summaryrefslogtreecommitdiffstats
path: root/media/libopus/celt/celt_encoder.c
blob: 7f32a801c6012c292bf65fa8540cc0d109c2fc35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
/* Copyright (c) 2007-2008 CSIRO
   Copyright (c) 2007-2010 Xiph.Org Foundation
   Copyright (c) 2008 Gregory Maxwell
   Written by Jean-Marc Valin and Gregory Maxwell */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#define CELT_ENCODER_C

#include "cpu_support.h"
#include "os_support.h"
#include "mdct.h"
#include <math.h>
#include "celt.h"
#include "pitch.h"
#include "bands.h"
#include "modes.h"
#include "entcode.h"
#include "quant_bands.h"
#include "rate.h"
#include "stack_alloc.h"
#include "mathops.h"
#include "float_cast.h"
#include <stdarg.h>
#include "celt_lpc.h"
#include "vq.h"


/** Encoder state
 @brief Encoder state
 */
struct OpusCustomEncoder {
   const OpusCustomMode *mode;     /**< Mode used by the encoder */
   int channels;
   int stream_channels;

   int force_intra;
   int clip;
   int disable_pf;
   int complexity;
   int upsample;
   int start, end;

   opus_int32 bitrate;
   int vbr;
   int signalling;
   int constrained_vbr;      /* If zero, VBR can do whatever it likes with the rate */
   int loss_rate;
   int lsb_depth;
   int lfe;
   int disable_inv;
   int arch;

   /* Everything beyond this point gets cleared on a reset */
#define ENCODER_RESET_START rng

   opus_uint32 rng;
   int spread_decision;
   opus_val32 delayedIntra;
   int tonal_average;
   int lastCodedBands;
   int hf_average;
   int tapset_decision;

   int prefilter_period;
   opus_val16 prefilter_gain;
   int prefilter_tapset;
#ifdef RESYNTH
   int prefilter_period_old;
   opus_val16 prefilter_gain_old;
   int prefilter_tapset_old;
#endif
   int consec_transient;
   AnalysisInfo analysis;
   SILKInfo silk_info;

   opus_val32 preemph_memE[2];
   opus_val32 preemph_memD[2];

   /* VBR-related parameters */
   opus_int32 vbr_reservoir;
   opus_int32 vbr_drift;
   opus_int32 vbr_offset;
   opus_int32 vbr_count;
   opus_val32 overlap_max;
   opus_val16 stereo_saving;
   int intensity;
   opus_val16 *energy_mask;
   opus_val16 spec_avg;

#ifdef RESYNTH
   /* +MAX_PERIOD/2 to make space for overlap */
   celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2];
#endif

   celt_sig in_mem[1]; /* Size = channels*mode->overlap */
   /* celt_sig prefilter_mem[],  Size = channels*COMBFILTER_MAXPERIOD */
   /* opus_val16 oldBandE[],     Size = channels*mode->nbEBands */
   /* opus_val16 oldLogE[],      Size = channels*mode->nbEBands */
   /* opus_val16 oldLogE2[],     Size = channels*mode->nbEBands */
   /* opus_val16 energyError[],  Size = channels*mode->nbEBands */
};

int celt_encoder_get_size(int channels)
{
   CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
   return opus_custom_encoder_get_size(mode, channels);
}

OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
{
   int size = sizeof(struct CELTEncoder)
         + (channels*mode->overlap-1)*sizeof(celt_sig)    /* celt_sig in_mem[channels*mode->overlap]; */
         + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
         + 4*channels*mode->nbEBands*sizeof(opus_val16);  /* opus_val16 oldBandE[channels*mode->nbEBands]; */
                                                          /* opus_val16 oldLogE[channels*mode->nbEBands]; */
                                                          /* opus_val16 oldLogE2[channels*mode->nbEBands]; */
                                                          /* opus_val16 energyError[channels*mode->nbEBands]; */
   return size;
}

#ifdef CUSTOM_MODES
CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
{
   int ret;
   CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
   /* init will handle the NULL case */
   ret = opus_custom_encoder_init(st, mode, channels);
   if (ret != OPUS_OK)
   {
      opus_custom_encoder_destroy(st);
      st = NULL;
   }
   if (error)
      *error = ret;
   return st;
}
#endif /* CUSTOM_MODES */

static int opus_custom_encoder_init_arch(CELTEncoder *st, const CELTMode *mode,
                                         int channels, int arch)
{
   if (channels < 0 || channels > 2)
      return OPUS_BAD_ARG;

   if (st==NULL || mode==NULL)
      return OPUS_ALLOC_FAIL;

   OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));

   st->mode = mode;
   st->stream_channels = st->channels = channels;

   st->upsample = 1;
   st->start = 0;
   st->end = st->mode->effEBands;
   st->signalling = 1;
   st->arch = arch;

   st->constrained_vbr = 1;
   st->clip = 1;

   st->bitrate = OPUS_BITRATE_MAX;
   st->vbr = 0;
   st->force_intra  = 0;
   st->complexity = 5;
   st->lsb_depth=24;

   opus_custom_encoder_ctl(st, OPUS_RESET_STATE);

   return OPUS_OK;
}

#ifdef CUSTOM_MODES
int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
{
   return opus_custom_encoder_init_arch(st, mode, channels, opus_select_arch());
}
#endif

int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels,
                      int arch)
{
   int ret;
   ret = opus_custom_encoder_init_arch(st,
           opus_custom_mode_create(48000, 960, NULL), channels, arch);
   if (ret != OPUS_OK)
      return ret;
   st->upsample = resampling_factor(sampling_rate);
   return OPUS_OK;
}

#ifdef CUSTOM_MODES
void opus_custom_encoder_destroy(CELTEncoder *st)
{
   opus_free(st);
}
#endif /* CUSTOM_MODES */


static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
                              opus_val16 *tf_estimate, int *tf_chan, int allow_weak_transients,
                              int *weak_transient)
{
   int i;
   VARDECL(opus_val16, tmp);
   opus_val32 mem0,mem1;
   int is_transient = 0;
   opus_int32 mask_metric = 0;
   int c;
   opus_val16 tf_max;
   int len2;
   /* Forward masking: 6.7 dB/ms. */
#ifdef FIXED_POINT
   int forward_shift = 4;
#else
   opus_val16 forward_decay = QCONST16(.0625f,15);
#endif
   /* Table of 6*64/x, trained on real data to minimize the average error */
   static const unsigned char inv_table[128] = {
         255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
          23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
          12, 12, 11, 11, 11, 10, 10, 10,  9,  9,  9,  9,  9,  9,  8,  8,
           8,  8,  8,  7,  7,  7,  7,  7,  7,  6,  6,  6,  6,  6,  6,  6,
           6,  6,  6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,
           5,  5,  5,  5,  5,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
           4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  3,  3,
           3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2,
   };
   SAVE_STACK;
   ALLOC(tmp, len, opus_val16);

   *weak_transient = 0;
   /* For lower bitrates, let's be more conservative and have a forward masking
      decay of 3.3 dB/ms. This avoids having to code transients at very low
      bitrate (mostly for hybrid), which can result in unstable energy and/or
      partial collapse. */
   if (allow_weak_transients)
   {
#ifdef FIXED_POINT
      forward_shift = 5;
#else
      forward_decay = QCONST16(.03125f,15);
#endif
   }
   len2=len/2;
   for (c=0;c<C;c++)
   {
      opus_val32 mean;
      opus_int32 unmask=0;
      opus_val32 norm;
      opus_val16 maxE;
      mem0=0;
      mem1=0;
      /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
      for (i=0;i<len;i++)
      {
#ifndef FIXED_POINT
         float mem00;
#endif
         opus_val32 x,y;
         x = SHR32(in[i+c*len],SIG_SHIFT);
         y = ADD32(mem0, x);
#ifdef FIXED_POINT
         mem0 = mem1 + y - SHL32(x,1);
         mem1 = x - SHR32(y,1);
#else
         /* Original code:
         mem0 = mem1 + y - 2*x;
         mem1 = x - .5f*y;
         Modified code to shorten dependency chains: */
         mem00=mem0;
         mem0 = mem0 - x + .5f*mem1;
         mem1 =  x - mem00;
#endif
         tmp[i] = SROUND16(y, 2);
         /*printf("%f ", tmp[i]);*/
      }
      /*printf("\n");*/
      /* First few samples are bad because we don't propagate the memory */
      OPUS_CLEAR(tmp, 12);

#ifdef FIXED_POINT
      /* Normalize tmp to max range */
      {
         int shift=0;
         shift = 14-celt_ilog2(MAX16(1, celt_maxabs16(tmp, len)));
         if (shift!=0)
         {
            for (i=0;i<len;i++)
               tmp[i] = SHL16(tmp[i], shift);
         }
      }
#endif

      mean=0;
      mem0=0;
      /* Grouping by two to reduce complexity */
      /* Forward pass to compute the post-echo threshold*/
      for (i=0;i<len2;i++)
      {
         opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16);
         mean += x2;
#ifdef FIXED_POINT
         /* FIXME: Use PSHR16() instead */
         tmp[i] = mem0 + PSHR32(x2-mem0,forward_shift);
         mem0 = tmp[i];
#else
         mem0 = x2 + (1.f-forward_decay)*mem0;
         tmp[i] = forward_decay*mem0;
#endif
      }

      mem0=0;
      maxE=0;
      /* Backward pass to compute the pre-echo threshold */
      for (i=len2-1;i>=0;i--)
      {
         /* Backward masking: 13.9 dB/ms. */
#ifdef FIXED_POINT
         /* FIXME: Use PSHR16() instead */
         tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
         mem0 = tmp[i];
         maxE = MAX16(maxE, mem0);
#else
         mem0 = tmp[i] + 0.875f*mem0;
         tmp[i] = 0.125f*mem0;
         maxE = MAX16(maxE, 0.125f*mem0);
#endif
      }
      /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/

      /* Compute the ratio of the "frame energy" over the harmonic mean of the energy.
         This essentially corresponds to a bitrate-normalized temporal noise-to-mask
         ratio */

