstruction& operator=(Instruction* instr) {
operand_ = *reinterpret_cast<const int32_t*>(instr);
instr_ = instr;
type_ = InstructionBase::InstructionType();
MOZ_ASSERT(reinterpret_cast<void*>(&operand_) == this);
return *this;
}
};
// Per thread simulator state.
class Simulator {
friend class RiscvDebugger;
public:
static bool FLAG_riscv_trap_to_simulator_debugger;
static bool FLAG_trace_sim;
static bool FLAG_debug_sim;
static bool FLAG_riscv_print_watchpoint;
// Registers are declared in order.
enum Register {
no_reg = -1,
x0 = 0,
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
x10,
x11,
x12,
x13,
x14,
x15,
x16,
x17,
x18,
x19,
x20,
x21,
x22,
x23,
x24,
x25,
x26,
x27,
x28,
x29,
x30,
x31,
pc,
kNumSimuRegisters,
// alias
zero = x0,
ra = x1,
sp = x2,
gp = x3,
tp = x4,
t0 = x5,
t1 = x6,
t2 = x7,
fp = x8,
s1 = x9,
a0 = x10,
a1 = x11,
a2 = x12,
a3 = x13,
a4 = x14,
a5 = x15,
a6 = x16,
a7 = x17,
s2 = x18,
s3 = x19,
s4 = x20,
s5 = x21,
s6 = x22,
s7 = x23,
s8 = x24,
s9 = x25,
s10 = x26,
s11 = x27,
t3 = x28,
t4 = x29,
t5 = x30,
t6 = x31,
};
// Coprocessor registers.
enum FPURegister {
f0,
f1,
f2,
f3,
f4,
f5,
f6,
f7,
f8,
f9,
f10,
f11,
f12,
f13,
f14,
f15,
f16,
f17,
f18,
f19,
f20,
f21,
f22,
f23,
f24,
f25,
f26,
f27,
f28,
f29,
f30,
f31,
kNumFPURegisters,
// alias
ft0 = f0,
ft1 = f1,
ft2 = f2,
ft3 = f3,
ft4 = f4,
ft5 = f5,
ft6 = f6,
ft7 = f7,
fs0 = f8,
fs1 = f9,
fa0 = f10,
fa1 = f11,
fa2 = f12,
fa3 = f13,
fa4 = f14,
fa5 = f15,
fa6 = f16,
fa7 = f17,
fs2 = f18,
fs3 = f19,
fs4 = f20,
fs5 = f21,
fs6 = f22,
fs7 = f23,
fs8 = f24,
fs9 = f25,
fs10 = f26,
fs11 = f27,
ft8 = f28,
ft9 = f29,
ft10 = f30,
ft11 = f31
};
// Returns nullptr on OOM.
static Simulator* Create();
static void Destroy(Simulator* simulator);
// Constructor/destructor are for internal use only; use the static methods
// above.
Simulator();
~Simulator();
// RISCV decoding routine
void DecodeRVRType();
void DecodeRVR4Type();
void DecodeRVRFPType(); // Special routine for R/OP_FP type
void DecodeRVRAType(); // Special routine for R/AMO type
void DecodeRVIType();
void DecodeRVSType();
void DecodeRVBType();
void DecodeRVUType();
void DecodeRVJType();
void DecodeCRType();
void DecodeCAType();
void DecodeCIType();
void DecodeCIWType();
void DecodeCSSType();
void DecodeCLType();
void DecodeCSType();
void DecodeCJType();
void DecodeCBType();
# ifdef CAN_USE_RVV_INSTRUCTIONS
void DecodeVType();
void DecodeRvvIVV();
void DecodeRvvIVI();
void DecodeRvvIVX();
void DecodeRvvMVV();
void DecodeRvvMVX();
void DecodeRvvFVV();
void DecodeRvvFVF();
bool DecodeRvvVL();
bool DecodeRvvVS();
# endif
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* Current();
static inline uintptr_t StackLimit() {
return Simulator::Current()->stackLimit();
}
uintptr_t* addressOfStackLimit();
// Accessors for register state. Reading the pc value adheres to the MIPS
// architecture specification and is off by a 8 from the currently executing
// instruction.
void setRegister(int reg, int64_t value);
int64_t getRegister(int reg) const;
// Same for FPURegisters.
