1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define MOZ_MEMORY_IMPL
#include "mozmemory_wrap.h"
#ifdef _WIN32
# include <windows.h>
# include <io.h>
typedef intptr_t ssize_t;
#else
# include <sys/mman.h>
# include <unistd.h>
#endif
#ifdef XP_LINUX
# include <fcntl.h>
# include <stdlib.h>
#endif
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include "mozilla/Assertions.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "FdPrintf.h"
using namespace mozilla;
static void die(const char* message) {
/* Here, it doesn't matter that fprintf may allocate memory. */
fprintf(stderr, "%s\n", message);
exit(1);
}
#ifdef XP_LINUX
static size_t sPageSize = []() { return sysconf(_SC_PAGESIZE); }();
#endif
/* We don't want to be using malloc() to allocate our internal tracking
* data, because that would change the parameters of what is being measured,
* so we want to use data types that directly use mmap/VirtualAlloc. */
template <typename T, size_t Len>
class MappedArray {
public:
MappedArray() : mPtr(nullptr) {
#ifdef XP_LINUX
MOZ_RELEASE_ASSERT(!((sizeof(T) * Len) & (sPageSize - 1)),
"MappedArray size must be a multiple of the page size");
#endif
}
~MappedArray() {
if (mPtr) {
#ifdef _WIN32
VirtualFree(mPtr, sizeof(T) * Len, MEM_RELEASE);
#elif defined(XP_LINUX)
munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(mPtr) -
sPageSize),
sizeof(T) * Len + sPageSize * 2);
#else
munmap(mPtr, sizeof(T) * Len);
#endif
}
}
T& operator[](size_t aIndex) const {
if (mPtr) {
return mPtr[aIndex];
}
#ifdef _WIN32
mPtr = reinterpret_cast<T*>(VirtualAlloc(
nullptr, sizeof(T) * Len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE));
if (mPtr == nullptr) {
die("VirtualAlloc error");
}
#else
size_t data_size = sizeof(T) * Len;
size_t size = data_size;
# ifdef XP_LINUX
// See below
size += sPageSize * 2;
# endif
mPtr = reinterpret_cast<T*>(mmap(nullptr, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0));
if (mPtr == MAP_FAILED) {
die("Mmap error");
}
# ifdef XP_LINUX
// On Linux we request a page on either side of the allocation and
// mprotect them. This prevents mappings in /proc/self/smaps from being
// merged and allows us to parse this file to calculate the allocator's RSS.
MOZ_ASSERT(0 == mprotect(mPtr, sPageSize, 0));
MOZ_ASSERT(0 == mprotect(reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(mPtr) + data_size +
sPageSize),
sPageSize, 0));
mPtr = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(mPtr) + sPageSize);
# endif
#endif
return mPtr[aIndex];
}
bool ownsMapping(uintptr_t addr) const { return addr == (uintptr_t)mPtr; }
bool allocated() const { return !!mPtr; }
private:
mutable T* mPtr;
};
/* Type for records of allocations. */
struct MemSlot {
void* mPtr;
// mRequest is only valid if mPtr is non-null. It doesn't need to be cleared
// when memory is freed or realloc()ed.
size_t mRequest;
};
/* An almost infinite list of slots.
* In essence, this is a linked list of arrays of groups of slots.
* Each group is 1MB. On 64-bits, one group allows to store 64k allocations.
* Each MemSlotList instance can store 1023 such groups, which means more
* than 67M allocations. In case more would be needed, we chain to another
* MemSlotList, and so on.
* Using 1023 groups makes the MemSlotList itself page sized on 32-bits
* and 2 pages-sized on 64-bits.