      /* As a compromise with the old transient detector, frame energy is the
         geometric mean of the energy and half the max */
#ifdef FIXED_POINT
      /* Costs two sqrt() to avoid overflows */
      mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1)));
#else
      mean = celt_sqrt(mean * maxE*.5*len2);
#endif
      /* Inverse of the mean energy in Q15+6 */
      norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1));
      /* Compute harmonic mean discarding the unreliable boundaries
         The data is smooth, so we only take 1/4th of the samples */
      unmask=0;
      /* We should never see NaNs here. If we find any, then something really bad happened and we better abort
         before it does any damage later on. If these asserts are disabled (no hardening), then the table
         lookup a few lines below (id = ...) is likely to crash dur to an out-of-bounds read. DO NOT FIX
         that crash on NaN since it could result in a worse issue later on. */
      celt_assert(!celt_isnan(tmp[0]));
      celt_assert(!celt_isnan(norm));
      for (i=12;i<len2-5;i+=4)
      {
         int id;
#ifdef FIXED_POINT
         id = MAX32(0,MIN32(127,MULT16_32_Q15(tmp[i]+EPSILON,norm))); /* Do not round to nearest */
#else
         id = (int)MAX32(0,MIN32(127,floor(64*norm*(tmp[i]+EPSILON)))); /* Do not round to nearest */
#endif
         unmask += inv_table[id];
      }
      /*printf("%d\n", unmask);*/
      /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */
      unmask = 64*unmask*4/(6*(len2-17));
      if (unmask>mask_metric)
      {
         *tf_chan = c;
         mask_metric = unmask;
      }
   }
   is_transient = mask_metric>200;
   /* For low bitrates, define "weak transients" that need to be
      handled differently to avoid partial collapse. */
   if (allow_weak_transients && is_transient && mask_metric<600) {
      is_transient = 0;
      *weak_transient = 1;
   }
   /* Arbitrary metric for VBR boost */
   tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42);
   /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
   *tf_estimate = celt_sqrt(MAX32(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28)));
   /*printf("%d %f\n", tf_max, mask_metric);*/
   RESTORE_STACK;
#ifdef FUZZING
   is_transient = rand()&0x1;
#endif
   /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/
   return is_transient;
}

/* Looks for sudden increases of energy to decide whether we need to patch
   the transient decision */
static int patch_transient_decision(opus_val16 *newE, opus_val16 *oldE, int nbEBands,
      int start, int end, int C)
{
   int i, c;
   opus_val32 mean_diff=0;
   opus_val16 spread_old[26];
   /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to
      avoid false detection caused by irrelevant bands */
   if (C==1)
   {
      spread_old[start] = oldE[start];
      for (i=start+1;i<end;i++)
         spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), oldE[i]);
   } else {
      spread_old[start] = MAX16(oldE[start],oldE[start+nbEBands]);
      for (i=start+1;i<end;i++)
         spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT),
                               MAX16(oldE[i],oldE[i+nbEBands]));
   }
   for (i=end-2;i>=start;i--)
      spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT));
   /* Compute mean increase */
   c=0; do {
      for (i=IMAX(2,start);i<end-1;i++)
      {
         opus_val16 x1, x2;
         x1 = MAX16(0, newE[i + c*nbEBands]);
         x2 = MAX16(0, spread_old[i]);
         mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2))));
      }
   } while (++c<C);
   mean_diff = DIV32(mean_diff, C*(end-1-IMAX(2,start)));
   /*printf("%f %f %d\n", mean_diff, max_diff, count);*/
   return mean_diff > QCONST16(1.f, DB_SHIFT);
}

/** Apply window and compute the MDCT for all sub-frames and
    all channels in a frame */
static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in,
                          celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample,
                          int arch)
{
   const int overlap = mode->overlap;
   int N;
   int B;
   int shift;
   int i, b, c;
   if (shortBlocks)
   {
      B = shortBlocks;
      N = mode->shortMdctSize;
      shift = mode->maxLM;
   } else {
      B = 1;
      N = mode->shortMdctSize<<LM;
      shift = mode->maxLM-LM;
   }
   c=0; do {
      for (b=0;b<B;b++)
      {
         /* Interleaving the sub-frames while doing the MDCTs */
         clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N,
                          &out[b+c*N*B], mode->window, overlap, shift, B,
                          arch);
      }
   } while (++c<CC);
   if (CC==2&&C==1)
   {
      for (i=0;i<B*N;i++)
         out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i]));
   }
   if (upsample != 1)
   {
      c=0; do
      {
         int bound = B*N/upsample;
         for (i=0;i<bound;i++)
            out[c*B*N+i] *= upsample;
         OPUS_CLEAR(&out[c*B*N+bound], B*N-bound);
      } while (++c<C);
   }
}


void celt_preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,
                        int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip)
{
   int i;
   opus_val16 coef0;
   celt_sig m;
   int Nu;

   coef0 = coef[0];
   m = *mem;

   /* Fast path for the normal 48kHz case and no clipping */
   if (coef[1] == 0 && upsample == 1 && !clip)
   {
      for (i=0;i<N;i++)
      {
         opus_val16 x;
         x = SCALEIN(pcmp[CC*i]);
         /* Apply pre-emphasis */
         inp[i] = SHL32(x, SIG_SHIFT) - m;
         m = SHR32(MULT16_16(coef0, x), 15-SIG_SHIFT);
      }
      *mem = m;
      return;
   }

   Nu = N/upsample;
   if (upsample!=1)
   {
      OPUS_CLEAR(inp, N);
   }
   for (i=0;i<Nu;i++)
      inp[i*upsample] = SCALEIN(pcmp[CC*i]);

#ifndef FIXED_POINT
   if (clip)
   {
      /* Clip input to avoid encoding non-portable files */
      for (i=0;i<Nu;i++)
         inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]));
   }
#else
   (void)clip; /* Avoids a warning about clip being unused. */
#endif
#ifdef CUSTOM_MODES
   if (coef[1] != 0)
   {
      opus_val16 coef1 = coef[1];
      opus_val16 coef2 = coef[2];
      for (i=0;i<N;i++)
      {
         celt_sig x, tmp;
         x = inp[i];
         /* Apply pre-emphasis */
         tmp = MULT16_16(coef2, x);
         inp[i] = tmp + m;
         m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp);
      }
   } else
#endif
   {
      for (i=0;i<N;i++)
      {
         opus_val16 x;
         x = inp[i];
         /* Apply pre-emphasis */
         inp[i] = SHL32(x, SIG_SHIFT) - m;
         m = SHR32(MULT16_16(coef0, x), 15-SIG_SHIFT);
      }
   }
   *mem = m;
}



static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias)
{
   int i;
   opus_val32 L1;
   L1 = 0;
   for (i=0;i<N;i++)
      L1 += EXTEND32(ABS16(tmp[i]));
   /* When in doubt, prefer good freq resolution */
   L1 = MAC16_32_Q15(L1, LM*bias, L1);
   return L1;

}

static int tf_analysis(const CELTMode *m, int len, int isTransient,
      int *tf_res, int lambda, celt_norm *X, int N0, int LM,
      opus_val16 tf_estimate, int tf_chan, int *importance)
{
   int i;
   VARDECL(int, metric);
   int cost0;
   int cost1;
   VARDECL(int, path0);
   VARDECL(int, path1);
   VARDECL(celt_norm, tmp);
   VARDECL(celt_norm, tmp_1);
   int sel;
   int selcost[2];
   int tf_select=0;
   opus_val16 bias;

   SAVE_STACK;
   bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate));
   /*printf("%f ", bias);*/

   ALLOC(metric, len, int);
   ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
   ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
   ALLOC(path0, len, int);
   ALLOC(path1, len, int);

   for (i=0;i<len;i++)
   {
      int k, N;
      int narrow;
      opus_val32 L1, best_L1;
      int best_level=0;
      N = (m->eBands[i+1]-m->eBands[i])<<LM;
      /* band is too narrow to be split down to LM=-1 */
      narrow = (m->eBands[i+1]-m->eBands[i])==1;
      OPUS_COPY(tmp, &X[tf_chan*N0 + (m->eBands[i]<<LM)], N);
      /* Just add the right channel if we're in stereo */
      /*if (C==2)
         for (j=0;j<N;j++)
            tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/
      L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias);
      best_L1 = L1;
      /* Check the -1 case for transients */
      if (isTransient && !narrow)
      {
         OPUS_COPY(tmp_1, tmp, N);
         haar1(tmp_1, N>>LM, 1<<LM);
         L1 = l1_metric(tmp_1, N, LM+1, bias);
         if (L1<best_L1)
         {
            best_L1 = L1;
            best_level = -1;
         }
      }
      /*printf ("%f ", L1);*/
      for (k=0;k<LM+!(isTransient||narrow);k++)
      {
         int B;

         if (isTransient)
            B = (LM-k-1);
         else
            B = k+1;

         haar1(tmp, N>>k, 1<<k);

