1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef Utils_h
#define Utils_h
#include <pthread.h>
#include <stdint.h>
#include <stddef.h>
#include <sys/mman.h>
#include <unistd.h>
#include "mozilla/Assertions.h"
#include "mozilla/Atomics.h"
/**
* On architectures that are little endian and that support unaligned reads,
* we can use direct type, but on others, we want to have a special class
* to handle conversion and alignment issues.
*/
#if !defined(DEBUG) && (defined(__i386__) || defined(__x86_64__))
typedef uint16_t le_uint16;
typedef uint32_t le_uint32;
#else
/**
* Template that allows to find an unsigned int type from a (computed) bit size
*/
template <int s>
struct UInt {};
template <>
struct UInt<16> {
typedef uint16_t Type;
};
template <>
struct UInt<32> {
typedef uint32_t Type;
};
/**
* Template to access 2 n-bit sized words as a 2*n-bit sized word, doing
* conversion from little endian and avoiding alignment issues.
*/
template <typename T>
class le_to_cpu {
public:
typedef typename UInt<16 * sizeof(T)>::Type Type;
operator Type() const { return (b << (sizeof(T) * 8)) | a; }
const le_to_cpu& operator=(const Type& v) {
a = v & ((1 << (sizeof(T) * 8)) - 1);
b = v >> (sizeof(T) * 8);
return *this;
}
le_to_cpu() {}
explicit le_to_cpu(const Type& v) { operator=(v); }
const le_to_cpu& operator+=(const Type& v) {
return operator=(operator Type() + v);
}
const le_to_cpu& operator++(int) { return operator=(operator Type() + 1); }
private:
T a, b;
};
/**
* Type definitions
*/
typedef le_to_cpu<unsigned char> le_uint16;
typedef le_to_cpu<le_uint16> le_uint32;
#endif
struct AutoCloseFD {
const int fd;
MOZ_IMPLICIT AutoCloseFD(int fd) : fd(fd) {}
~AutoCloseFD() {
if (fd != -1) close(fd);
}
operator int() const { return fd; }
};
extern mozilla::Atomic<size_t, mozilla::ReleaseAcquire> gPageSize;
/**
* Page alignment helpers
*/
static size_t PageSize() {
if (!gPageSize) {
gPageSize = sysconf(_SC_PAGESIZE);
}
return gPageSize;
}
static inline uintptr_t AlignedPtr(uintptr_t ptr, size_t alignment) {
return ptr & ~(alignment - 1);
}
template <typename T>
static inline T* AlignedPtr(T* ptr, size_t alignment) {
return reinterpret_cast<T*>(
AlignedPtr(reinterpret_cast<uintptr_t>(ptr), alignment));
}
template <typename T>
static inline T PageAlignedPtr(T ptr) {
return AlignedPtr(ptr, PageSize());
}
static inline uintptr_t AlignedEndPtr(uintptr_t ptr, size_t alignment) {
return AlignedPtr(ptr + alignment - 1, alignment);
}
template <typename T>
static inline T* AlignedEndPtr(T* ptr, size_t alignment) {
return reinterpret_cast<T*>(
AlignedEndPtr(reinterpret_cast<uintptr_t>(ptr), alignment));
}
template <typename T>
static inline T PageAlignedEndPtr(T ptr) {
return AlignedEndPtr(ptr, PageSize());
}
static inline size_t AlignedSize(size_t size, size_t alignment) {
return (size + alignment - 1) & ~(alignment - 1);
}
static inline size_t PageAlignedSize(size_t size) {
return AlignedSize(size, PageSize());
}
static inline bool IsAlignedPtr(uintptr_t ptr, size_t alignment) {
return ptr % alignment == 0;
}
template <typename T>
static inline bool IsAlignedPtr(T* ptr, size_t alignment) {
return IsAlignedPtr(reinterpret_cast<uintptr_t>(ptr), alignment);
}
template <typename T>
static inline bool IsPageAlignedPtr(T ptr) {
return IsAlignedPtr(ptr, PageSize());
}
static inline bool IsAlignedSize(size_t size, size_t alignment) {
return size % alignment == 0;
}
static inline bool IsPageAlignedSize(size_t size) {
return IsAlignedSize(size, PageSize());
}
static inline size_t PageNumber(size_t size) {
return (size + PageSize() - 1) / PageSize();
}
/**
* MemoryRange stores a pointer, size pair.
