1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// PowerOfTwo is a value type that always hold a power of 2.
// It has the same size as their underlying unsigned type, but offer the
// guarantee of being a power of 2, which permits some optimizations when
// involved in modulo operations (using masking instead of actual modulo).
//
// PowerOfTwoMask contains a mask corresponding to a power of 2.
// E.g., 2^8 is 256 or 0x100, the corresponding mask is 2^8-1 or 255 or 0xFF.
// It should be used instead of PowerOfTwo in situations where most operations
// would be modulo, this saves having to recompute the mask from the stored
// power of 2.
//
// One common use would be for ring-buffer containers with a power-of-2 size,
// where an index is usually converted to an in-buffer offset by `i % size`.
// Instead, the container could store a PowerOfTwo or PowerOfTwoMask, and do
// `i % p2` or `i & p2m`, which is more efficient than for arbitrary sizes.
//
// Shortcuts for common 32- and 64-bit values: PowerOfTwo32, etc.
//
// To create constexpr constants, use MakePowerOfTwo<Type, Value>(), etc.
#ifndef PowerOfTwo_h
#define PowerOfTwo_h
#include "mozilla/MathAlgorithms.h"
#include <limits>
namespace mozilla {
// Compute the smallest power of 2 greater than or equal to aInput, except if
// that would overflow in which case the highest possible power of 2 if chosen.
// 0->1, 1->1, 2->2, 3->4, ... 2^31->2^31, 2^31+1->2^31 (for uint32_t), etc.
template <typename T>
T FriendlyRoundUpPow2(T aInput) {
// This is the same code as `RoundUpPow2()`, except we handle any type (that
// CeilingLog2 supports) and allow the greater-than-max-power case.
constexpr T max = T(1) << (sizeof(T) * CHAR_BIT - 1);
if (aInput >= max) {
return max;
}
return T(1) << CeilingLog2(aInput);
}
namespace detail {
// Same function name `CountLeadingZeroes` with uint32_t and uint64_t overloads.
inline uint_fast8_t CountLeadingZeroes(uint32_t aValue) {
MOZ_ASSERT(aValue != 0);
return detail::CountLeadingZeroes32(aValue);
}
inline uint_fast8_t CountLeadingZeroes(uint64_t aValue) {
MOZ_ASSERT(aValue != 0);
return detail::CountLeadingZeroes64(aValue);
}
// Refuse anything else.
template <typename T>
inline uint_fast8_t CountLeadingZeroes(T aValue) = delete;
} // namespace detail
// Compute the smallest 2^N-1 mask where aInput can fit.
// I.e., `x & mask == x`, but `x & (mask >> 1) != x`.
// Or looking at binary, we want a mask with as many leading zeroes as the
// input, by right-shifting a full mask: (8-bit examples)
// input: 00000000 00000001 00000010 00010110 01111111 10000000
// N leading 0s: ^^^^^^^^ 8 ^^^^^^^ 7 ^^^^^^ 6 ^^^ 3 ^ 1 0
// full mask: 11111111 11111111 11111111 11111111 11111111 11111111
// full mask >> N: 00000000 00000001 00000011 00011111 01111111 11111111
template <typename T>
T RoundUpPow2Mask(T aInput) {
// Special case, as CountLeadingZeroes(0) is undefined. (And even if that was
// defined, shifting by the full type size is also undefined!)
if (aInput == 0) {
return 0;
}
return T(-1) >> detail::CountLeadingZeroes(aInput);
}
template <typename T>
class PowerOfTwoMask;
template <typename T, T Mask>
constexpr PowerOfTwoMask<T> MakePowerOfTwoMask();
template <typename T>
class PowerOfTwo;
template <typename T, T Value>
constexpr PowerOfTwo<T> MakePowerOfTwo();
// PowerOfTwoMask will always contain a mask for a power of 2, which is useful
// for power-of-2 modulo operations (e.g., to keep an index inside a power-of-2
// container).
// Use this instead of PowerOfTwo if masking is the primary use of the value.
//
// Note that this class can store a "full" mask where all bits are set, so it
// works for mask corresponding to the power of 2 that would overflow `T`
// (e.g., 2^32 for uint32_t gives a mask of 2^32-1, which fits in a uint32_t).