         L1 = l1_metric(tmp, N, B, bias);

         if (L1 < best_L1)
         {
            best_L1 = L1;
            best_level = k+1;
         }
      }
      /*printf ("%d ", isTransient ? LM-best_level : best_level);*/
      /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */
      if (isTransient)
         metric[i] = 2*best_level;
      else
         metric[i] = -2*best_level;
      /* For bands that can't be split to -1, set the metric to the half-way point to avoid
         biasing the decision */
      if (narrow && (metric[i]==0 || metric[i]==-2*LM))
         metric[i]-=1;
      /*printf("%d ", metric[i]/2 + (!isTransient)*LM);*/
   }
   /*printf("\n");*/
   /* Search for the optimal tf resolution, including tf_select */
   tf_select = 0;
   for (sel=0;sel<2;sel++)
   {
      cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
      cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+1]) + (isTransient ? 0 : lambda);
      for (i=1;i<len;i++)
      {
         int curr0, curr1;
         curr0 = IMIN(cost0, cost1 + lambda);
         curr1 = IMIN(cost0 + lambda, cost1);
         cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
         cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
      }
      cost0 = IMIN(cost0, cost1);
      selcost[sel]=cost0;
   }
   /* For now, we're conservative and only allow tf_select=1 for transients.
    * If tests confirm it's useful for non-transients, we could allow it. */
   if (selcost[1]<selcost[0] && isTransient)
      tf_select=1;
   cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
   cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]) + (isTransient ? 0 : lambda);
   /* Viterbi forward pass */
   for (i=1;i<len;i++)
   {
      int curr0, curr1;
      int from0, from1;

      from0 = cost0;
      from1 = cost1 + lambda;
      if (from0 < from1)
      {
         curr0 = from0;
         path0[i]= 0;
      } else {
         curr0 = from1;
         path0[i]= 1;
      }

      from0 = cost0 + lambda;
      from1 = cost1;
      if (from0 < from1)
      {
         curr1 = from0;
         path1[i]= 0;
      } else {
         curr1 = from1;
         path1[i]= 1;
      }
      cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
      cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
   }
   tf_res[len-1] = cost0 < cost1 ? 0 : 1;
   /* Viterbi backward pass to check the decisions */
   for (i=len-2;i>=0;i--)
   {
      if (tf_res[i+1] == 1)
         tf_res[i] = path1[i+1];
      else
         tf_res[i] = path0[i+1];
   }
   /*printf("%d %f\n", *tf_sum, tf_estimate);*/
   RESTORE_STACK;
#ifdef FUZZING
   tf_select = rand()&0x1;
   tf_res[0] = rand()&0x1;
   for (i=1;i<len;i++)
      tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
#endif
   return tf_select;
}

static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
{
   int curr, i;
   int tf_select_rsv;
   int tf_changed;
   int logp;
   opus_uint32 budget;
   opus_uint32 tell;
   budget = enc->storage*8;
   tell = ec_tell(enc);
   logp = isTransient ? 2 : 4;
   /* Reserve space to code the tf_select decision. */
   tf_select_rsv = LM>0 && tell+logp+1 <= budget;
   budget -= tf_select_rsv;
   curr = tf_changed = 0;
   for (i=start;i<end;i++)
   {
      if (tell+logp<=budget)
      {
         ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
         tell = ec_tell(enc);
         curr = tf_res[i];
         tf_changed |= curr;
      }
      else
         tf_res[i] = curr;
      logp = isTransient ? 4 : 5;
   }
   /* Only code tf_select if it would actually make a difference. */
   if (tf_select_rsv &&
         tf_select_table[LM][4*isTransient+0+tf_changed]!=
         tf_select_table[LM][4*isTransient+2+tf_changed])
      ec_enc_bit_logp(enc, tf_select, 1);
   else
      tf_select = 0;
   for (i=start;i<end;i++)
      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
   /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/
}


static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
      const opus_val16 *bandLogE, int end, int LM, int C, int N0,
      AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
      int intensity, opus_val16 surround_trim, opus_int32 equiv_rate, int arch)
{
   int i;
   opus_val32 diff=0;
   int c;
   int trim_index;
   opus_val16 trim = QCONST16(5.f, 8);
   opus_val16 logXC, logXC2;
   /* At low bitrate, reducing the trim seems to help. At higher bitrates, it's less
      clear what's best, so we're keeping it as it was before, at least for now. */
   if (equiv_rate < 64000) {
      trim = QCONST16(4.f, 8);
   } else if (equiv_rate < 80000) {
      opus_int32 frac = (equiv_rate-64000) >> 10;
      trim = QCONST16(4.f, 8) + QCONST16(1.f/16.f, 8)*frac;
   }
   if (C==2)
   {
      opus_val16 sum = 0; /* Q10 */
      opus_val16 minXC; /* Q10 */
      /* Compute inter-channel correlation for low frequencies */
      for (i=0;i<8;i++)
      {
         opus_val32 partial;
         partial = celt_inner_prod(&X[m->eBands[i]<<LM], &X[N0+(m->eBands[i]<<LM)],
               (m->eBands[i+1]-m->eBands[i])<<LM, arch);
         sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
      }
      sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
      sum = MIN16(QCONST16(1.f, 10), ABS16(sum));
      minXC = sum;
      for (i=8;i<intensity;i++)
      {
         opus_val32 partial;
         partial = celt_inner_prod(&X[m->eBands[i]<<LM], &X[N0+(m->eBands[i]<<LM)],
               (m->eBands[i+1]-m->eBands[i])<<LM, arch);
         minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))));
      }
      minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC));
      /*printf ("%f\n", sum);*/
      /* mid-side savings estimations based on the LF average*/
      logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum));
      /* mid-side savings estimations based on min correlation */
      logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)));
#ifdef FIXED_POINT
      /* Compensate for Q20 vs Q14 input and convert output to Q8 */
      logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
      logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
#endif

      trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC));
      *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2));
   }

   /* Estimate spectral tilt */
   c=0; do {
      for (i=0;i<end-1;i++)
      {
         diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end);
      }
   } while (++c<C);
   diff /= C*(end-1);
   /*printf("%f\n", diff);*/
   trim -= MAX32(-QCONST16(2.f, 8), MIN32(QCONST16(2.f, 8), SHR32(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
   trim -= SHR16(surround_trim, DB_SHIFT-8);
   trim -= 2*SHR16(tf_estimate, 14-8);
#ifndef DISABLE_FLOAT_API
   if (analysis->valid)
   {
      trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8),
            (opus_val16)(QCONST16(2.f, 8)*(analysis->tonality_slope+.05f))));
   }
#else
   (void)analysis;
#endif

#ifdef FIXED_POINT
   trim_index = PSHR32(trim, 8);
#else
   trim_index = (int)floor(.5f+trim);
#endif
   trim_index = IMAX(0, IMIN(10, trim_index));
   /*printf("%d\n", trim_index);*/
#ifdef FUZZING
   trim_index = rand()%11;
#endif
   return trim_index;
}

static int stereo_analysis(const CELTMode *m, const celt_norm *X,
      int LM, int N0)
{
   int i;
   int thetas;
   opus_val32 sumLR = EPSILON, sumMS = EPSILON;

   /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
   for (i=0;i<13;i++)
   {
      int j;
      for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
      {
         opus_val32 L, R, M, S;
         /* We cast to 32-bit first because of the -32768 case */
         L = EXTEND32(X[j]);
         R = EXTEND32(X[N0+j]);
         M = ADD32(L, R);
         S = SUB32(L, R);
         sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
         sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
      }
   }
   sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
   thetas = 13;
   /* We don't need thetas for lower bands with LM<=1 */
   if (LM<=1)
      thetas -= 8;
   return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
         > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
}

#define MSWAP(a,b) do {opus_val16 tmp = a;a=b;b=tmp;} while(0)
static opus_val16 median_of_5(const opus_val16 *x)
{
   opus_val16 t0, t1, t2, t3, t4;
   t2 = x[2];
   if (x[0] > x[1])
   {
      t0 = x[1];
      t1 = x[0];
   } else {
      t0 = x[0];
      t1 = x[1];
   }
   if (x[3] > x[4])
   {
      t3 = x[4];
      t4 = x[3];
   } else {
      t3 = x[3];
      t4 = x[4];
   }
   if (t0 > t3)
   {
      MSWAP(t0, t3);
      MSWAP(t1, t4);
   }
   if (t2 > t1)
   {
      if (t1 < t3)
         return MIN16(t2, t3);
      else
         return MIN16(t4, t1);
   } else {
      if (t2 < t3)
         return MIN16(t1, t3);
      else
         return MIN16(t2, t4);
   }
}

static opus_val16 median_of_3(const opus_val16 *x)
{
   opus_val16 t0, t1, t2;
   if (x[0] > x[1])
   {
      t0 = x[1];
      t1 = x[0];
   } else {
      t0 = x[0];
      t1 = x[1];
   }
   t2 = x[2];
   if (t1 < t2)
      return t1;
   else if (t0 < t2)
      return t2;
   else
      return t0;
}

static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, const opus_val16 *oldBandE,
      int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN,
      int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM,
      int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc,
      AnalysisInfo *analysis, int *importance, int *spread_weight)
{
   int i, c;
   opus_int32 tot_boost=0;
   opus_val16 maxDepth;
   VARDECL(opus_val16, follower);
   VARDECL(opus_val16, noise_floor);
   VARDECL(opus_val16, bandLogE3);
   SAVE_STACK;
   ALLOC(follower, C*nbEBands, opus_val16);
   ALLOC(noise_floor, C*nbEBands, opus_val16);
   ALLOC(bandLogE3, nbEBands, opus_val16);
   OPUS_CLEAR(offsets, nbEBands);
   /* Dynamic allocation code */
   maxDepth=-QCONST16(31.9f, DB_SHIFT);
   for (i=0;i<end;i++)
   {
      /* Noise floor must take into account eMeans, the depth, the width of the bands
         and the preemphasis filter (approx. square of bark band ID) */
      noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i])
            +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6)
            +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5));
   }
   c=0;do
   {
      for (i=0;i<end;i++)
         maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]);
   } while (++c<C);
   {
      /* Compute a really simple masking model to avoid taking into account completely masked
         bands when computing the spreading decision. */
      VARDECL(opus_val16, mask);
      VARDECL(opus_val16, sig);
      ALLOC(mask, nbEBands, opus_val16);
      ALLOC(sig, nbEBands, opus_val16);
      for (i=0;i<end;i++)
         mask[i] = bandLogE[i]-noise_floor[i];
      if (C==2)
      {
         for (i=0;i<end;i++)
            mask[i] = MAX16(mask[i], bandLogE[nbEBands+i]-noise_floor[i]);
      }
      OPUS_COPY(sig, mask, end);
      for (i=1;i<end;i++)
         mask[i] = MAX16(mask[i], mask[i-1] - QCONST16(2.f, DB_SHIFT));
      for (i=end-2;i>=0;i--)
         mask[i] = MAX16(mask[i], mask[i+1] - QCONST16(3.f, DB_SHIFT));
      for (i=0;i<end;i++)
      {
         /* Compute SMR: Mask is never more than 72 dB below the peak and never below the noise floor.*/
         opus_val16 smr = sig[i]-MAX16(MAX16(0, maxDepth-QCONST16(12.f, DB_SHIFT)), mask[i]);
         /* Clamp SMR to make sure we're not shifting by something negative or too large. */
#ifdef FIXED_POINT
         /* FIXME: Use PSHR16() instead */
         int shift = -PSHR32(MAX16(-QCONST16(5.f, DB_SHIFT), MIN16(0, smr)), DB_SHIFT);
#else
         int shift = IMIN(5, IMAX(0, -(int)floor(.5f + smr)));
#endif
         spread_weight[i] = 32 >> shift;
      }
      /*for (i=0;i<end;i++)
         printf("%d ", spread_weight[i]);
      printf("\n");*/
   }
   /* Make sure that dynamic allocation can't make us bust the budget.
      We enable the feature starting at 24 kb/s for 20-ms frames
      and 96 kb/s for 2.5 ms frames.  */
   if (effectiveBytes >= (30 + 5*LM) && !lfe)
   {
      int last=0;
      c=0;do
      {
         opus_val16 offset;
         opus_val16 tmp;
         opus_val16 *f;
         OPUS_COPY(bandLogE3, &bandLogE2[c*nbEBands], end);
         if (LM==0) {
            /* For 2.5 ms frames, the first 8 bands have just one bin, so the
               energy is highly unreliable (high variance). For that reason,
               we take the max with the previous energy so that at least 2 bins
               are getting used. */
            for (i=0;i<IMIN(8,end);i++) bandLogE3[i] = MAX16(bandLogE2[c*nbEBands+i], oldBandE[c*nbEBands+i]);
         }
         f = &follower[c*nbEBands];
         f[0] = bandLogE3[0];
         for (i=1;i<end;i++)
         {
            /* The last band to be at least 3 dB higher than the previous one
               is the last we'll consider. Otherwise, we run into problems on
               bandlimited signals. */
            if (bandLogE3[i] > bandLogE3[i-1]+QCONST16(.5f,DB_SHIFT))
               last=i;
            f[i] = MIN16(f[i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE3[i]);
         }
         for (i=last-1;i>=0;i--)
            f[i] = MIN16(f[i], MIN16(f[i+1]+QCONST16(2.f,DB_SHIFT), bandLogE3[i]));

