summaryrefslogtreecommitdiffstats
path: root/mfbt/WrappingOperations.h
blob: bd67ac34f18897dc47d1861b70f95020720adaa1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Math operations that implement wraparound semantics on overflow or underflow.
 *
 * While in some cases (but not all of them!) plain old C++ operators and casts
 * will behave just like these functions, there are three reasons you should use
 * these functions:
 *
 *   1) These functions make *explicit* the desire for and dependence upon
 *      wraparound semantics, just as Rust's i32::wrapping_add and similar
 *      functions explicitly produce wraparound in Rust.
 *   2) They implement this functionality *safely*, without invoking signed
 *      integer overflow that has undefined behavior in C++.
 *   3) They play nice with compiler-based integer-overflow sanitizers (see
 *      build/autoconf/sanitize.m4), that in appropriately configured builds
 *      verify at runtime that integral arithmetic doesn't overflow.
 */

#ifndef mozilla_WrappingOperations_h
#define mozilla_WrappingOperations_h

#include "mozilla/Attributes.h"

#include <limits.h>
#include <type_traits>

namespace mozilla {

namespace detail {

template <typename UnsignedType>
struct WrapToSignedHelper {
  static_assert(std::is_unsigned_v<UnsignedType>,
                "WrapToSigned must be passed an unsigned type");

  using SignedType = std::make_signed_t<UnsignedType>;

  static constexpr SignedType MaxValue =
      (UnsignedType(1) << (CHAR_BIT * sizeof(SignedType) - 1)) - 1;
  static constexpr SignedType MinValue = -MaxValue - 1;

  static constexpr UnsignedType MinValueUnsigned =
      static_cast<UnsignedType>(MinValue);
  static constexpr UnsignedType MaxValueUnsigned =
      static_cast<UnsignedType>(MaxValue);

  // Overflow-correctness was proven in bug 1432646 and is explained in the
  // comment below.  This function is very hot, both at compile time and
  // runtime, so disable all overflow checking in it.
  MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
  MOZ_NO_SANITIZE_SIGNED_OVERFLOW static constexpr SignedType compute(
      UnsignedType aValue) {
    // This algorithm was originally provided here:
    // https://stackoverflow.com/questions/13150449/efficient-unsigned-to-signed-cast-avoiding-implementation-defined-behavior
    //
    // If the value is in the non-negative signed range, just cast.
    //
    // If the value will be negative, compute its delta from the first number
    // past the max signed integer, then add that to the minimum signed value.
    //
    // At the low end: if |u| is the maximum signed value plus one, then it has
    // the same mathematical value as |MinValue| cast to unsigned form.  The
    // delta is zero, so the signed form of |u| is |MinValue| -- exactly the
    // result of adding zero delta to |MinValue|.
    //
    // At the high end: if |u| is the maximum *unsigned* value, then it has all
    // bits set.  |MinValue| cast to unsigned form is purely the high bit set.
    // So the delta is all bits but high set -- exactly |MaxValue|.  And as
    // |MinValue = -MaxValue - 1|, we have |MaxValue + (-MaxValue - 1)| to
    // equal -1.
    //
    // Thus the delta below is in signed range, the corresponding cast is safe,
    // and this computation produces values spanning [MinValue, 0): exactly the
    // desired range of all negative signed integers.
    return (aValue <= MaxValueUnsigned)
               ? static_cast<SignedType>(aValue)
               : static_cast<SignedType>(aValue - MinValueUnsigned) + MinValue;
  }
};

}  // namespace detail

/**
 * Convert an unsigned value to signed, if necessary wrapping around.
 *
 * This is the behavior normal C++ casting will perform in most implementations
 * these days -- but this function makes explicit that such conversion is
 * happening.
 */
template <typename UnsignedType>
constexpr typename detail::WrapToSignedHelper<UnsignedType>::SignedType
WrapToSigned(UnsignedType aValue) {
  return detail::WrapToSignedHelper<UnsignedType>::compute(aValue);
}

namespace detail {

template <typename T>
constexpr T ToResult(std::make_unsigned_t<T> aUnsigned) {
  // We could *always* return WrapToSigned and rely on unsigned conversion to
  // undo the wrapping when |T| is unsigned, but this seems clearer.
  return std::is_signed_v<T> ? WrapToSigned(aUnsigned) : aUnsigned;
}

template <typename T>
struct WrappingAddHelper {
 private:
  using UnsignedT = std::make_unsigned_t<T>;

 public:
  MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
  static constexpr T compute(T aX, T aY) {
    return ToResult<T>(static_cast<UnsignedT>(aX) + static_cast<UnsignedT>(aY));
  }
};

}  // namespace detail

/**
 * Add two integers of the same type and return the result converted to that
 * type using wraparound semantics, without triggering overflow sanitizers.
 *
 * For N-bit unsigned integer types, this is equivalent to adding the two
 * numbers, then taking the result mod 2**N:
 *
 *   WrappingAdd(uint32_t(42), uint32_t(17)) is 59 (59 mod 2**32);
 *   WrappingAdd(uint8_t(240), uint8_t(20)) is 4 (260 mod 2**8).
 *
 * Unsigned WrappingAdd acts exactly like C++ unsigned addition.
 *
 * For N-bit signed integer types, this is equivalent to adding the two numbers
 * wrapped to unsigned, then wrapping the sum mod 2**N to the signed range:
 *
 *   WrappingAdd(int16_t(32767), int16_t(3)) is
 *     -32766 ((32770 mod 2**16) - 2**16);
 *   WrappingAdd(int8_t(-128), int8_t(-128)) is
 *     0 (256 mod 2**8);
 *   WrappingAdd(int32_t(-42), int32_t(-17)) is
 *     -59 ((8589934533 mod 2**32) - 2**32).
 *
 * There's no equivalent to this operation in C++, as C++ signed addition that
 * overflows has undefined behavior.  But it's how such addition *tends* to
 * behave with most compilers, unless an optimization or similar -- quite
 * permissibly -- triggers different behavior.
 */
template <typename T>
constexpr T WrappingAdd(T aX, T aY) {
  return detail::WrappingAddHelper<T>::compute(aX, aY);
}