*/
class MemSlotList {
static constexpr size_t kGroups = 1024 - 1;
static constexpr size_t kGroupSize = (1024 * 1024) / sizeof(MemSlot);
MappedArray<MemSlot, kGroupSize> mSlots[kGroups];
MappedArray<MemSlotList, 1> mNext;
public:
MemSlot& operator[](size_t aIndex) const {
if (aIndex < kGroupSize * kGroups) {
return mSlots[aIndex / kGroupSize][aIndex % kGroupSize];
}
aIndex -= kGroupSize * kGroups;
return mNext[0][aIndex];
}
// Ask if any of the memory-mapped buffers use this range.
bool ownsMapping(uintptr_t aStart) const {
for (const auto& slot : mSlots) {
if (slot.allocated() && slot.ownsMapping(aStart)) {
return true;
}
}
return mNext.ownsMapping(aStart) ||
(mNext.allocated() && mNext[0].ownsMapping(aStart));
}
};
/* Helper class for memory buffers */
class Buffer {
public:
Buffer() : mBuf(nullptr), mLength(0) {}
Buffer(const void* aBuf, size_t aLength)
: mBuf(reinterpret_cast<const char*>(aBuf)), mLength(aLength) {}
/* Constructor for string literals. */
template <size_t Size>
explicit Buffer(const char (&aStr)[Size]) : mBuf(aStr), mLength(Size - 1) {}
/* Returns a sub-buffer up-to but not including the given aNeedle character.
* The "parent" buffer itself is altered to begin after the aNeedle
* character.
* If the aNeedle character is not found, return the entire buffer, and empty
* the "parent" buffer. */
Buffer SplitChar(char aNeedle) {
char* buf = const_cast<char*>(mBuf);
char* c = reinterpret_cast<char*>(memchr(buf, aNeedle, mLength));
if (!c) {
return Split(mLength);
}
Buffer result = Split(c - buf);
// Remove the aNeedle character itself.
Split(1);
return result;
}
// Advance to the position after aNeedle. This is like SplitChar but does not
// return the skipped portion.
void Skip(char aNeedle, unsigned nTimes = 1) {
for (unsigned i = 0; i < nTimes; i++) {
SplitChar(aNeedle);
}
}
void SkipWhitespace() {
while (mLength > 0) {
if (!IsSpace(mBuf[0])) {
break;
}
mBuf++;
mLength--;
}
}
static bool IsSpace(char c) {
switch (c) {
case ' ':
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
return true;
}
return false;
}
/* Returns a sub-buffer of at most aLength characters. The "parent" buffer is
* amputated of those aLength characters. If the "parent" buffer is smaller
* than aLength, then its length is used instead. */
Buffer Split(size_t aLength) {
Buffer result(mBuf, std::min(aLength, mLength));
mLength -= result.mLength;
mBuf += result.mLength;
return result;
}
/* Move the buffer (including its content) to the memory address of the aOther
* buffer. */
void Slide(Buffer aOther) {
memmove(const_cast<char*>(aOther.mBuf), mBuf, mLength);
mBuf = aOther.mBuf;
}
/* Returns whether the two involved buffers have the same content. */
bool operator==(Buffer aOther) {
return mLength == aOther.mLength &&
(mBuf == aOther.mBuf || !strncmp(mBuf, aOther.mBuf, mLength));
}
bool operator!=(Buffer aOther) { return !(*this == aOther); }
/* Returns true if the buffer is not empty. */
explicit operator bool() { return mLength; }
char operator[](size_t n) const { return mBuf[n]; }
/* Returns the memory location of the buffer. */
const char* get() { return mBuf; }
/* Returns the memory location of the end of the buffer (technically, the
* first byte after the buffer). */
const char* GetEnd() { return mBuf + mLength; }
/* Extend the buffer over the content of the other buffer, assuming it is
* adjacent. */
void Extend(Buffer aOther) {
MOZ_ASSERT(aOther.mBuf == GetEnd());
mLength += aOther.mLength;
}
size_t Length() const { return mLength; }
private:
const char* mBuf;
size_t mLength;
};
/* Helper class to read from a file descriptor line by line. */
class FdReader {
public:
explicit FdReader(int aFd, bool aNeedClose = false)
: mFd(aFd),
mNeedClose(aNeedClose),
mData(&mRawBuf, 0),
mBuf(&mRawBuf, sizeof(mRawBuf)) {}
FdReader(FdReader&& aOther) noexcept
: mFd(aOther.mFd),
mNeedClose(aOther.mNeedClose),
mData(&mRawBuf, 0),
mBuf(&mRawBuf, sizeof(mRawBuf)) {
memcpy(mRawBuf, aOther.mRawBuf, sizeof(mRawBuf));
aOther.mFd = -1;
aOther.mNeedClose = false;
aOther.mData = Buffer();
aOther.mBuf = Buffer();
}
FdReader& operator=(const FdReader&) = delete;
FdReader(const FdReader&) = delete;
~FdReader() {
if (mNeedClose) {
close(mFd);
}
}
/* Read a line from the file descriptor and returns it as a Buffer instance */
Buffer ReadLine() {
while (true) {
Buffer result = mData.SplitChar('\n');
/* There are essentially three different cases here:
* - '\n' was found "early". In this case, the end of the result buffer
* is before the beginning of the mData buffer (since SplitChar
* amputated it).