         /* Combine with a median filter to avoid dynalloc triggering unnecessarily.
            The "offset" value controls how conservative we are -- a higher offset
            reduces the impact of the median filter and makes dynalloc use more bits. */
         offset = QCONST16(1.f, DB_SHIFT);
         for (i=2;i<end-2;i++)
            f[i] = MAX16(f[i], median_of_5(&bandLogE3[i-2])-offset);
         tmp = median_of_3(&bandLogE3[0])-offset;
         f[0] = MAX16(f[0], tmp);
         f[1] = MAX16(f[1], tmp);
         tmp = median_of_3(&bandLogE3[end-3])-offset;
         f[end-2] = MAX16(f[end-2], tmp);
         f[end-1] = MAX16(f[end-1], tmp);

         for (i=0;i<end;i++)
            f[i] = MAX16(f[i], noise_floor[i]);
      } while (++c<C);
      if (C==2)
      {
         for (i=start;i<end;i++)
         {
            /* Consider 24 dB "cross-talk" */
            follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[         i]-QCONST16(4.f,DB_SHIFT));
            follower[         i] = MAX16(follower[         i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT));
            follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i]));
         }
      } else {
         for (i=start;i<end;i++)
         {
            follower[i] = MAX16(0, bandLogE[i]-follower[i]);
         }
      }
      for (i=start;i<end;i++)
         follower[i] = MAX16(follower[i], surround_dynalloc[i]);
      for (i=start;i<end;i++)
      {
#ifdef FIXED_POINT
         importance[i] = PSHR32(13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT))), 16);
#else
         importance[i] = (int)floor(.5f+13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT))));
#endif
      }
      /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
      if ((!vbr || constrained_vbr)&&!isTransient)
      {
         for (i=start;i<end;i++)
            follower[i] = HALF16(follower[i]);
      }
      for (i=start;i<end;i++)
      {
         if (i<8)
            follower[i] *= 2;
         if (i>=12)
            follower[i] = HALF16(follower[i]);
      }
#ifdef DISABLE_FLOAT_API
      (void)analysis;
#else
      if (analysis->valid)
      {
         for (i=start;i<IMIN(LEAK_BANDS, end);i++)
            follower[i] = follower[i] +  QCONST16(1.f/64.f, DB_SHIFT)*analysis->leak_boost[i];
      }
#endif
      for (i=start;i<end;i++)
      {
         int width;
         int boost;
         int boost_bits;

         follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));

         width = C*(eBands[i+1]-eBands[i])<<LM;
         if (width<6)
         {
            boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT);
            boost_bits = boost*width<<BITRES;
         } else if (width > 48) {
            boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT);
            boost_bits = (boost*width<<BITRES)/8;
         } else {
            boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
            boost_bits = boost*6<<BITRES;
         }
         /* For CBR and non-transient CVBR frames, limit dynalloc to 2/3 of the bits */
         if ((!vbr || (constrained_vbr&&!isTransient))
               && (tot_boost+boost_bits)>>BITRES>>3 > 2*effectiveBytes/3)
         {
            opus_int32 cap = ((2*effectiveBytes/3)<<BITRES<<3);
            offsets[i] = cap-tot_boost;
            tot_boost = cap;
            break;
         } else {
            offsets[i] = boost;
            tot_boost += boost_bits;
         }
      }
   } else {
      for (i=start;i<end;i++)
         importance[i] = 13;
   }
   *tot_boost_ = tot_boost;
   RESTORE_STACK;
   return maxDepth;
}


static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
      int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes, AnalysisInfo *analysis)
{
   int c;
   VARDECL(celt_sig, _pre);
   celt_sig *pre[2];
   const CELTMode *mode;
   int pitch_index;
   opus_val16 gain1;
   opus_val16 pf_threshold;
   int pf_on;
   int qg;
   int overlap;
   SAVE_STACK;

   mode = st->mode;
   overlap = mode->overlap;
   ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);

   pre[0] = _pre;
   pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);


   c=0; do {
      OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
      OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+overlap)+overlap, N);
   } while (++c<CC);

   if (enabled)
   {
      VARDECL(opus_val16, pitch_buf);
      ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);

      pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC, st->arch);
      /* Don't search for the fir last 1.5 octave of the range because
         there's too many false-positives due to short-term correlation */
      pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
            COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index,
            st->arch);
      pitch_index = COMBFILTER_MAXPERIOD-pitch_index;

      gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
            N, &pitch_index, st->prefilter_period, st->prefilter_gain, st->arch);
      if (pitch_index > COMBFILTER_MAXPERIOD-2)
         pitch_index = COMBFILTER_MAXPERIOD-2;
      gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
      /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/
      if (st->loss_rate>2)
         gain1 = HALF32(gain1);
      if (st->loss_rate>4)
         gain1 = HALF32(gain1);
      if (st->loss_rate>8)
         gain1 = 0;
   } else {
      gain1 = 0;
      pitch_index = COMBFILTER_MINPERIOD;
   }
#ifndef DISABLE_FLOAT_API
   if (analysis->valid)
      gain1 = (opus_val16)(gain1 * analysis->max_pitch_ratio);
#else
   (void)analysis;
#endif
   /* Gain threshold for enabling the prefilter/postfilter */
   pf_threshold = QCONST16(.2f,15);

   /* Adjusting the threshold based on rate and continuity */
   if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
      pf_threshold += QCONST16(.2f,15);
   if (nbAvailableBytes<25)
      pf_threshold += QCONST16(.1f,15);
   if (nbAvailableBytes<35)
      pf_threshold += QCONST16(.1f,15);
   if (st->prefilter_gain > QCONST16(.4f,15))
      pf_threshold -= QCONST16(.1f,15);
   if (st->prefilter_gain > QCONST16(.55f,15))
      pf_threshold -= QCONST16(.1f,15);

   /* Hard threshold at 0.2 */
   pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
   if (gain1<pf_threshold)
   {
      gain1 = 0;
      pf_on = 0;
      qg = 0;
   } else {
      /*This block is not gated by a total bits check only because
        of the nbAvailableBytes check above.*/
      if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
         gain1=st->prefilter_gain;

#ifdef FIXED_POINT
      qg = ((gain1+1536)>>10)/3-1;
#else
      qg = (int)floor(.5f+gain1*32/3)-1;
#endif
      qg = IMAX(0, IMIN(7, qg));
      gain1 = QCONST16(0.09375f,15)*(qg+1);
      pf_on = 1;
   }
   /*printf("%d %f\n", pitch_index, gain1);*/

   c=0; do {
      int offset = mode->shortMdctSize-overlap;
      st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
      OPUS_COPY(in+c*(N+overlap), st->in_mem+c*(overlap), overlap);
      if (offset)
         comb_filter(in+c*(N+overlap)+overlap, pre[c]+COMBFILTER_MAXPERIOD,
               st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
               st->prefilter_tapset, st->prefilter_tapset, NULL, 0, st->arch);

      comb_filter(in+c*(N+overlap)+overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
            st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
            st->prefilter_tapset, prefilter_tapset, mode->window, overlap, st->arch);
      OPUS_COPY(st->in_mem+c*(overlap), in+c*(N+overlap)+N, overlap);

      if (N>COMBFILTER_MAXPERIOD)
      {
         OPUS_COPY(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
      } else {
         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
         OPUS_COPY(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
      }
   } while (++c<CC);

   RESTORE_STACK;
   *gain = gain1;
   *pitch = pitch_index;
   *qgain = qg;
   return pf_on;
}

static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 base_target,
      int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity,
      int constrained_vbr, opus_val16 stereo_saving, int tot_boost,
      opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth,
      int lfe, int has_surround_mask, opus_val16 surround_masking,
      opus_val16 temporal_vbr)
{
   /* The target rate in 8th bits per frame */
   opus_int32 target;
   int coded_bins;
   int coded_bands;
   opus_val16 tf_calibration;
   int nbEBands;
   const opus_int16 *eBands;

   nbEBands = mode->nbEBands;
   eBands = mode->eBands;

   coded_bands = lastCodedBands ? lastCodedBands : nbEBands;
   coded_bins = eBands[coded_bands]<<LM;
   if (C==2)
      coded_bins += eBands[IMIN(intensity, coded_bands)]<<LM;

   target = base_target;