// For this reason there is no API that computes the power of 2 corresponding to
// the mask; But this can be done explicitly with `MaskValue() + 1`, which may
// be useful for computing things like distance-to-the-end by doing
// `MaskValue() + 1 - offset`, which works fine with unsigned number types.
template <typename T>
class PowerOfTwoMask {
static_assert(!std::numeric_limits<T>::is_signed,
"PowerOfTwoMask must use an unsigned type");
public:
// Construct a power of 2 mask where the given value can fit.
// Cannot be constexpr because of `RoundUpPow2Mask()`.
explicit PowerOfTwoMask(T aInput) : mMask(RoundUpPow2Mask(aInput)) {}
// Compute the mask corresponding to a PowerOfTwo.
// This saves having to compute the nearest 2^N-1.
// Not a conversion constructor, as that could be ambiguous whether we'd want
// the mask corresponding to the power of 2 (2^N -> 2^N-1), or the mask that
// can *contain* the PowerOfTwo value (2^N -> 2^(N+1)-1).
// Note: Not offering reverse PowerOfTwoMark-to-PowerOfTwo conversion, because
// that could result in an unexpected 0 result for the largest possible mask.
template <typename U>
static constexpr PowerOfTwoMask<U> MaskForPowerOfTwo(
const PowerOfTwo<U>& aP2) {
return PowerOfTwoMask(aP2);
}
// Allow smaller unsigned types as input.
// Bigger or signed types must be explicitly converted by the caller.
template <typename U>
explicit constexpr PowerOfTwoMask(U aInput)
: mMask(RoundUpPow2Mask(static_cast<T>(aInput))) {
static_assert(!std::numeric_limits<T>::is_signed,
"PowerOfTwoMask does not accept signed types");
static_assert(sizeof(U) <= sizeof(T),
"PowerOfTwoMask does not accept bigger types");
}
constexpr T MaskValue() const { return mMask; }
// `x & aPowerOfTwoMask` just works.
template <typename U>
friend U operator&(U aNumber, PowerOfTwoMask aP2M) {
return static_cast<U>(aNumber & aP2M.MaskValue());
}
// `aPowerOfTwoMask & x` just works.
template <typename U>
friend constexpr U operator&(PowerOfTwoMask aP2M, U aNumber) {
return static_cast<U>(aP2M.MaskValue() & aNumber);
}
// `x % aPowerOfTwoMask(2^N-1)` is equivalent to `x % 2^N` but is more
// optimal by doing `x & (2^N-1)`.
// Useful for templated code doing modulo with a template argument type.
template <typename U>
friend constexpr U operator%(U aNumerator, PowerOfTwoMask aDenominator) {
return aNumerator & aDenominator.MaskValue();
}
constexpr bool operator==(const PowerOfTwoMask& aRhs) const {
return mMask == aRhs.mMask;
}
constexpr bool operator!=(const PowerOfTwoMask& aRhs) const {
return mMask != aRhs.mMask;
}
private:
// Trust `PowerOfTwo` to call the private Trusted constructor below.
friend class PowerOfTwo<T>;
// Trust `MakePowerOfTwoMask()` to call the private Trusted constructor below.
template <typename U, U Mask>
friend constexpr PowerOfTwoMask<U> MakePowerOfTwoMask();
struct Trusted {
T mMask;
};
// Construct the mask corresponding to a PowerOfTwo.
// This saves having to compute the nearest 2^N-1.
// Note: Not a public PowerOfTwo->PowerOfTwoMask conversion constructor, as
// that could be ambiguous whether we'd want the mask corresponding to the
// power of 2 (2^N -> 2^N-1), or the mask that can *contain* the PowerOfTwo
// value (2^N -> 2^(N+1)-1).
explicit constexpr PowerOfTwoMask(const Trusted& aP2) : mMask(aP2.mMask) {}
T mMask = 0;
};
// Make a PowerOfTwoMask constant, statically-checked.
template <typename T, T Mask>
constexpr PowerOfTwoMask<T> MakePowerOfTwoMask() {
static_assert(Mask == T(-1) || IsPowerOfTwo(Mask + 1),
"MakePowerOfTwoMask<T, Mask>: Mask must be 2^N-1");
using Trusted = typename PowerOfTwoMask<T>::Trusted;
return PowerOfTwoMask<T>(Trusted{Mask});
}
// PowerOfTwo will always contain a power of 2.
template <typename T>
class PowerOfTwo {
static_assert(!std::numeric_limits<T>::is_signed,
"PowerOfTwo must use an unsigned type");
public:
// Construct a power of 2 that can fit the given value, or the highest power
// of 2 possible.
// Caller should explicitly check/assert `Value() <= aInput` if they want to.