* - '\n' was found as the last character of mData. In this case, mData
* is empty, but still points at the end of mBuf. result points to what
* used to be in mData, without the last character.
* - '\n' was not found. In this case too, mData is empty and points at
* the end of mBuf. But result points to the entire buffer that used to
* be pointed by mData.
* Only in the latter case do both result and mData's end match, and it's
* the only case where we need to refill the buffer.
*/
if (result.GetEnd() != mData.GetEnd()) {
return result;
}
/* Since SplitChar emptied mData, make it point to what it had before. */
mData = result;
/* And move it to the beginning of the read buffer. */
mData.Slide(mBuf);
FillBuffer();
if (!mData) {
return Buffer();
}
}
}
private:
/* Fill the read buffer. */
void FillBuffer() {
size_t size = mBuf.GetEnd() - mData.GetEnd();
Buffer remainder(mData.GetEnd(), size);
ssize_t len = 1;
while (remainder && len > 0) {
len = ::read(mFd, const_cast<char*>(remainder.get()), size);
if (len < 0) {
die("Read error");
}
size -= len;
mData.Extend(remainder.Split(len));
}
}
/* File descriptor to read from. */
int mFd;
bool mNeedClose;
/* Part of data that was read from the file descriptor but not returned with
* ReadLine yet. */
Buffer mData;
/* Buffer representation of mRawBuf */
Buffer mBuf;
/* read() buffer */
char mRawBuf[4096];
};
MOZ_BEGIN_EXTERN_C
/* Function declarations for all the replace_malloc _impl functions.
* See memory/build/replace_malloc.c */
#define MALLOC_DECL(name, return_type, ...) \
return_type name##_impl(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"
#define MALLOC_DECL(name, return_type, ...) return_type name(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_JEMALLOC
#include "malloc_decls.h"
#ifdef ANDROID
/* mozjemalloc and jemalloc use pthread_atfork, which Android doesn't have.
* While gecko has one in libmozglue, the replay program can't use that.
* Since we're not going to fork anyways, make it a dummy function. */
int pthread_atfork(void (*aPrepare)(void), void (*aParent)(void),
void (*aChild)(void)) {
return 0;
}
#endif
MOZ_END_EXTERN_C
template <unsigned Base = 10>
size_t parseNumber(Buffer aBuf) {
if (!aBuf) {
die("Malformed input");
}
size_t result = 0;
for (const char *c = aBuf.get(), *end = aBuf.GetEnd(); c < end; c++) {
result *= Base;
if ((*c >= '0' && *c <= '9')) {
result += *c - '0';
} else if (Base == 16 && *c >= 'a' && *c <= 'f') {
result += *c - 'a' + 10;
} else if (Base == 16 && *c >= 'A' && *c <= 'F') {
result += *c - 'A' + 10;
} else {
die("Malformed input");
}
}
return result;
}
static size_t percent(size_t a, size_t b) {
if (!b) {
return 0;
}
return size_t(round(double(a) / double(b) * 100.0));
}
class Distribution {
public:
// Default constructor used for array initialisation.