   /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/
#ifndef DISABLE_FLOAT_API
   if (analysis->valid && analysis->activity<.4)
      target -= (opus_int32)((coded_bins<<BITRES)*(.4f-analysis->activity));
#endif
   /* Stereo savings */
   if (C==2)
   {
      int coded_stereo_bands;
      int coded_stereo_dof;
      opus_val16 max_frac;
      coded_stereo_bands = IMIN(intensity, coded_bands);
      coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands;
      /* Maximum fraction of the bits we can save if the signal is mono. */
      max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins);
      stereo_saving = MIN16(stereo_saving, QCONST16(1.f, 8));
      /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/
      target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target),
                      SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8));
   }
   /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */
   target += tot_boost-(19<<LM);
   /* Apply transient boost, compensating for average boost. */
   tf_calibration = QCONST16(0.044f,14);
   target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1);

#ifndef DISABLE_FLOAT_API
   /* Apply tonality boost */
   if (analysis->valid && !lfe)
   {
      opus_int32 tonal_target;
      float tonal;

      /* Tonality boost (compensating for the average). */
      tonal = MAX16(0.f,analysis->tonality-.15f)-0.12f;
      tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal);
      if (pitch_change)
         tonal_target +=  (opus_int32)((coded_bins<<BITRES)*.8f);
      /*printf("%f %f ", analysis->tonality, tonal);*/
      target = tonal_target;
   }
#else
   (void)analysis;
   (void)pitch_change;
#endif

   if (has_surround_mask&&!lfe)
   {
      opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(surround_masking,coded_bins<<BITRES), DB_SHIFT);
      /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/
      target = IMAX(target/4, surround_target);
   }

   {
      opus_int32 floor_depth;
      int bins;
      bins = eBands[nbEBands-2]<<LM;
      /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/
      floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT);
      floor_depth = IMAX(floor_depth, target>>2);
      target = IMIN(target, floor_depth);
      /*printf("%f %d\n", maxDepth, floor_depth);*/
   }

   /* Make VBR less aggressive for constrained VBR because we can't keep a higher bitrate
      for long. Needs tuning. */
   if ((!has_surround_mask||lfe) && constrained_vbr)
   {
      target = base_target + (opus_int32)MULT16_32_Q15(QCONST16(0.67f, 15), target-base_target);
   }

   if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14))
   {
      opus_val16 amount;
      opus_val16 tvbr_factor;
      amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate)));
      tvbr_factor = SHR32(MULT16_16(temporal_vbr, amount), DB_SHIFT);
      target += (opus_int32)MULT16_32_Q15(tvbr_factor, target);
   }

   /* Don't allow more than doubling the rate */
   target = IMIN(2*base_target, target);

   return target;
}

int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
{
   int i, c, N;
   opus_int32 bits;
   ec_enc _enc;
   VARDECL(celt_sig, in);
   VARDECL(celt_sig, freq);
   VARDECL(celt_norm, X);
   VARDECL(celt_ener, bandE);
   VARDECL(opus_val16, bandLogE);
   VARDECL(opus_val16, bandLogE2);
   VARDECL(int, fine_quant);
   VARDECL(opus_val16, error);
   VARDECL(int, pulses);
   VARDECL(int, cap);
   VARDECL(int, offsets);
   VARDECL(int, importance);
   VARDECL(int, spread_weight);
   VARDECL(int, fine_priority);
   VARDECL(int, tf_res);
   VARDECL(unsigned char, collapse_masks);
   celt_sig *prefilter_mem;
   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *energyError;
   int shortBlocks=0;
   int isTransient=0;
   const int CC = st->channels;
   const int C = st->stream_channels;
   int LM, M;
   int tf_select;
   int nbFilledBytes, nbAvailableBytes;
   int start;
   int end;
   int effEnd;
   int codedBands;
   int alloc_trim;
   int pitch_index=COMBFILTER_MINPERIOD;
   opus_val16 gain1 = 0;
   int dual_stereo=0;
   int effectiveBytes;
   int dynalloc_logp;
   opus_int32 vbr_rate;
   opus_int32 total_bits;
   opus_int32 total_boost;
   opus_int32 balance;
   opus_int32 tell;
   opus_int32 tell0_frac;
   int prefilter_tapset=0;
   int pf_on;
   int anti_collapse_rsv;
   int anti_collapse_on=0;
   int silence=0;
   int tf_chan = 0;
   opus_val16 tf_estimate;
   int pitch_change=0;
   opus_int32 tot_boost;
   opus_val32 sample_max;
   opus_val16 maxDepth;
   const OpusCustomMode *mode;
   int nbEBands;
   int overlap;
   const opus_int16 *eBands;
   int secondMdct;
   int signalBandwidth;
   int transient_got_disabled=0;
   opus_val16 surround_masking=0;
   opus_val16 temporal_vbr=0;
   opus_val16 surround_trim = 0;
   opus_int32 equiv_rate;
   int hybrid;
   int weak_transient = 0;
   int enable_tf_analysis;
   VARDECL(opus_val16, surround_dynalloc);
   ALLOC_STACK;

   mode = st->mode;
   nbEBands = mode->nbEBands;
   overlap = mode->overlap;
   eBands = mode->eBands;
   start = st->start;
   end = st->end;
   hybrid = start != 0;
   tf_estimate = 0;
   if (nbCompressedBytes<2 || pcm==NULL)
   {
      RESTORE_STACK;
      return OPUS_BAD_ARG;
   }

   frame_size *= st->upsample;
   for (LM=0;LM<=mode->maxLM;LM++)
      if (mode->shortMdctSize<<LM==frame_size)
         break;
   if (LM>mode->maxLM)
   {
      RESTORE_STACK;
      return OPUS_BAD_ARG;
   }
   M=1<<LM;
   N = M*mode->shortMdctSize;

   prefilter_mem = st->in_mem+CC*(overlap);
   oldBandE = (opus_val16*)(st->in_mem+CC*(overlap+COMBFILTER_MAXPERIOD));
   oldLogE = oldBandE + CC*nbEBands;
   oldLogE2 = oldLogE + CC*nbEBands;
   energyError = oldLogE2 + CC*nbEBands;

   if (enc==NULL)
   {
      tell0_frac=tell=1;
      nbFilledBytes=0;
   } else {
      tell0_frac=ec_tell_frac(enc);
      tell=ec_tell(enc);
      nbFilledBytes=(tell+4)>>3;
   }

#ifdef CUSTOM_MODES
   if (st->signalling && enc==NULL)
   {
      int tmp = (mode->effEBands-end)>>1;
      end = st->end = IMAX(1, mode->effEBands-tmp);
      compressed[0] = tmp<<5;
      compressed[0] |= LM<<3;
      compressed[0] |= (C==2)<<2;
      /* Convert "standard mode" to Opus header */
      if (mode->Fs==48000 && mode->shortMdctSize==120)
      {
         int c0 = toOpus(compressed[0]);
         if (c0<0)
         {
            RESTORE_STACK;
            return OPUS_BAD_ARG;
         }
         compressed[0] = c0;
      }
      compressed++;
      nbCompressedBytes--;
   }
#else
   celt_assert(st->signalling==0);
#endif

   /* Can't produce more than 1275 output bytes */
   nbCompressedBytes = IMIN(nbCompressedBytes,1275);
   nbAvailableBytes = nbCompressedBytes - nbFilledBytes;

   if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
   {
      opus_int32 den=mode->Fs>>BITRES;
      vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
#ifdef CUSTOM_MODES
      if (st->signalling)
         vbr_rate -= 8<<BITRES;
#endif
      effectiveBytes = vbr_rate>>(3+BITRES);
   } else {
      opus_int32 tmp;
      vbr_rate = 0;
      tmp = st->bitrate*frame_size;
      if (tell>1)
         tmp += tell*mode->Fs;
      if (st->bitrate!=OPUS_BITRATE_MAX)
      {
         nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
               (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
         ec_enc_shrink(enc, nbCompressedBytes);
      }
      effectiveBytes = nbCompressedBytes - nbFilledBytes;
   }
   equiv_rate = ((opus_int32)nbCompressedBytes*8*50 << (3-LM)) - (40*C+20)*((400>>LM) - 50);
   if (st->bitrate != OPUS_BITRATE_MAX)
      equiv_rate = IMIN(equiv_rate, st->bitrate - (40*C+20)*((400>>LM) - 50));

   if (enc==NULL)
   {
      ec_enc_init(&_enc, compressed, nbCompressedBytes);
      enc = &_enc;
   }

   if (vbr_rate>0)
   {
      /* Computes the max bit-rate allowed in VBR mode to avoid violating the
          target rate and buffering.
         We must do this up front so that bust-prevention logic triggers
          correctly if we don't have enough bits. */
      if (st->constrained_vbr)
      {
         opus_int32 vbr_bound;
         opus_int32 max_allowed;
         /* We could use any multiple of vbr_rate as bound (depending on the
             delay).
            This is clamped to ensure we use at least two bytes if the encoder
             was entirely empty, but to allow 0 in hybrid mode. */
         vbr_bound = vbr_rate;
         max_allowed = IMIN(IMAX(tell==1?2:0,
               (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
               nbAvailableBytes);
         if(max_allowed < nbAvailableBytes)
         {
            nbCompressedBytes = nbFilledBytes+max_allowed;
            nbAvailableBytes = max_allowed;
            ec_enc_shrink(enc, nbCompressedBytes);
         }
      }
   }
   total_bits = nbCompressedBytes*8;

   effEnd = end;
   if (effEnd > mode->effEBands)
      effEnd = mode->effEBands;