// Cannot be constexpr because of `FriendlyRoundUpPow2()`.
explicit PowerOfTwo(T aInput) : mValue(FriendlyRoundUpPow2(aInput)) {}
// Allow smaller unsigned types as input.
// Bigger or signed types must be explicitly converted by the caller.
template <typename U>
explicit PowerOfTwo(U aInput)
: mValue(FriendlyRoundUpPow2(static_cast<T>(aInput))) {
static_assert(!std::numeric_limits<T>::is_signed,
"PowerOfTwo does not accept signed types");
static_assert(sizeof(U) <= sizeof(T),
"PowerOfTwo does not accept bigger types");
}
constexpr T Value() const { return mValue; }
// Binary mask corresponding to the power of 2, useful for modulo.
// E.g., `x & powerOfTwo(y).Mask()` == `x % powerOfTwo(y)`.
// Consider PowerOfTwoMask class instead of PowerOfTwo if masking is the
// primary use case.
constexpr T MaskValue() const { return mValue - 1; }
// PowerOfTwoMask corresponding to this power of 2, useful for modulo.
constexpr PowerOfTwoMask<T> Mask() const {
using Trusted = typename PowerOfTwoMask<T>::Trusted;
return PowerOfTwoMask<T>(Trusted{MaskValue()});
}
// `x % aPowerOfTwo` works optimally.
// Useful for templated code doing modulo with a template argument type.
// Use PowerOfTwoMask class instead if masking is the primary use case.
template <typename U>
friend constexpr U operator%(U aNumerator, PowerOfTwo aDenominator) {
return aNumerator & aDenominator.MaskValue();
}
constexpr bool operator==(const PowerOfTwo& aRhs) const {
return mValue == aRhs.mValue;
}
constexpr bool operator!=(const PowerOfTwo& aRhs) const {
return mValue != aRhs.mValue;
}
constexpr bool operator<(const PowerOfTwo& aRhs) const {
return mValue < aRhs.mValue;
}
constexpr bool operator<=(const PowerOfTwo& aRhs) const {
return mValue <= aRhs.mValue;
}
constexpr bool operator>(const PowerOfTwo& aRhs) const {
return mValue > aRhs.mValue;
}
constexpr bool operator>=(const PowerOfTwo& aRhs) const {
return mValue >= aRhs.mValue;
}
private:
// Trust `MakePowerOfTwo()` to call the private Trusted constructor below.
template <typename U, U Value>
friend constexpr PowerOfTwo<U> MakePowerOfTwo();
struct Trusted {
T mValue;
};
// Construct a PowerOfTwo with the given trusted value.
// This saves having to compute the nearest 2^N.
// Note: Not offering PowerOfTwoMark-to-PowerOfTwo conversion, because that
// could result in an unexpected 0 result for the largest possible mask.
explicit constexpr PowerOfTwo(const Trusted& aP2) : mValue(aP2.mValue) {}
// The smallest power of 2 is 2^0 == 1.
T mValue = 1;
};
// Make a PowerOfTwo constant, statically-checked.
template <typename T, T Value>
constexpr PowerOfTwo<T> MakePowerOfTwo() {
static_assert(IsPowerOfTwo(Value),
"MakePowerOfTwo<T, Value>: Value must be 2^N");
using Trusted = typename PowerOfTwo<T>::Trusted;
return PowerOfTwo<T>(Trusted{Value});
}
// Shortcuts for the most common types and functions.
using PowerOfTwoMask32 = PowerOfTwoMask<uint32_t>;
using PowerOfTwo32 = PowerOfTwo<uint32_t>;
using PowerOfTwoMask64 = PowerOfTwoMask<uint64_t>;
using PowerOfTwo64 = PowerOfTwo<uint64_t>;
template <uint32_t Mask>
constexpr PowerOfTwoMask32 MakePowerOfTwoMask32() {
return MakePowerOfTwoMask<uint32_t, Mask>();
}
template <uint32_t Value>
constexpr PowerOfTwo32 MakePowerOfTwo32() {
return MakePowerOfTwo<uint32_t, Value>();
}
template <uint64_t Mask>
constexpr PowerOfTwoMask64 MakePowerOfTwoMask64() {
return MakePowerOfTwoMask<uint64_t, Mask>();
}
template <uint64_t Value>
constexpr PowerOfTwo64 MakePowerOfTwo64() {
return MakePowerOfTwo<uint64_t, Value>();
}
} // namespace mozilla
#endif // PowerOfTwo_h
|