Distribution()
: mMaxSize(0),
mNextSmallest(0),
mShift(0),
mArrayOffset(0),
mArraySlots(0),
mTotalRequests(0),
mRequests{0} {}
Distribution(size_t max_size, size_t next_smallest, size_t bucket_size)
: mMaxSize(max_size),
mNextSmallest(next_smallest),
mShift(CeilingLog2(bucket_size)),
mArrayOffset(1 + next_smallest),
mArraySlots((max_size - next_smallest) >> mShift),
mTotalRequests(0),
mRequests{
0,
} {
MOZ_ASSERT(mMaxSize);
MOZ_RELEASE_ASSERT(mArraySlots <= MAX_NUM_BUCKETS);
}
Distribution& operator=(const Distribution& aOther) = default;
void addRequest(size_t request) {
MOZ_ASSERT(mMaxSize);
mRequests[(request - mArrayOffset) >> mShift]++;
mTotalRequests++;
}
void printDist(platform_handle_t std_err) {
MOZ_ASSERT(mMaxSize);
// The translation to turn a slot index into a memory request size.
const size_t array_offset_add = (1 << mShift) + mNextSmallest;
FdPrintf(std_err, "\n%zu-bin Distribution:\n", mMaxSize);
FdPrintf(std_err, " request : count percent\n");
size_t range_start = mNextSmallest + 1;
for (size_t j = 0; j < mArraySlots; j++) {
size_t range_end = (j << mShift) + array_offset_add;
FdPrintf(std_err, "%5zu - %5zu: %6zu %6zu%%\n", range_start, range_end,
mRequests[j], percent(mRequests[j], mTotalRequests));
range_start = range_end + 1;
}
}
size_t maxSize() const { return mMaxSize; }
private:
static constexpr size_t MAX_NUM_BUCKETS = 16;
// If size is zero this distribution is uninitialised.
size_t mMaxSize;
size_t mNextSmallest;
// Parameters to convert a size into a slot number.
unsigned mShift;
unsigned mArrayOffset;
// The number of slots.
unsigned mArraySlots;
size_t mTotalRequests;
size_t mRequests[MAX_NUM_BUCKETS];
};
#ifdef XP_LINUX
struct MemoryMap {
uintptr_t mStart;
uintptr_t mEnd;
bool mReadable;
bool mPrivate;
bool mAnon;
bool mIsStack;
bool mIsSpecial;
size_t mRSS;
bool IsCandidate() const {
// Candidates mappings are:
// * anonymous
// * they are private (not shared),
// * anonymous or "[heap]" (not another area such as stack),
//
// The only mappings we're falsely including are the .bss segments for
// shared libraries.
return mReadable && mPrivate && mAnon && !mIsStack && !mIsSpecial;
}
};
class SMapsReader : private FdReader {
private:
explicit SMapsReader(FdReader&& reader) : FdReader(std::move(reader)) {}
public:
static Maybe<SMapsReader> open() {
int fd = ::open(FILENAME, O_RDONLY);
if (fd < 0) {
perror(FILENAME);
return mozilla::Nothing();
}
return Some(SMapsReader(FdReader(fd, true)));
}
Maybe<MemoryMap> readMap(platform_handle_t aStdErr) {
// This is not very tolerant of format changes because things like
// parseNumber will crash if they get a bad value. TODO: make this
// soft-fail.
Buffer line = ReadLine();
if (!line) {
return Nothing();
}
// We're going to be at the start of an entry, start tokenising the first
// line.
// Range
Buffer range = line.SplitChar(' ');
uintptr_t range_start = parseNumber<16>(range.SplitChar('-'));
uintptr_t range_end = parseNumber<16>(range);
// Mode.
Buffer mode = line.SplitChar(' ');
if (mode.Length() != 4) {
FdPrintf(aStdErr, "Couldn't parse SMAPS file\n");
return Nothing();
}
bool readable = mode[0] == 'r';
bool private_ = mode[3] == 'p';
// Offset, device and inode.
line.SkipWhitespace();
bool zero_offset = !parseNumber<16>(line.SplitChar(' '));
line.SkipWhitespace();
bool no_device = line.SplitChar(' ') == Buffer("00:00");
line.SkipWhitespace();
bool zero_inode = !parseNumber(line.SplitChar(' '));
bool is_anon = zero_offset && no_device && zero_inode;
// Filename, or empty for anon mappings.