   ALLOC(in, CC*(N+overlap), celt_sig);

   sample_max=MAX32(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample));
   st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample);
   sample_max=MAX32(sample_max, st->overlap_max);
#ifdef FIXED_POINT
   silence = (sample_max==0);
#else
   silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth));
#endif
#ifdef FUZZING
   if ((rand()&0x3F)==0)
      silence = 1;
#endif
   if (tell==1)
      ec_enc_bit_logp(enc, silence, 15);
   else
      silence=0;
   if (silence)
   {
      /*In VBR mode there is no need to send more than the minimum. */
      if (vbr_rate>0)
      {
         effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
         total_bits=nbCompressedBytes*8;
         nbAvailableBytes=2;
         ec_enc_shrink(enc, nbCompressedBytes);
      }
      /* Pretend we've filled all the remaining bits with zeros
            (that's what the initialiser did anyway) */
      tell = nbCompressedBytes*8;
      enc->nbits_total+=tell-ec_tell(enc);
   }
   c=0; do {
      int need_clip=0;
#ifndef FIXED_POINT
      need_clip = st->clip && sample_max>65536.f;
#endif
      celt_preemphasis(pcm+c, in+c*(N+overlap)+overlap, N, CC, st->upsample,
                  mode->preemph, st->preemph_memE+c, need_clip);
   } while (++c<CC);



   /* Find pitch period and gain */
   {
      int enabled;
      int qg;
      enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && !hybrid && !silence && !st->disable_pf
            && st->complexity >= 5;

      prefilter_tapset = st->tapset_decision;
      pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes, &st->analysis);
      if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3)
            && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
         pitch_change = 1;
      if (pf_on==0)
      {
         if(!hybrid && tell+16<=total_bits)
            ec_enc_bit_logp(enc, 0, 1);
      } else {
         /*This block is not gated by a total bits check only because
           of the nbAvailableBytes check above.*/
         int octave;
         ec_enc_bit_logp(enc, 1, 1);
         pitch_index += 1;
         octave = EC_ILOG(pitch_index)-5;
         ec_enc_uint(enc, octave, 6);
         ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
         pitch_index -= 1;
         ec_enc_bits(enc, qg, 3);
         ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
      }
   }

   isTransient = 0;
   shortBlocks = 0;
   if (st->complexity >= 1 && !st->lfe)
   {
      /* Reduces the likelihood of energy instability on fricatives at low bitrate
         in hybrid mode. It seems like we still want to have real transients on vowels
         though (small SILK quantization offset value). */
      int allow_weak_transients = hybrid && effectiveBytes<15 && st->silk_info.signalType != 2;
      isTransient = transient_analysis(in, N+overlap, CC,
            &tf_estimate, &tf_chan, allow_weak_transients, &weak_transient);
   }
   if (LM>0 && ec_tell(enc)+3<=total_bits)
   {
      if (isTransient)
         shortBlocks = M;
   } else {
      isTransient = 0;
      transient_got_disabled=1;
   }

   ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
   ALLOC(bandE,nbEBands*CC, celt_ener);
   ALLOC(bandLogE,nbEBands*CC, opus_val16);

   secondMdct = shortBlocks && st->complexity>=8;
   ALLOC(bandLogE2, C*nbEBands, opus_val16);
   if (secondMdct)
   {
      compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample, st->arch);
      compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);
      amp2Log2(mode, effEnd, end, bandE, bandLogE2, C);
      for (c=0;c<C;c++)
      {
         for (i=0;i<end;i++)
            bandLogE2[nbEBands*c+i] += HALF16(SHL16(LM, DB_SHIFT));
      }
   }

   compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch);
   /* This should catch any NaN in the CELT input. Since we're not supposed to see any (they're filtered
      at the Opus layer), just abort. */
   celt_assert(!celt_isnan(freq[0]) && (C==1 || !celt_isnan(freq[N])));
   if (CC==2&&C==1)
      tf_chan = 0;
   compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);

   if (st->lfe)
   {
      for (i=2;i<end;i++)
      {
         bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0]));
         bandE[i] = MAX32(bandE[i], EPSILON);
      }
   }
   amp2Log2(mode, effEnd, end, bandE, bandLogE, C);

   ALLOC(surround_dynalloc, C*nbEBands, opus_val16);
   OPUS_CLEAR(surround_dynalloc, end);
   /* This computes how much masking takes place between surround channels */
   if (!hybrid&&st->energy_mask&&!st->lfe)
   {
      int mask_end;
      int midband;
      int count_dynalloc;
      opus_val32 mask_avg=0;
      opus_val32 diff=0;
      int count=0;
      mask_end = IMAX(2,st->lastCodedBands);
      for (c=0;c<C;c++)
      {
         for(i=0;i<mask_end;i++)
         {
            opus_val16 mask;
            mask = MAX16(MIN16(st->energy_mask[nbEBands*c+i],
                   QCONST16(.25f, DB_SHIFT)), -QCONST16(2.0f, DB_SHIFT));
            if (mask > 0)
               mask = HALF16(mask);
            mask_avg += MULT16_16(mask, eBands[i+1]-eBands[i]);
            count += eBands[i+1]-eBands[i];
            diff += MULT16_16(mask, 1+2*i-mask_end);
         }
      }
      celt_assert(count>0);
      mask_avg = DIV32_16(mask_avg,count);
      mask_avg += QCONST16(.2f, DB_SHIFT);
      diff = diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end);
      /* Again, being conservative */
      diff = HALF32(diff);
      diff = MAX32(MIN32(diff, QCONST32(.031f, DB_SHIFT)), -QCONST32(.031f, DB_SHIFT));
      /* Find the band that's in the middle of the coded spectrum */
      for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++);
      count_dynalloc=0;
      for(i=0;i<mask_end;i++)
      {
         opus_val32 lin;
         opus_val16 unmask;
         lin = mask_avg + diff*(i-midband);
         if (C==2)
            unmask = MAX16(st->energy_mask[i], st->energy_mask[nbEBands+i]);
         else
            unmask = st->energy_mask[i];
         unmask = MIN16(unmask, QCONST16(.0f, DB_SHIFT));
         unmask -= lin;
         if (unmask > QCONST16(.25f, DB_SHIFT))
         {
            surround_dynalloc[i] = unmask - QCONST16(.25f, DB_SHIFT);
            count_dynalloc++;
         }
      }
      if (count_dynalloc>=3)
      {
         /* If we need dynalloc in many bands, it's probably because our
            initial masking rate was too low. */
         mask_avg += QCONST16(.25f, DB_SHIFT);
         if (mask_avg>0)
         {
            /* Something went really wrong in the original calculations,
               disabling masking. */
            mask_avg = 0;
            diff = 0;
            OPUS_CLEAR(surround_dynalloc, mask_end);
         } else {
            for(i=0;i<mask_end;i++)
               surround_dynalloc[i] = MAX16(0, surround_dynalloc[i]-QCONST16(.25f, DB_SHIFT));
         }
      }
      mask_avg += QCONST16(.2f, DB_SHIFT);
      /* Convert to 1/64th units used for the trim */
      surround_trim = 64*diff;
      /*printf("%d %d ", mask_avg, surround_trim);*/
      surround_masking = mask_avg;
   }
   /* Temporal VBR (but not for LFE) */
   if (!st->lfe)
   {
      opus_val16 follow=-QCONST16(10.0f,DB_SHIFT);
      opus_val32 frame_avg=0;
      opus_val16 offset = shortBlocks?HALF16(SHL16(LM, DB_SHIFT)):0;
      for(i=start;i<end;i++)
      {
         follow = MAX16(follow-QCONST16(1.f, DB_SHIFT), bandLogE[i]-offset);
         if (C==2)
            follow = MAX16(follow, bandLogE[i+nbEBands]-offset);
         frame_avg += follow;
      }
      frame_avg /= (end-start);
      temporal_vbr = SUB16(frame_avg,st->spec_avg);
      temporal_vbr = MIN16(QCONST16(3.f, DB_SHIFT), MAX16(-QCONST16(1.5f, DB_SHIFT), temporal_vbr));
      st->spec_avg += MULT16_16_Q15(QCONST16(.02f, 15), temporal_vbr);
   }
   /*for (i=0;i<21;i++)
      printf("%f ", bandLogE[i]);
   printf("\n");*/

   if (!secondMdct)
   {
      OPUS_COPY(bandLogE2, bandLogE, C*nbEBands);
   }

   /* Last chance to catch any transient we might have missed in the
      time-domain analysis */
   if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe && !hybrid)
   {
      if (patch_transient_decision(bandLogE, oldBandE, nbEBands, start, end, C))
      {
         isTransient = 1;
         shortBlocks = M;
         compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch);
         compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);
         amp2Log2(mode, effEnd, end, bandE, bandLogE, C);
         /* Compensate for the scaling of short vs long mdcts */
         for (c=0;c<C;c++)
         {
            for (i=0;i<end;i++)
               bandLogE2[nbEBands*c+i] += HALF16(SHL16(LM, DB_SHIFT));
         }
         tf_estimate = QCONST16(.2f,14);
      }
   }

   if (LM>0 && ec_tell(enc)+3<=total_bits)
      ec_enc_bit_logp(enc, isTransient, 3);

   ALLOC(X, C*N, celt_norm);         /**< Interleaved normalised MDCTs */

   /* Band normalisation */
   normalise_bands(mode, freq, X, bandE, effEnd, C, M);

   enable_tf_analysis = effectiveBytes>=15*C && !hybrid && st->complexity>=2 && !st->lfe;

   ALLOC(offsets, nbEBands, int);
   ALLOC(importance, nbEBands, int);
   ALLOC(spread_weight, nbEBands, int);

   maxDepth = dynalloc_analysis(bandLogE, bandLogE2, oldBandE, nbEBands, start, end, C, offsets,
         st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr,
         eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc, &st->analysis, importance, spread_weight);

   ALLOC(tf_res, nbEBands, int);
   /* Disable variable tf resolution for hybrid and at very low bitrate */
   if (enable_tf_analysis)
   {
      int lambda;
      lambda = IMAX(80, 20480/effectiveBytes + 2);
      tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, tf_estimate, tf_chan, importance);
      for (i=effEnd;i<end;i++)
         tf_res[i] = tf_res[effEnd-1];
   } else if (hybrid && weak_transient)
   {
      /* For weak transients, we rely on the fact that improving time resolution using
         TF on a long window is imperfect and will not result in an energy collapse at
         low bitrate. */
      for (i=0;i<end;i++)
         tf_res[i] = 1;
      tf_select=0;
   } else if (hybrid && effectiveBytes<15 && st->silk_info.signalType != 2)
   {
      /* For low bitrate hybrid, we force temporal resolution to 5 ms rather than 2.5 ms. */
      for (i=0;i<end;i++)
         tf_res[i] = 0;
      tf_select=isTransient;
   } else {
      for (i=0;i<end;i++)
         tf_res[i] = isTransient;
      tf_select=0;
   }