void setFpuRegister(int fpureg, int64_t value);
void setFpuRegisterLo(int fpureg, int32_t value);
void setFpuRegisterHi(int fpureg, int32_t value);
void setFpuRegisterFloat(int fpureg, float value);
void setFpuRegisterDouble(int fpureg, double value);
void setFpuRegisterFloat(int fpureg, Float32 value);
void setFpuRegisterDouble(int fpureg, Float64 value);
int64_t getFpuRegister(int fpureg) const;
int32_t getFpuRegisterLo(int fpureg) const;
int32_t getFpuRegisterHi(int fpureg) const;
float getFpuRegisterFloat(int fpureg) const;
double getFpuRegisterDouble(int fpureg) const;
Float32 getFpuRegisterFloat32(int fpureg) const;
Float64 getFpuRegisterFloat64(int fpureg) const;
inline int16_t shamt6() const { return (imm12() & 0x3F); }
inline int16_t shamt5() const { return (imm12() & 0x1F); }
inline int16_t rvc_shamt6() const { return instr_.RvcShamt6(); }
inline int32_t s_imm12() const { return instr_.StoreOffset(); }
inline int32_t u_imm20() const { return instr_.Imm20UValue() << 12; }
inline int32_t rvc_u_imm6() const { return instr_.RvcImm6Value() << 12; }
inline void require(bool check) {
if (!check) {
SignalException(kIllegalInstruction);
}
}
// Special case of setRegister and getRegister to access the raw PC value.
void set_pc(int64_t value);
int64_t get_pc() const;
SimInstruction instr_;
// RISCV utlity API to access register value
// Helpers for data value tracing.
enum TraceType {
BYTE,
HALF,
WORD,
# if JS_CODEGEN_RISCV64
DWORD,
# endif
FLOAT,
DOUBLE,
// FLOAT_DOUBLE,
// WORD_DWORD
};
inline int32_t rs1_reg() const { return instr_.Rs1Value(); }
inline sreg_t rs1() const { return getRegister(rs1_reg()); }
inline float frs1() const { return getFpuRegisterFloat(rs1_reg()); }
inline double drs1() const { return getFpuRegisterDouble(rs1_reg()); }
inline Float32 frs1_boxed() const { return getFpuRegisterFloat32(rs1_reg()); }
inline Float64 drs1_boxed() const { return getFpuRegisterFloat64(rs1_reg()); }
inline int32_t rs2_reg() const { return instr_.Rs2Value(); }
inline sreg_t rs2() const { return getRegister(rs2_reg()); }
inline float frs2() const { return getFpuRegisterFloat(rs2_reg()); }
inline double drs2() const { return getFpuRegisterDouble(rs2_reg()); }
inline Float32 frs2_boxed() const { return getFpuRegisterFloat32(rs2_reg()); }
inline Float64 drs2_boxed() const { return getFpuRegisterFloat64(rs2_reg()); }
inline int32_t rs3_reg() const { return instr_.Rs3Value(); }
inline sreg_t rs3() const { return getRegister(rs3_reg()); }
inline float frs3() const { return getFpuRegisterFloat(rs3_reg()); }
inline double drs3() const { return getFpuRegisterDouble(rs3_reg()); }
inline Float32 frs3_boxed() const { return getFpuRegisterFloat32(rs3_reg()); }
inline Float64 drs3_boxed() const { return getFpuRegisterFloat64(rs3_reg()); }
inline int32_t rd_reg() const { return instr_.RdValue(); }
inline int32_t frd_reg() const { return instr_.RdValue(); }
inline int32_t rvc_rs1_reg() const { return instr_.RvcRs1Value(); }
inline sreg_t rvc_rs1() const { return getRegister(rvc_rs1_reg()); }
inline int32_t rvc_rs2_reg() const { return instr_.RvcRs2Value(); }
inline sreg_t rvc_rs2() const { return getRegister(rvc_rs2_reg()); }
inline double rvc_drs2() const { return getFpuRegisterDouble(rvc_rs2_reg()); }
inline int32_t rvc_rs1s_reg() const { return instr_.RvcRs1sValue(); }
inline sreg_t rvc_rs1s() const { return getRegister(rvc_rs1s_reg()); }
inline int32_t rvc_rs2s_reg() const { return instr_.RvcRs2sValue(); }
inline sreg_t rvc_rs2s() const { return getRegister(rvc_rs2s_reg()); }
inline double rvc_drs2s() const {
return getFpuRegisterDouble(rvc_rs2s_reg());
}