namespace detail {

template <typename T>
struct WrappingSubtractHelper {
 private:
  using UnsignedT = std::make_unsigned_t<T>;

 public:
  MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
  static constexpr T compute(T aX, T aY) {
    return ToResult<T>(static_cast<UnsignedT>(aX) - static_cast<UnsignedT>(aY));
  }
};

}  // namespace detail

/**
 * Subtract two integers of the same type and return the result converted to
 * that type using wraparound semantics, without triggering overflow sanitizers.
 *
 * For N-bit unsigned integer types, this is equivalent to subtracting the two
 * numbers, then taking the result mod 2**N:
 *
 *   WrappingSubtract(uint32_t(42), uint32_t(17)) is 29 (29 mod 2**32);
 *   WrappingSubtract(uint8_t(5), uint8_t(20)) is 241 (-15 mod 2**8).
 *
 * Unsigned WrappingSubtract acts exactly like C++ unsigned subtraction.
 *
 * For N-bit signed integer types, this is equivalent to subtracting the two
 * numbers wrapped to unsigned, then wrapping the difference mod 2**N to the
 * signed range:
 *
 *   WrappingSubtract(int16_t(32767), int16_t(-5)) is -32764 ((32772 mod 2**16)
 * - 2**16); WrappingSubtract(int8_t(-128), int8_t(127)) is 1 (-255 mod 2**8);
 *   WrappingSubtract(int32_t(-17), int32_t(-42)) is 25 (25 mod 2**32).
 *
 * There's no equivalent to this operation in C++, as C++ signed subtraction
 * that overflows has undefined behavior.  But it's how such subtraction *tends*
 * to behave with most compilers, unless an optimization or similar -- quite
 * permissibly -- triggers different behavior.
 */
template <typename T>
constexpr T WrappingSubtract(T aX, T aY) {
  return detail::WrappingSubtractHelper<T>::compute(aX, aY);
}

namespace detail {

template <typename T>
struct WrappingMultiplyHelper {
 private:
  using UnsignedT = std::make_unsigned_t<T>;

 public:
  MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
  static constexpr T compute(T aX, T aY) {
    // Begin with |1U| to ensure the overall operation chain is never promoted
    // to signed integer operations that might have *signed* integer overflow.
    return ToResult<T>(static_cast<UnsignedT>(1U * static_cast<UnsignedT>(aX) *
                                              static_cast<UnsignedT>(aY)));
  }
};

}  // namespace detail

/**
 * Multiply two integers of the same type and return the result converted to
 * that type using wraparound semantics, without triggering overflow sanitizers.
 *
 * For N-bit unsigned integer types, this is equivalent to multiplying the two
 * numbers, then taking the result mod 2**N:
 *
 *   WrappingMultiply(uint32_t(42), uint32_t(17)) is 714 (714 mod 2**32);
 *   WrappingMultiply(uint8_t(16), uint8_t(24)) is 128 (384 mod 2**8);
 *   WrappingMultiply(uint16_t(3), uint16_t(32768)) is 32768 (98304 mod 2*16).
 *
 * Unsigned WrappingMultiply is *not* identical to C++ multiplication: with most
 * compilers, in rare cases uint16_t*uint16_t can invoke *signed* integer
 * overflow having undefined behavior!  http://kqueue.org/blog/2013/09/17/cltq/
 * has the grody details.  (Some compilers do this for uint32_t, not uint16_t.)
 * So it's especially important to use WrappingMultiply for wraparound math with
 * uint16_t.  That quirk aside, this function acts like you *thought* C++
 * unsigned multiplication always worked.
 *
 * For N-bit signed integer types, this is equivalent to multiplying the two
 * numbers wrapped to unsigned, then wrapping the product mod 2**N to the signed
 * range:
 *
 *   WrappingMultiply(int16_t(-456), int16_t(123)) is
 *     9448 ((-56088 mod 2**16) + 2**16);
 *   WrappingMultiply(int32_t(-7), int32_t(-9)) is 63 (63 mod 2**32);
 *   WrappingMultiply(int8_t(16), int8_t(24)) is -128 ((384 mod 2**8) - 2**8);
 *   WrappingMultiply(int8_t(16), int8_t(255)) is -16 ((4080 mod 2**8) - 2**8).
 *
 * There's no equivalent to this operation in C++, as C++ signed
 * multiplication that overflows has undefined behavior.  But it's how such
 * multiplication *tends* to behave with most compilers, unless an optimization
 * or similar -- quite permissibly -- triggers different behavior.
 */
template <typename T>
constexpr T WrappingMultiply(T aX, T aY) {
  return detail::WrappingMultiplyHelper<T>::compute(aX, aY);
}

} /* namespace mozilla */

#endif /* mozilla_WrappingOperations_h */