   ALLOC(error, C*nbEBands, opus_val16);
   c=0;
   do {
      for (i=start;i<end;i++)
      {
         /* When the energy is stable, slightly bias energy quantization towards
            the previous error to make the gain more stable (a constant offset is
            better than fluctuations). */
         if (ABS32(SUB32(bandLogE[i+c*nbEBands], oldBandE[i+c*nbEBands])) < QCONST16(2.f, DB_SHIFT))
         {
            bandLogE[i+c*nbEBands] -= MULT16_16_Q15(energyError[i+c*nbEBands], QCONST16(0.25f, 15));
         }
      }
   } while (++c < C);
   quant_coarse_energy(mode, start, end, effEnd, bandLogE,
         oldBandE, total_bits, error, enc,
         C, LM, nbAvailableBytes, st->force_intra,
         &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe);

   tf_encode(start, end, isTransient, tf_res, LM, tf_select, enc);

   if (ec_tell(enc)+4<=total_bits)
   {
      if (st->lfe)
      {
         st->tapset_decision = 0;
         st->spread_decision = SPREAD_NORMAL;
      } else if (hybrid)
      {
         if (st->complexity == 0)
            st->spread_decision = SPREAD_NONE;
         else if (isTransient)
            st->spread_decision = SPREAD_NORMAL;
         else
            st->spread_decision = SPREAD_AGGRESSIVE;
      } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
      {
         if (st->complexity == 0)
            st->spread_decision = SPREAD_NONE;
         else
            st->spread_decision = SPREAD_NORMAL;
      } else {
         /* Disable new spreading+tapset estimator until we can show it works
            better than the old one. So far it seems like spreading_decision()
            works best. */
#if 0
         if (st->analysis.valid)
         {
            static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)};
            static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)};
            static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)};
            static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)};
            st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision);
            st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision);
         } else
#endif
         {
            st->spread_decision = spreading_decision(mode, X,
                  &st->tonal_average, st->spread_decision, &st->hf_average,
                  &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M, spread_weight);
         }
         /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
         /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
      }
      ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
   }

   /* For LFE, everything interesting is in the first band */
   if (st->lfe)
      offsets[0] = IMIN(8, effectiveBytes/3);
   ALLOC(cap, nbEBands, int);
   init_caps(mode,cap,LM,C);

   dynalloc_logp = 6;
   total_bits<<=BITRES;
   total_boost = 0;
   tell = ec_tell_frac(enc);
   for (i=start;i<end;i++)
   {
      int width, quanta;
      int dynalloc_loop_logp;
      int boost;
      int j;
      width = C*(eBands[i+1]-eBands[i])<<LM;
      /* quanta is 6 bits, but no more than 1 bit/sample
         and no less than 1/8 bit/sample */
      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
      dynalloc_loop_logp = dynalloc_logp;
      boost = 0;
      for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
            && boost < cap[i]; j++)
      {
         int flag;
         flag = j<offsets[i];
         ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
         tell = ec_tell_frac(enc);
         if (!flag)
            break;
         boost += quanta;
         total_boost += quanta;
         dynalloc_loop_logp = 1;
      }
      /* Making dynalloc more likely */
      if (j)
         dynalloc_logp = IMAX(2, dynalloc_logp-1);
      offsets[i] = boost;
   }

   if (C==2)
   {
      static const opus_val16 intensity_thresholds[21]=
      /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  20  off*/
        {  1, 2, 3, 4, 5, 6, 7, 8,16,24,36,44,50,56,62,67,72,79,88,106,134};
      static const opus_val16 intensity_histeresis[21]=
        {  1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6,  8, 8};

      /* Always use MS for 2.5 ms frames until we can do a better analysis */
      if (LM!=0)
         dual_stereo = stereo_analysis(mode, X, LM, N);

      st->intensity = hysteresis_decision((opus_val16)(equiv_rate/1000),
            intensity_thresholds, intensity_histeresis, 21, st->intensity);
      st->intensity = IMIN(end,IMAX(start, st->intensity));
   }

   alloc_trim = 5;
   if (tell+(6<<BITRES) <= total_bits - total_boost)
   {
      if (start > 0 || st->lfe)
      {
         st->stereo_saving = 0;
         alloc_trim = 5;
      } else {
         alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
            end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate,
            st->intensity, surround_trim, equiv_rate, st->arch);
      }
      ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
      tell = ec_tell_frac(enc);
   }

   /* Variable bitrate */
   if (vbr_rate>0)
   {
     opus_val16 alpha;
     opus_int32 delta;
     /* The target rate in 8th bits per frame */
     opus_int32 target, base_target;
     opus_int32 min_allowed;
     int lm_diff = mode->maxLM - LM;

     /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
        The CELT allocator will just not be able to use more than that anyway. */
     nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
     if (!hybrid)
     {
        base_target = vbr_rate - ((40*C+20)<<BITRES);
     } else {
        base_target = IMAX(0, vbr_rate - ((9*C+4)<<BITRES));
     }

     if (st->constrained_vbr)
        base_target += (st->vbr_offset>>lm_diff);

     if (!hybrid)
     {
        target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate,
           st->lastCodedBands, C, st->intensity, st->constrained_vbr,
           st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth,
           st->lfe, st->energy_mask!=NULL, surround_masking,
           temporal_vbr);
     } else {
        target = base_target;
        /* Tonal frames (offset<100) need more bits than noisy (offset>100) ones. */
        if (st->silk_info.offset < 100) target += 12 << BITRES >> (3-LM);
        if (st->silk_info.offset > 100) target -= 18 << BITRES >> (3-LM);
        /* Boosting bitrate on transients and vowels with significant temporal
           spikes. */
        target += (opus_int32)MULT16_16_Q14(tf_estimate-QCONST16(.25f,14), (50<<BITRES));
        /* If we have a strong transient, let's make sure it has enough bits to code
           the first two bands, so that it can use folding rather than noise. */
        if (tf_estimate > QCONST16(.7f,14))
           target = IMAX(target, 50<<BITRES);
     }
     /* The current offset is removed from the target and the space used
        so far is added*/
     target=target+tell;
     /* In VBR mode the frame size must not be reduced so much that it would
         result in the encoder running out of bits.
        The margin of 2 bytes ensures that none of the bust-prevention logic
         in the decoder will have triggered so far. */
     min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2;
     /* Take into account the 37 bits we need to have left in the packet to
        signal a redundant frame in hybrid mode. Creating a shorter packet would
        create an entropy coder desync. */
     if (hybrid)
        min_allowed = IMAX(min_allowed, (tell0_frac+(37<<BITRES)+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3));

     nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
     nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
     nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes);

     /* By how much did we "miss" the target on that frame */
     delta = target - vbr_rate;

     target=nbAvailableBytes<<(BITRES+3);

     /*If the frame is silent we don't adjust our drift, otherwise
       the encoder will shoot to very high rates after hitting a
       span of silence, but we do allow the bitres to refill.
       This means that we'll undershoot our target in CVBR/VBR modes
       on files with lots of silence. */
     if(silence)
     {
       nbAvailableBytes = 2;
       target = 2*8<<BITRES;
       delta = 0;
     }

     if (st->vbr_count < 970)
     {
        st->vbr_count++;
        alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
     } else
        alpha = QCONST16(.001f,15);
     /* How many bits have we used in excess of what we're allowed */
     if (st->constrained_vbr)
        st->vbr_reservoir += target - vbr_rate;
     /*printf ("%d\n", st->vbr_reservoir);*/

     /* Compute the offset we need to apply in order to reach the target */
     if (st->constrained_vbr)
     {
        st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
        st->vbr_offset = -st->vbr_drift;
     }
     /*printf ("%d\n", st->vbr_drift);*/

     if (st->constrained_vbr && st->vbr_reservoir < 0)
     {
        /* We're under the min value -- increase rate */
        int adjust = (-st->vbr_reservoir)/(8<<BITRES);
        /* Unless we're just coding silence */
        nbAvailableBytes += silence?0:adjust;
        st->vbr_reservoir = 0;
        /*printf ("+%d\n", adjust);*/
     }
     nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes);
     /*printf("%d\n", nbCompressedBytes*50*8);*/
     /* This moves the raw bits to take into account the new compressed size */
     ec_enc_shrink(enc, nbCompressedBytes);
   }

   /* Bit allocation */
   ALLOC(fine_quant, nbEBands, int);
   ALLOC(pulses, nbEBands, int);
   ALLOC(fine_priority, nbEBands, int);

   /* bits =           packet size                    - where we are - safety*/
   bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
   bits -= anti_collapse_rsv;
   signalBandwidth = end-1;
#ifndef DISABLE_FLOAT_API
   if (st->analysis.valid)
   {
      int min_bandwidth;
      if (equiv_rate < (opus_int32)32000*C)
         min_bandwidth = 13;
      else if (equiv_rate < (opus_int32)48000*C)
         min_bandwidth = 16;
      else if (equiv_rate < (opus_int32)60000*C)
         min_bandwidth = 18;
      else  if (equiv_rate < (opus_int32)80000*C)
         min_bandwidth = 19;
      else
         min_bandwidth = 20;
      signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth);
   }
#endif
   if (st->lfe)
      signalBandwidth = 1;
   codedBands = clt_compute_allocation(mode, start, end, offsets, cap,
         alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
         fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth);
   if (st->lastCodedBands)
      st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands));
   else
      st->lastCodedBands = codedBands;

   quant_fine_energy(mode, start, end, oldBandE, error, fine_quant, enc, C);