inline int32_t rvc_rd_reg() const { return instr_.RvcRdValue(); }
inline int32_t rvc_frd_reg() const { return instr_.RvcRdValue(); }
inline int16_t boffset() const { return instr_.BranchOffset(); }
inline int16_t imm12() const { return instr_.Imm12Value(); }
inline int32_t imm20J() const { return instr_.Imm20JValue(); }
inline int32_t imm5CSR() const { return instr_.Rs1Value(); }
inline int16_t csr_reg() const { return instr_.CsrValue(); }
inline int16_t rvc_imm6() const { return instr_.RvcImm6Value(); }
inline int16_t rvc_imm6_addi16sp() const {
return instr_.RvcImm6Addi16spValue();
}
inline int16_t rvc_imm8_addi4spn() const {
return instr_.RvcImm8Addi4spnValue();
}
inline int16_t rvc_imm6_lwsp() const { return instr_.RvcImm6LwspValue(); }
inline int16_t rvc_imm6_ldsp() const { return instr_.RvcImm6LdspValue(); }
inline int16_t rvc_imm6_swsp() const { return instr_.RvcImm6SwspValue(); }
inline int16_t rvc_imm6_sdsp() const { return instr_.RvcImm6SdspValue(); }
inline int16_t rvc_imm5_w() const { return instr_.RvcImm5WValue(); }
inline int16_t rvc_imm5_d() const { return instr_.RvcImm5DValue(); }
inline int16_t rvc_imm8_b() const { return instr_.RvcImm8BValue(); }
// Helper for debugging memory access.
inline void DieOrDebug();
# if JS_CODEGEN_RISCV32
template <typename T>
void TraceRegWr(T value, TraceType t = WORD);
# elif JS_CODEGEN_RISCV64
void TraceRegWr(sreg_t value, TraceType t = DWORD);
# endif
void TraceMemWr(sreg_t addr, sreg_t value, TraceType t);
template <typename T>
void TraceMemRd(sreg_t addr, T value, sreg_t reg_value);
void TraceMemRdDouble(sreg_t addr, double value, int64_t reg_value);
void TraceMemRdDouble(sreg_t addr, Float64 value, int64_t reg_value);
void TraceMemRdFloat(sreg_t addr, Float32 value, int64_t reg_value);
template <typename T>
void TraceLr(sreg_t addr, T value, sreg_t reg_value);
template <typename T>
void TraceSc(sreg_t addr, T value);
template <typename T>
void TraceMemWr(sreg_t addr, T value);
void TraceMemWrDouble(sreg_t addr, double value);
inline void set_rd(sreg_t value, bool trace = true) {
setRegister(rd_reg(), value);
# if JS_CODEGEN_RISCV64
if (trace) TraceRegWr(getRegister(rd_reg()), DWORD);
# elif JS_CODEGEN_RISCV32
if (trace) TraceRegWr(getRegister(rd_reg()), WORD);
# endif
}
inline void set_frd(float value, bool trace = true) {
setFpuRegisterFloat(rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rd_reg()), FLOAT);
}
inline void set_frd(Float32 value, bool trace = true) {
setFpuRegisterFloat(rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rd_reg()), FLOAT);
}
inline void set_drd(double value, bool trace = true) {
setFpuRegisterDouble(rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rd_reg()), DOUBLE);
}
inline void set_drd(Float64 value, bool trace = true) {
setFpuRegisterDouble(rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rd_reg()), DOUBLE);
}
inline void set_rvc_rd(sreg_t value, bool trace = true) {
setRegister(rvc_rd_reg(), value);
# if JS_CODEGEN_RISCV64
if (trace) TraceRegWr(getRegister(rvc_rd_reg()), DWORD);
# elif JS_CODEGEN_RISCV32
if (trace) TraceRegWr(getRegister(rvc_rd_reg()), WORD);
# endif
}
inline void set_rvc_rs1s(sreg_t value, bool trace = true) {
setRegister(rvc_rs1s_reg(), value);
# if JS_CODEGEN_RISCV64
if (trace) TraceRegWr(getRegister(rvc_rs1s_reg()), DWORD);
# elif JS_CODEGEN_RISCV32
if (trace) TraceRegWr(getRegister(rvc_rs1s_reg()), WORD);
# endif
}
inline void set_rvc_rs2(sreg_t value, bool trace = true) {
setRegister(rvc_rs2_reg(), value);
# if JS_CODEGEN_RISCV64
if (trace) TraceRegWr(getRegister(rvc_rs2_reg()), DWORD);