line.SkipWhitespace();
Buffer filename = line.SplitChar(' ');
bool is_stack;
bool is_special;
if (filename && filename[0] == '[') {
is_stack = filename == Buffer("[stack]");
is_special = filename == Buffer("[vdso]") ||
filename == Buffer("[vvar]") ||
filename == Buffer("[vsyscall]");
} else {
is_stack = false;
is_special = false;
}
size_t rss = 0;
while ((line = ReadLine())) {
Buffer field = line.SplitChar(':');
if (field == Buffer("VmFlags")) {
// This is the last field, at least in the current format. Break this
// loop to read the next mapping.
break;
}
if (field == Buffer("Rss")) {
line.SkipWhitespace();
Buffer value = line.SplitChar(' ');
rss = parseNumber(value) * 1024;
}
}
return Some(MemoryMap({range_start, range_end, readable, private_, is_anon,
is_stack, is_special, rss}));
}
static constexpr char FILENAME[] = "/proc/self/smaps";
};
#endif // XP_LINUX
/* Class to handle dispatching the replay function calls to replace-malloc. */
class Replay {
public:
Replay() {
#ifdef _WIN32
// See comment in FdPrintf.h as to why native win32 handles are used.
mStdErr = GetStdHandle(STD_ERROR_HANDLE);
#else
mStdErr = fileno(stderr);
#endif
#ifdef XP_LINUX
BuildInitialMapInfo();
#endif
}
void enableSlopCalculation() { mCalculateSlop = true; }
void enableMemset() { mDoMemset = true; }
MemSlot& operator[](size_t index) const { return mSlots[index]; }
void malloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::malloc_impl(size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void posix_memalign(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
void* ptr;
if (::posix_memalign_impl(&ptr, alignment, size) == 0) {
aSlot.mPtr = ptr;
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
} else {
aSlot.mPtr = nullptr;
}
}
void aligned_alloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::aligned_alloc_impl(alignment, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void calloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t num = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::calloc_impl(num, size);
if (aSlot.mPtr) {
aSlot.mRequest = num * size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += num * size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void realloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
MemSlot& old_slot = (*this)[slot_id];
void* old_ptr = old_slot.mPtr;
old_slot.mPtr = nullptr;
aSlot.mPtr = ::realloc_impl(old_ptr, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void free(Buffer& aArgs, Buffer& aResult) {
if (aResult) {
die("Malformed input");
}
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs);
MemSlot& slot = (*this)[slot_id];
::free_impl(slot.mPtr);
slot.mPtr = nullptr;
}
void memalign(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::memalign_impl(alignment, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void valloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::valloc_impl(size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void jemalloc_stats(Buffer& aArgs, Buffer& aResult) {
if (aArgs || aResult) {
die("Malformed input");
}
mOps++;
jemalloc_stats_t stats;
// Using a variable length array here is a GCC & Clang extension. But it
// allows us to place this on the stack and not alter jemalloc's profiling.
const size_t num_bins = ::jemalloc_stats_num_bins();
const size_t MAX_NUM_BINS = 100;
if (num_bins > MAX_NUM_BINS) {
die("Exceeded maximum number of jemalloc stats bins");
}
jemalloc_bin_stats_t bin_stats[MAX_NUM_BINS] = {{0}};
::jemalloc_stats_internal(&stats, bin_stats);
#ifdef XP_LINUX
size_t rss = get_rss();
#endif
size_t num_objects = 0;
size_t num_sloppy_objects = 0;
size_t total_allocated = 0;
size_t total_slop = 0;
size_t large_slop = 0;
size_t large_used = 0;
size_t huge_slop = 0;
size_t huge_used = 0;
size_t bin_slop[MAX_NUM_BINS] = {0};
for (size_t slot_id = 0; slot_id < mNumUsedSlots; slot_id++) {
MemSlot& slot = mSlots[slot_id];
if (slot.mPtr) {
size_t used = ::malloc_usable_size_impl(slot.mPtr);
size_t slop = used - slot.mRequest;
total_allocated += used;
total_slop += slop;
num_objects++;
if (slop) {
num_sloppy_objects++;
}
if (used <=
(stats.subpage_max ? stats.subpage_max : stats.quantum_wide_max)) {
// We know that this is an inefficient linear search, but there's a
// small number of bins and this is simple.