   /* Residual quantisation */
   ALLOC(collapse_masks, C*nbEBands, unsigned char);
   quant_all_bands(1, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks,
         bandE, pulses, shortBlocks, st->spread_decision,
         dual_stereo, st->intensity, tf_res, nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv,
         balance, enc, LM, codedBands, &st->rng, st->complexity, st->arch, st->disable_inv);

   if (anti_collapse_rsv > 0)
   {
      anti_collapse_on = st->consec_transient<2;
#ifdef FUZZING
      anti_collapse_on = rand()&0x1;
#endif
      ec_enc_bits(enc, anti_collapse_on, 1);
   }
   quant_energy_finalise(mode, start, end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
   OPUS_CLEAR(energyError, nbEBands*CC);
   c=0;
   do {
      for (i=start;i<end;i++)
      {
         energyError[i+c*nbEBands] = MAX16(-QCONST16(0.5f, 15), MIN16(QCONST16(0.5f, 15), error[i+c*nbEBands]));
      }
   } while (++c < C);

   if (silence)
   {
      for (i=0;i<C*nbEBands;i++)
         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
   }

#ifdef RESYNTH
   /* Re-synthesis of the coded audio if required */
   {
      celt_sig *out_mem[2];

      if (anti_collapse_on)
      {
         anti_collapse(mode, X, collapse_masks, LM, C, N,
               start, end, oldBandE, oldLogE, oldLogE2, pulses, st->rng, st->arch);
      }

      c=0; do {
         OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2);
      } while (++c<CC);

      c=0; do {
         out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N;
      } while (++c<CC);

      celt_synthesis(mode, X, out_mem, oldBandE, start, effEnd,
                     C, CC, isTransient, LM, st->upsample, silence, st->arch);

      c=0; do {
         st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
         st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
         comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize,
               st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
               mode->window, overlap, st->arch);
         if (LM!=0)
            comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize,
                  st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
                  mode->window, overlap, st->arch);
      } while (++c<CC);

      /* We reuse freq[] as scratch space for the de-emphasis */
      deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, 0);
      st->prefilter_period_old = st->prefilter_period;
      st->prefilter_gain_old = st->prefilter_gain;
      st->prefilter_tapset_old = st->prefilter_tapset;
   }
#endif

   st->prefilter_period = pitch_index;
   st->prefilter_gain = gain1;
   st->prefilter_tapset = prefilter_tapset;
#ifdef RESYNTH
   if (LM!=0)
   {
      st->prefilter_period_old = st->prefilter_period;
      st->prefilter_gain_old = st->prefilter_gain;
      st->prefilter_tapset_old = st->prefilter_tapset;
   }
#endif

   if (CC==2&&C==1) {
      OPUS_COPY(&oldBandE[nbEBands], oldBandE, nbEBands);
   }

   if (!isTransient)
   {
      OPUS_COPY(oldLogE2, oldLogE, CC*nbEBands);
      OPUS_COPY(oldLogE, oldBandE, CC*nbEBands);
   } else {
      for (i=0;i<CC*nbEBands;i++)
         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
   }
   /* In case start or end were to change */
   c=0; do
   {
      for (i=0;i<start;i++)
      {
         oldBandE[c*nbEBands+i]=0;
         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
      }
      for (i=end;i<nbEBands;i++)
      {
         oldBandE[c*nbEBands+i]=0;
         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
      }
   } while (++c<CC);

   if (isTransient || transient_got_disabled)
      st->consec_transient++;
   else
      st->consec_transient=0;
   st->rng = enc->rng;

   /* If there's any room left (can only happen for very high rates),
      it's already filled with zeros */
   ec_enc_done(enc);

#ifdef CUSTOM_MODES
   if (st->signalling)
      nbCompressedBytes++;
#endif

   RESTORE_STACK;
   if (ec_get_error(enc))
      return OPUS_INTERNAL_ERROR;
   else
      return nbCompressedBytes;
}


#ifdef CUSTOM_MODES

#ifdef FIXED_POINT
int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
{
   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
}

#ifndef DISABLE_FLOAT_API
int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
{
   int j, ret, C, N;
   VARDECL(opus_int16, in);
   ALLOC_STACK;

   if (pcm==NULL)
      return OPUS_BAD_ARG;

   C = st->channels;
   N = frame_size;
   ALLOC(in, C*N, opus_int16);

   for (j=0;j<C*N;j++)
     in[j] = FLOAT2INT16(pcm[j]);

   ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
#ifdef RESYNTH
   for (j=0;j<C*N;j++)
      ((float*)pcm)[j]=in[j]*(1.f/32768.f);
#endif
   RESTORE_STACK;
   return ret;
}
#endif /* DISABLE_FLOAT_API */
#else

int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
{
   int j, ret, C, N;
   VARDECL(celt_sig, in);
   ALLOC_STACK;

   if (pcm==NULL)
      return OPUS_BAD_ARG;

   C=st->channels;
   N=frame_size;
   ALLOC(in, C*N, celt_sig);
   for (j=0;j<C*N;j++) {
     in[j] = SCALEOUT(pcm[j]);
   }

   ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
#ifdef RESYNTH
   for (j=0;j<C*N;j++)
      ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
#endif
   RESTORE_STACK;
   return ret;
}

int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
{
   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
}

#endif

#endif /* CUSTOM_MODES */

int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
{
   va_list ap;

   va_start(ap, request);
   switch (request)
   {
      case OPUS_SET_COMPLEXITY_REQUEST:
      {
         int value = va_arg(ap, opus_int32);
         if (value<0 || value>10)
            goto bad_arg;
         st->complexity = value;
      }
      break;
      case CELT_SET_START_BAND_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         if (value<0 || value>=st->mode->nbEBands)
            goto bad_arg;
         st->start = value;
      }
      break;
      case CELT_SET_END_BAND_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         if (value<1 || value>st->mode->nbEBands)
            goto bad_arg;
         st->end = value;
      }
      break;
      case CELT_SET_PREDICTION_REQUEST:
      {
         int value = va_arg(ap, opus_int32);
         if (value<0 || value>2)
            goto bad_arg;
         st->disable_pf = value<=1;
         st->force_intra = value==0;
      }
      break;
      case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
      {
         int value = va_arg(ap, opus_int32);
         if (value<0 || value>100)
            goto bad_arg;
         st->loss_rate = value;
      }
      break;
      case OPUS_SET_VBR_CONSTRAINT_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         st->constrained_vbr = value;
      }
      break;
      case OPUS_SET_VBR_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         st->vbr = value;
      }
      break;
      case OPUS_SET_BITRATE_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         if (value<=500 && value!=OPUS_BITRATE_MAX)
            goto bad_arg;
         value = IMIN(value, 260000*st->channels);
         st->bitrate = value;
      }
      break;
      case CELT_SET_CHANNELS_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         if (value<1 || value>2)
            goto bad_arg;
         st->stream_channels = value;
      }
      break;
      case OPUS_SET_LSB_DEPTH_REQUEST:
      {
          opus_int32 value = va_arg(ap, opus_int32);
          if (value<8 || value>24)
             goto bad_arg;
          st->lsb_depth=value;
      }
      break;
      case OPUS_GET_LSB_DEPTH_REQUEST:
      {
          opus_int32 *value = va_arg(ap, opus_int32*);
          *value=st->lsb_depth;
      }
      break;
      case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
      {
          opus_int32 value = va_arg(ap, opus_int32);
          if(value<0 || value>1)
          {
             goto bad_arg;
          }
          st->disable_inv = value;
      }
      break;
      case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
      {
          opus_int32 *value = va_arg(ap, opus_int32*);
          if (!value)
          {
             goto bad_arg;
          }
          *value = st->disable_inv;
      }
      break;
      case OPUS_RESET_STATE:
      {
         int i;
         opus_val16 *oldBandE, *oldLogE, *oldLogE2;
         oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->mode->overlap+COMBFILTER_MAXPERIOD));
         oldLogE = oldBandE + st->channels*st->mode->nbEBands;
         oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
         OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
               opus_custom_encoder_get_size(st->mode, st->channels)-
               ((char*)&st->ENCODER_RESET_START - (char*)st));
         for (i=0;i<st->channels*st->mode->nbEBands;i++)
            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
         st->vbr_offset = 0;
         st->delayedIntra = 1;
         st->spread_decision = SPREAD_NORMAL;
         st->tonal_average = 256;
         st->hf_average = 0;
         st->tapset_decision = 0;
      }
      break;
#ifdef CUSTOM_MODES
      case CELT_SET_INPUT_CLIPPING_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         st->clip = value;
      }
      break;
#endif
      case CELT_SET_SIGNALLING_REQUEST:
      {
         opus_int32 value = va_arg(ap, opus_int32);
         st->signalling = value;
      }
      break;
      case CELT_SET_ANALYSIS_REQUEST:
      {
         AnalysisInfo *info = va_arg(ap, AnalysisInfo *);
         if (info)
            OPUS_COPY(&st->analysis, info, 1);
      }
      break;
      case CELT_SET_SILK_INFO_REQUEST:
      {
         SILKInfo *info = va_arg(ap, SILKInfo *);
         if (info)
            OPUS_COPY(&st->silk_info, info, 1);
      }
      break;
      case CELT_GET_MODE_REQUEST:
      {
         const CELTMode ** value = va_arg(ap, const CELTMode**);
         if (value==0)
            goto bad_arg;
         *value=st->mode;
      }
      break;
      case OPUS_GET_FINAL_RANGE_REQUEST:
      {
         opus_uint32 * value = va_arg(ap, opus_uint32 *);
         if (value==0)
            goto bad_arg;
         *value=st->rng;
      }
      break;
      case OPUS_SET_LFE_REQUEST:
      {
          opus_int32 value = va_arg(ap, opus_int32);
          st->lfe = value;
      }
      break;
      case OPUS_SET_ENERGY_MASK_REQUEST:
      {
          opus_val16 *value = va_arg(ap, opus_val16*);
          st->energy_mask = value;
      }
      break;
      default:
         goto bad_request;
   }
   va_end(ap);
   return OPUS_OK;
bad_arg:
   va_end(ap);
   return OPUS_BAD_ARG;
bad_request:
   va_end(ap);
   return OPUS_UNIMPLEMENTED;
}