# elif JS_CODEGEN_RISCV32
if (trace) TraceRegWr(getRegister(rvc_rs2_reg()), WORD);
# endif
}
inline void set_rvc_drd(double value, bool trace = true) {
setFpuRegisterDouble(rvc_rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rd_reg()), DOUBLE);
}
inline void set_rvc_drd(Float64 value, bool trace = true) {
setFpuRegisterDouble(rvc_rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rd_reg()), DOUBLE);
}
inline void set_rvc_frd(Float32 value, bool trace = true) {
setFpuRegisterFloat(rvc_rd_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rd_reg()), DOUBLE);
}
inline void set_rvc_rs2s(sreg_t value, bool trace = true) {
setRegister(rvc_rs2s_reg(), value);
# if JS_CODEGEN_RISCV64
if (trace) TraceRegWr(getRegister(rvc_rs2s_reg()), DWORD);
# elif JS_CODEGEN_RISCV32
if (trace) TraceRegWr(getRegister(rvc_rs2s_reg()), WORD);
# endif
}
inline void set_rvc_drs2s(double value, bool trace = true) {
setFpuRegisterDouble(rvc_rs2s_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rs2s_reg()), DOUBLE);
}
inline void set_rvc_drs2s(Float64 value, bool trace = true) {
setFpuRegisterDouble(rvc_rs2s_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rs2s_reg()), DOUBLE);
}
inline void set_rvc_frs2s(Float32 value, bool trace = true) {
setFpuRegisterFloat(rvc_rs2s_reg(), value);
if (trace) TraceRegWr(getFpuRegister(rvc_rs2s_reg()), FLOAT);
}
uint32_t get_dynamic_rounding_mode() { return read_csr_value(csr_frm); }
// helper functions to read/write/set/clear CRC values/bits
uint32_t read_csr_value(uint32_t csr) {
switch (csr) {
case csr_fflags: // Floating-Point Accrued Exceptions (RW)
return (FCSR_ & kFcsrFlagsMask);
case csr_frm: // Floating-Point Dynamic Rounding Mode (RW)
return (FCSR_ & kFcsrFrmMask) >> kFcsrFrmShift;
case csr_fcsr: // Floating-Point Control and Status Register (RW)
return (FCSR_ & kFcsrMask);
default:
MOZ_CRASH("UNIMPLEMENTED");
}
}
void write_csr_value(uint32_t csr, reg_t val) {
uint32_t value = (uint32_t)val;
switch (csr) {
case csr_fflags: // Floating-Point Accrued Exceptions (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFlagsBits) - 1));
FCSR_ = (FCSR_ & (~kFcsrFlagsMask)) | value;
break;
case csr_frm: // Floating-Point Dynamic Rounding Mode (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFrmBits) - 1));
FCSR_ = (FCSR_ & (~kFcsrFrmMask)) | (value << kFcsrFrmShift);
break;
case csr_fcsr: // Floating-Point Control and Status Register (RW)
MOZ_ASSERT(value <= ((1 << kFcsrBits) - 1));
FCSR_ = (FCSR_ & (~kFcsrMask)) | value;
break;
default:
MOZ_CRASH("UNIMPLEMENTED");
}
}
void set_csr_bits(uint32_t csr, reg_t val) {
uint32_t value = (uint32_t)val;
switch (csr) {
case csr_fflags: // Floating-Point Accrued Exceptions (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFlagsBits) - 1));
FCSR_ = FCSR_ | value;
break;
case csr_frm: // Floating-Point Dynamic Rounding Mode (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFrmBits) - 1));
FCSR_ = FCSR_ | (value << kFcsrFrmShift);
break;
case csr_fcsr: // Floating-Point Control and Status Register (RW)
MOZ_ASSERT(value <= ((1 << kFcsrBits) - 1));
FCSR_ = FCSR_ | value;
break;
default:
MOZ_CRASH("UNIMPLEMENTED");
}
}
void clear_csr_bits(uint32_t csr, reg_t val) {
uint32_t value = (uint32_t)val;
switch (csr) {
case csr_fflags: // Floating-Point Accrued Exceptions (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFlagsBits) - 1));
FCSR_ = FCSR_ & (~value);
break;
case csr_frm: // Floating-Point Dynamic Rounding Mode (RW)
MOZ_ASSERT(value <= ((1 << kFcsrFrmBits) - 1));
FCSR_ = FCSR_ & (~(value << kFcsrFrmShift));
break;
case csr_fcsr: // Floating-Point Control and Status Register (RW)