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
if (used == bin.size) {
bin_slop[i] += slop;
break;
}
}
} else if (used <= stats.large_max) {
large_slop += slop;
large_used += used;
} else {
huge_slop += slop;
huge_used += used;
}
}
}
// This formula corresponds to the calculation of wasted (from committed and
// the other parameters) within jemalloc_stats()
size_t committed = stats.allocated + stats.waste + stats.pages_dirty +
stats.bookkeeping + stats.bin_unused;
FdPrintf(mStdErr, "\n");
FdPrintf(mStdErr, "Objects: %9zu\n", num_objects);
FdPrintf(mStdErr, "Slots: %9zu\n", mNumUsedSlots);
FdPrintf(mStdErr, "Ops: %9zu\n", mOps);
FdPrintf(mStdErr, "mapped: %9zu\n", stats.mapped);
FdPrintf(mStdErr, "committed: %9zu\n", committed);
#ifdef XP_LINUX
if (rss) {
FdPrintf(mStdErr, "rss: %9zu\n", rss);
}
#endif
FdPrintf(mStdErr, "allocated: %9zu\n", stats.allocated);
FdPrintf(mStdErr, "waste: %9zu\n", stats.waste);
FdPrintf(mStdErr, "dirty: %9zu\n", stats.pages_dirty);
FdPrintf(mStdErr, "fresh: %9zu\n", stats.pages_fresh);
FdPrintf(mStdErr, "madvised: %9zu\n", stats.pages_madvised);
FdPrintf(mStdErr, "bookkeep: %9zu\n", stats.bookkeeping);
FdPrintf(mStdErr, "bin-unused: %9zu\n", stats.bin_unused);
FdPrintf(mStdErr, "quantum-max: %9zu\n", stats.quantum_max);
FdPrintf(mStdErr, "quantum-wide-max: %9zu\n", stats.quantum_wide_max);
FdPrintf(mStdErr, "subpage-max: %9zu\n", stats.subpage_max);
FdPrintf(mStdErr, "large-max: %9zu\n", stats.large_max);
if (mCalculateSlop) {
size_t slop = mTotalAllocatedSize - mTotalRequestedSize;
FdPrintf(mStdErr,
"Total slop for all allocations: %zuKiB/%zuKiB (%zu%%)\n",
slop / 1024, mTotalAllocatedSize / 1024,
percent(slop, mTotalAllocatedSize));
}
FdPrintf(mStdErr, "Live sloppy objects: %zu/%zu (%zu%%)\n",
num_sloppy_objects, num_objects,
percent(num_sloppy_objects, num_objects));
FdPrintf(mStdErr, "Live sloppy bytes: %zuKiB/%zuKiB (%zu%%)\n",
total_slop / 1024, total_allocated / 1024,
percent(total_slop, total_allocated));
FdPrintf(mStdErr, "\n%8s %11s %10s %8s %9s %9s %8s\n", "bin-size",
"unused (c)", "total (c)", "used (c)", "non-full (r)", "total (r)",
"used (r)");
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
MOZ_ASSERT(bin.size);
FdPrintf(mStdErr, "%8zu %8zuKiB %7zuKiB %7zu%% %12zu %9zu %7zu%%\n",
bin.size, bin.bytes_unused / 1024, bin.bytes_total / 1024,
percent(bin.bytes_total - bin.bytes_unused, bin.bytes_total),
bin.num_non_full_runs, bin.num_runs,
percent(bin.num_runs - bin.num_non_full_runs, bin.num_runs));
}
FdPrintf(mStdErr, "\n%5s %8s %9s %7s\n", "bin", "slop", "used", "percent");
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
size_t used = bin.bytes_total - bin.bytes_unused;
FdPrintf(mStdErr, "%5zu %8zu %9zu %6zu%%\n", bin.size, bin_slop[i], used,
percent(bin_slop[i], used));
}
FdPrintf(mStdErr, "%5s %8zu %9zu %6zu%%\n", "large", large_slop, large_used,
percent(large_slop, large_used));
FdPrintf(mStdErr, "%5s %8zu %9zu %6zu%%\n", "huge", huge_slop, huge_used,
percent(huge_slop, huge_used));
print_distributions(stats, bin_stats);
}
private:
/*
* Create and print frequency distributions of memory requests.