MOZ_ASSERT(value <= ((1 << kFcsrBits) - 1));
FCSR_ = FCSR_ & (~value);
break;
default:
MOZ_CRASH("UNIMPLEMENTED");
}
}
bool test_fflags_bits(uint32_t mask) {
return (FCSR_ & kFcsrFlagsMask & mask) != 0;
}
void set_fflags(uint32_t flags) { set_csr_bits(csr_fflags, flags); }
void clear_fflags(int32_t flags) { clear_csr_bits(csr_fflags, flags); }
float RoundF2FHelper(float input_val, int rmode);
double RoundF2FHelper(double input_val, int rmode);
template <typename I_TYPE, typename F_TYPE>
I_TYPE RoundF2IHelper(F_TYPE original, int rmode);
template <typename T>
T FMaxMinHelper(T a, T b, MaxMinKind kind);
template <typename T>
bool CompareFHelper(T input1, T input2, FPUCondition cc);
template <typename T>
T get_pc_as() const {
return reinterpret_cast<T>(get_pc());
}
void enable_single_stepping(SingleStepCallback cb, void* arg);
void disable_single_stepping();
// Accessor to the internal simulator stack area.
uintptr_t stackLimit() const;
bool overRecursed(uintptr_t newsp = 0) const;
bool overRecursedWithExtra(uint32_t extra) const;
// Executes MIPS instructions until the PC reaches end_sim_pc.
template <bool enableStopSimAt>
void execute();
// Sets up the simulator state and grabs the result on return.
int64_t call(uint8_t* entry, int argument_count, ...);
// Push an address onto the JS stack.
uintptr_t pushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t popAddress();
// Debugger input.
void setLastDebuggerInput(char* input);
char* lastDebuggerInput() { return lastDebuggerInput_; }
// Returns true if pc register contains one of the 'SpecialValues' defined
// below (bad_ra, end_sim_pc).
bool has_bad_pc() const;
private:
enum SpecialValues {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_ra = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the ra is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2,
// Unpredictable value.
Unpredictable = 0xbadbeaf
};
bool init();
// Unsupported instructions use Format to print an error and stop execution.
void format(SimInstruction* instr, const char* format);
// Read and write memory.
// RISCV Memory read/write methods
template <typename T>
T ReadMem(sreg_t addr, Instruction* instr);
template <typename T>
void WriteMem(sreg_t addr, T value, Instruction* instr);
template <typename T, typename OP>
T amo(sreg_t addr, OP f, Instruction* instr, TraceType t) {
auto lhs = ReadMem<T>(addr, instr);
// TODO(RISCV): trace memory read for AMO
WriteMem<T>(addr, (T)f(lhs), instr);
return lhs;
}
inline int32_t loadLinkedW(uint64_t addr, SimInstruction* instr);
inline int storeConditionalW(uint64_t addr, int32_t value,
SimInstruction* instr);
inline int64_t loadLinkedD(uint64_t addr, SimInstruction* instr);
inline int storeConditionalD(uint64_t addr, int64_t value,
SimInstruction* instr);
// Used for breakpoints and traps.
void SoftwareInterrupt();
// Stop helper functions.
bool isWatchpoint(uint32_t code);
bool IsTracepoint(uint32_t code);
void printWatchpoint(uint32_t code);
void handleStop(uint32_t code);
bool isStopInstruction(SimInstruction* instr);
bool isEnabledStop(uint32_t code);
void enableStop(uint32_t code);
void disableStop(uint32_t code);
void increaseStopCounter(uint32_t code);
void printStopInfo(uint32_t code);
// Simulator breakpoints.
struct Breakpoint {
SimInstruction* location;
bool enabled;
bool is_tbreak;
};
std::vector<Breakpoint> breakpoints_;
void SetBreakpoint(SimInstruction* breakpoint, bool is_tbreak);
void ListBreakpoints();
void CheckBreakpoints();
JS::ProfilingFrameIterator::RegisterState registerState();
void HandleWasmTrap();
// Handle any wasm faults, returning true if the fault was handled.