*/
void print_distributions(jemalloc_stats_t& stats,
jemalloc_bin_stats_t* bin_stats) {
const size_t num_bins = ::jemalloc_stats_num_bins();
// We compute distributions for all of the bins for small allocations
// (num_bins) plus two more distributions for larger allocations.
Distribution dists[num_bins + 2];
unsigned last_size = 0;
unsigned num_dists = 0;
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
auto& dist = dists[num_dists++];
MOZ_ASSERT(bin.size);
if (bin.size <= 16) {
// 1 byte buckets.
dist = Distribution(bin.size, last_size, 1);
} else if (bin.size <= stats.quantum_max) {
// 4 buckets, (4 bytes per bucket with a 16 byte quantum).
dist = Distribution(bin.size, last_size, stats.quantum / 4);
} else if (bin.size <= stats.quantum_wide_max) {
// 8 buckets, (32 bytes per bucket with a 256 byte quantum-wide).
dist = Distribution(bin.size, last_size, stats.quantum_wide / 8);
} else {
// 16 buckets.
dist = Distribution(bin.size, last_size, (bin.size - last_size) / 16);
}
last_size = bin.size;
}
// 16 buckets.
dists[num_dists] = Distribution(stats.page_size, last_size,
(stats.page_size - last_size) / 16);
num_dists++;
// Buckets are 1/4 of the page size (12 buckets).
dists[num_dists] =
Distribution(stats.page_size * 4, stats.page_size, stats.page_size / 4);
num_dists++;
MOZ_RELEASE_ASSERT(num_dists <= num_bins + 2);
for (size_t slot_id = 0; slot_id < mNumUsedSlots; slot_id++) {
MemSlot& slot = mSlots[slot_id];
if (slot.mPtr) {
for (size_t i = 0; i < num_dists; i++) {
if (slot.mRequest <= dists[i].maxSize()) {
dists[i].addRequest(slot.mRequest);
break;
}
}
}
}
for (unsigned i = 0; i < num_dists; i++) {
dists[i].printDist(mStdErr);
}
}
#ifdef XP_LINUX
size_t get_rss() {
if (mGetRSSFailed) {
return 0;
}
// On Linux we can determine the RSS of the heap area by examining the
// smaps file.
mozilla::Maybe<SMapsReader> reader = SMapsReader::open();
if (!reader) {
mGetRSSFailed = true;
return 0;
}
size_t rss = 0;
while (Maybe<MemoryMap> map = reader->readMap(mStdErr)) {
if (map->IsCandidate() && !mSlots.ownsMapping(map->mStart) &&
!InitialMapsContains(map->mStart)) {
rss += map->mRSS;
}
}
return rss;
}
bool InitialMapsContains(uintptr_t aRangeStart) {
for (unsigned i = 0; i < mNumInitialMaps; i++) {
MOZ_ASSERT(i < MAX_INITIAL_MAPS);
if (mInitialMaps[i] == aRangeStart) {
return true;
}
}
return false;
}
public:
void BuildInitialMapInfo() {
if (mGetRSSFailed) {
return;
}
Maybe<SMapsReader> reader = SMapsReader::open();
if (!reader) {
mGetRSSFailed = true;
return;
}
while (Maybe<MemoryMap> map = reader->readMap(mStdErr)) {
if (map->IsCandidate()) {
if (mNumInitialMaps >= MAX_INITIAL_MAPS) {
FdPrintf(mStdErr, "Too many initial mappings, can't compute RSS\n");
mGetRSSFailed = false;
return;
}
mInitialMaps[mNumInitialMaps++] = map->mStart;
}
}
}
#endif
private:
MemSlot& SlotForResult(Buffer& aResult) {
/* Parse result value and get the corresponding slot. */
Buffer dummy = aResult.SplitChar('=');
Buffer dummy2 = aResult.SplitChar('#');
if (dummy || dummy2) {
die("Malformed input");
}
size_t slot_id = parseNumber(aResult);
mNumUsedSlots = std::max(mNumUsedSlots, slot_id + 1);
return mSlots[slot_id];
}
void MaybeCommit(MemSlot& aSlot) {
if (mDoMemset) {
// Write any byte, 0x55 isn't significant.