// This method is rather hot so inline the normal (no-wasm) case.
bool MOZ_ALWAYS_INLINE handleWasmSegFault(uint64_t addr, unsigned numBytes) {
if (MOZ_LIKELY(!js::wasm::CodeExists)) {
return false;
}
uint8_t* newPC;
if (!js::wasm::MemoryAccessTraps(registerState(), (uint8_t*)addr, numBytes,
&newPC)) {
return false;
}
LLBit_ = false;
set_pc(int64_t(newPC));
return true;
}
// Executes one instruction.
void InstructionDecode(Instruction* instr);
// ICache.
// static void CheckICache(base::CustomMatcherHashMap* i_cache,
// Instruction* instr);
// static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t
// start,
// size_t size);
// static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
// void* page);
template <typename T, typename Func>
inline T CanonicalizeFPUOpFMA(Func fn, T dst, T src1, T src2) {
static_assert(std::is_floating_point<T>::value);
auto alu_out = fn(dst, src1, src2);
// if any input or result is NaN, the result is quiet_NaN
if (std::isnan(alu_out) || std::isnan(src1) || std::isnan(src2) ||
std::isnan(dst)) {
// signaling_nan sets kInvalidOperation bit
if (isSnan(alu_out) || isSnan(src1) || isSnan(src2) || isSnan(dst))
set_fflags(kInvalidOperation);
alu_out = std::numeric_limits<T>::quiet_NaN();
}
return alu_out;
}
template <typename T, typename Func>
inline T CanonicalizeFPUOp3(Func fn) {
static_assert(std::is_floating_point<T>::value);
T src1 = std::is_same<float, T>::value ? frs1() : drs1();
T src2 = std::is_same<float, T>::value ? frs2() : drs2();
T src3 = std::is_same<float, T>::value ? frs3() : drs3();
auto alu_out = fn(src1, src2, src3);
// if any input or result is NaN, the result is quiet_NaN
if (std::isnan(alu_out) || std::isnan(src1) || std::isnan(src2) ||
std::isnan(src3)) {
// signaling_nan sets kInvalidOperation bit
if (isSnan(alu_out) || isSnan(src1) || isSnan(src2) || isSnan(src3))
set_fflags(kInvalidOperation);
alu_out = std::numeric_limits<T>::quiet_NaN();
}
return alu_out;
}
template <typename T, typename Func>
inline T CanonicalizeFPUOp2(Func fn) {
static_assert(std::is_floating_point<T>::value);
T src1 = std::is_same<float, T>::value ? frs1() : drs1();
T src2 = std::is_same<float, T>::value ? frs2() : drs2();
auto alu_out = fn(src1, src2);
// if any input or result is NaN, the result is quiet_NaN
if (std::isnan(alu_out) || std::isnan(src1) || std::isnan(src2)) {
// signaling_nan sets kInvalidOperation bit
if (isSnan(alu_out) || isSnan(src1) || isSnan(src2))
set_fflags(kInvalidOperation);
alu_out = std::numeric_limits<T>::quiet_NaN();
}
return alu_out;
}
template <typename T, typename Func>
inline T CanonicalizeFPUOp1(Func fn) {
static_assert(std::is_floating_point<T>::value);
T src1 = std::is_same<float, T>::value ? frs1() : drs1();
auto alu_out = fn(src1);
// if any input or result is NaN, the result is quiet_NaN
if (std::isnan(alu_out) || std::isnan(src1)) {
// signaling_nan sets kInvalidOperation bit
if (isSnan(alu_out) || isSnan(src1)) set_fflags(kInvalidOperation);
alu_out = std::numeric_limits<T>::quiet_NaN();
}
return alu_out;
}
template <typename Func>
inline float CanonicalizeDoubleToFloatOperation(Func fn) {
float alu_out = fn(drs1());
if (std::isnan(alu_out) || std::isnan(drs1()))
alu_out = std::numeric_limits<float>::quiet_NaN();
return alu_out;
}
template <typename Func>
inline float CanonicalizeDoubleToFloatOperation(Func fn, double frs) {
float alu_out = fn(frs);
if (std::isnan(alu_out) || std::isnan(drs1()))
alu_out = std::numeric_limits<float>::quiet_NaN();
return alu_out;
}
template <typename Func>
inline float CanonicalizeFloatToDoubleOperation(Func fn, float frs) {
double alu_out = fn(frs);
if (std::isnan(alu_out) || std::isnan(frs1()))
alu_out = std::numeric_limits<double>::quiet_NaN();
return alu_out;
}
template <typename Func>
inline float CanonicalizeFloatToDoubleOperation(Func fn) {
double alu_out = fn(frs1());
if (std::isnan(alu_out) || std::isnan(frs1()))
alu_out = std::numeric_limits<double>::quiet_NaN();
return alu_out;
}
public:
static int64_t StopSimAt;
// Runtime call support.