memset(aSlot.mPtr, 0x55, aSlot.mRequest);
}
}
platform_handle_t mStdErr;
size_t mOps = 0;
// The number of slots that have been used. It is used to iterate over slots
// without accessing those we haven't initialised.
size_t mNumUsedSlots = 0;
MemSlotList mSlots;
size_t mTotalRequestedSize = 0;
size_t mTotalAllocatedSize = 0;
// Whether to calculate slop for all allocations over the runtime of a
// process.
bool mCalculateSlop = false;
bool mDoMemset = false;
#ifdef XP_LINUX
// If we have a failure reading smaps info then this is used to disable that
// feature.
bool mGetRSSFailed = false;
// The initial memory mappings are recorded here at start up. We exclude
// memory in these mappings when computing RSS. We assume they do not grow
// and that no regions are allocated near them, this is true because they'll
// only record the .bss and .data segments from our binary and shared objects
// or regions that logalloc-replay has created for MappedArrays.
//
// 64 should be enough for anybody.
static constexpr unsigned MAX_INITIAL_MAPS = 64;
uintptr_t mInitialMaps[MAX_INITIAL_MAPS];
unsigned mNumInitialMaps = 0;
#endif // XP_LINUX
};
static Replay replay;
int main(int argc, const char* argv[]) {
size_t first_pid = 0;
FdReader reader(0);
for (int i = 1; i < argc; i++) {
const char* option = argv[i];
if (strcmp(option, "-s") == 0) {
// Do accounting to calculate allocation slop.
replay.enableSlopCalculation();
} else if (strcmp(option, "-c") == 0) {
// Touch memory as we allocate it.
replay.enableMemset();
} else {
fprintf(stderr, "Unknown command line option: %s\n", option);
return EXIT_FAILURE;
}
}
/* Read log from stdin and dispatch function calls to the Replay instance.
* The log format is essentially:
* <pid> <tid> <function>([<args>])[=<result>]
* <args> is a comma separated list of arguments.
*
* The logs are expected to be preprocessed so that allocations are
* attributed a tracking slot. The input is trusted not to have crazy
* values for these slot numbers.
*
* <result>, as well as some of the args to some of the function calls are
* such slot numbers.
*/
while (true) {
Buffer line = reader.ReadLine();
if (!line) {
break;
}
size_t pid = parseNumber(line.SplitChar(' '));
if (!first_pid) {
first_pid = pid;
}
/* The log may contain data for several processes, only entries for the
* very first that appears are treated. */
if (first_pid != pid) {
continue;
}
/* The log contains thread ids for manual analysis, but we just ignore them
* for now. */
parseNumber(line.SplitChar(' '));
Buffer func = line.SplitChar('(');
Buffer args = line.SplitChar(')');
if (func == Buffer("jemalloc_stats")) {
replay.jemalloc_stats(args, line);
} else if (func == Buffer("free")) {
replay.free(args, line);
} else if (func == Buffer("malloc")) {
replay.malloc(args, line);
} else if (func == Buffer("posix_memalign")) {
replay.posix_memalign(args, line);
} else if (func == Buffer("aligned_alloc")) {
replay.aligned_alloc(args, line);
} else if (func == Buffer("calloc")) {
replay.calloc(args, line);
} else if (func == Buffer("realloc")) {
replay.realloc(args, line);
} else if (func == Buffer("memalign")) {
replay.memalign(args, line);
} else if (func == Buffer("valloc")) {
replay.valloc(args, line);
} else {
die("Malformed input");
}
}
return 0;
}
|