static void* RedirectNativeFunction(void* nativeFunction,
ABIFunctionType type);
private:
enum Exception {
none,
kIntegerOverflow,
kIntegerUnderflow,
kDivideByZero,
kNumExceptions,
// RISCV illegual instruction exception
kIllegalInstruction,
};
int16_t exceptions[kNumExceptions];
// Exceptions.
void SignalException(Exception e);
// Handle return value for runtime FP functions.
void setCallResultDouble(double result);
void setCallResultFloat(float result);
void setCallResult(int64_t res);
void setCallResult(__int128 res);
void callInternal(uint8_t* entry);
// Architecture state.
// Registers.
int64_t registers_[kNumSimuRegisters];
// Coprocessor Registers.
int64_t FPUregisters_[kNumFPURegisters];
// FPU control register.
uint32_t FCSR_;
bool LLBit_;
uintptr_t LLAddr_;
int64_t lastLLValue_;
// Simulator support.
char* stack_;
uintptr_t stackLimit_;
bool pc_modified_;
int64_t icount_;
int64_t break_count_;
// Debugger input.
char* lastDebuggerInput_;
intptr_t* watch_address_ = nullptr;
intptr_t watch_value_ = 0;
// Registered breakpoints.
SimInstruction* break_pc_;
Instr break_instr_;
EmbeddedVector<char, 256> trace_buf_;
// Single-stepping support
bool single_stepping_;
SingleStepCallback single_step_callback_;
void* single_step_callback_arg_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Stop is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1U << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watchedStops_[code].count is unset.
// The value watchedStops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count_;
char* desc_;
};
StopCountAndDesc watchedStops_[kNumOfWatchedStops];
};
// Process wide simulator state.
class SimulatorProcess {
friend class Redirection;
friend class AutoLockSimulatorCache;
private:
// ICache checking.
struct ICacheHasher {
typedef void* Key;
typedef void* Lookup;
static HashNumber hash(const Lookup& l);
static bool match(const Key& k, const Lookup& l);
};
public:
typedef HashMap<void*, CachePage*, ICacheHasher, SystemAllocPolicy> ICacheMap;
static mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
ICacheCheckingDisableCount;
static void FlushICache(void* start, size_t size);
static void checkICacheLocked(SimInstruction* instr);
static bool initialize() {
singleton_ = js_new<SimulatorProcess>();
return singleton_;
}
static void destroy() {
js_delete(singleton_);
singleton_ = nullptr;
}
SimulatorProcess();
~SimulatorProcess();
private:
static SimulatorProcess* singleton_;
// This lock creates a critical section around 'redirection_' and
// 'icache_', which are referenced both by the execution engine
// and by the off-thread compiler (see Redirection::Get in the cpp file).
Mutex cacheLock_ MOZ_UNANNOTATED;
Redirection* redirection_;
ICacheMap icache_;
public:
static ICacheMap& icache() {
// Technically we need the lock to access the innards of the
// icache, not to take its address, but the latter condition
// serves as a useful complement to the former.
singleton_->cacheLock_.assertOwnedByCurrentThread();
return singleton_->icache_;
}
static Redirection* redirection() {
singleton_->cacheLock_.assertOwnedByCurrentThread();
return singleton_->redirection_;
}
static void setRedirection(js::jit::Redirection* redirection) {
singleton_->cacheLock_.assertOwnedByCurrentThread();
singleton_->redirection_ = redirection;
}
};
} // namespace jit
} // namespace js
#endif /* JS_SIMULATOR_MIPS64 */
#endif /* jit_riscv64_Simulator_riscv64_h */
|