*/
class MemoryRange {
public:
MemoryRange(void* buf, size_t length) : buf(buf), length(length) {}
void Assign(void* b, size_t len) {
buf = b;
length = len;
}
void Assign(const MemoryRange& other) {
buf = other.buf;
length = other.length;
}
void* get() const { return buf; }
operator void*() const { return buf; }
operator unsigned char*() const {
return reinterpret_cast<unsigned char*>(buf);
}
bool operator==(void* ptr) const { return buf == ptr; }
bool operator==(unsigned char* ptr) const { return buf == ptr; }
void* operator+(off_t offset) const {
return reinterpret_cast<char*>(buf) + offset;
}
/**
* Returns whether the given address is within the mapped range
*/
bool Contains(void* ptr) const {
return (ptr >= buf) && (ptr < reinterpret_cast<char*>(buf) + length);
}
/**
* Returns the length of the mapped range
*/
size_t GetLength() const { return length; }
static MemoryRange mmap(void* addr, size_t length, int prot, int flags,
int fd, off_t offset) {
return MemoryRange(::mmap(addr, length, prot, flags, fd, offset), length);
}
private:
void* buf;
size_t length;
};
/**
* MappedPtr is a RAII wrapper for mmap()ed memory. It can be used as
* a simple void * or unsigned char *.
*
* It is defined as a derivative of a template that allows to use a
* different unmapping strategy.
*/
template <typename T>
class GenericMappedPtr : public MemoryRange {
public:
GenericMappedPtr(void* buf, size_t length) : MemoryRange(buf, length) {}
explicit GenericMappedPtr(const MemoryRange& other) : MemoryRange(other) {}
GenericMappedPtr() : MemoryRange(MAP_FAILED, 0) {}
void Assign(void* b, size_t len) {
if (get() != MAP_FAILED) static_cast<T*>(this)->munmap(get(), GetLength());
MemoryRange::Assign(b, len);
}
void Assign(const MemoryRange& other) {
Assign(other.get(), other.GetLength());
}
~GenericMappedPtr() {
if (get() != MAP_FAILED) static_cast<T*>(this)->munmap(get(), GetLength());
}
void release() { MemoryRange::Assign(MAP_FAILED, 0); }
};
struct MappedPtr : public GenericMappedPtr<MappedPtr> {
MappedPtr(void* buf, size_t length)
: GenericMappedPtr<MappedPtr>(buf, length) {}
MOZ_IMPLICIT MappedPtr(const MemoryRange& other)
: GenericMappedPtr<MappedPtr>(other) {}
MappedPtr() : GenericMappedPtr<MappedPtr>() {}
private:
friend class GenericMappedPtr<MappedPtr>;
void munmap(void* buf, size_t length) { ::munmap(buf, length); }
};
/**
* UnsizedArray is a way to access raw arrays of data in memory.
*
* struct S { ... };
* UnsizedArray<S> a(buf);
* UnsizedArray<S> b; b.Init(buf);
*
* This is roughly equivalent to
* const S *a = reinterpret_cast<const S *>(buf);
* const S *b = nullptr; b = reinterpret_cast<const S *>(buf);
*
* An UnsizedArray has no known length, and it's up to the caller to make
* sure the accessed memory is mapped and makes sense.
*/
template <typename T>
class UnsizedArray {
public:
typedef size_t idx_t;
/**
* Constructors and Initializers
*/
UnsizedArray() : contents(nullptr) {}
explicit UnsizedArray(const void* buf)
: contents(reinterpret_cast<const T*>(buf)) {}
void Init(const void* buf) {
MOZ_ASSERT(contents == nullptr);
contents = reinterpret_cast<const T*>(buf);
}
/**
* Returns the nth element of the array
*/
const T& operator[](const idx_t index) const {
MOZ_ASSERT(contents);
return contents[index];
}
operator const T*() const { return contents; }
/**
* Returns whether the array points somewhere
*/
explicit operator bool() const { return contents != nullptr; }
private:
const T* contents;
};
/**
* Array, like UnsizedArray, is a way to access raw arrays of data in memory.
* Unlike UnsizedArray, it has a known length, and is enumerable with an
* iterator.
*
* struct S { ... };
* Array<S> a(buf, len);
* UnsizedArray<S> b; b.Init(buf, len);
*
* In the above examples, len is the number of elements in the array. It is
* also possible to initialize an Array with the buffer size:
*
* Array<S> c; c.InitSize(buf, size);
*
* It is also possible to initialize an Array in two steps, only providing
* one data at a time:
*
* Array<S> d;
* d.Init(buf);
* d.Init(len); // or d.InitSize(size);
*
*/
template <typename T>
class Array : public UnsizedArray<T> {
public:
typedef typename UnsizedArray<T>::idx_t idx_t;
/**
* Constructors and Initializers
*/
Array() : UnsizedArray<T>(), length(0) {}
Array(const void* buf, const idx_t length)
: UnsizedArray<T>(buf), length(length) {}
void Init(const void* buf) { UnsizedArray<T>::Init(buf); }
void Init(const idx_t len) {
MOZ_ASSERT(length == 0);
length = len;
}
void InitSize(const idx_t size) { Init(size / sizeof(T)); }
void Init(const void* buf, const idx_t len) {
UnsizedArray<T>::Init(buf);
Init(len);
}
void InitSize(const void* buf, const idx_t size) {
UnsizedArray<T>::Init(buf);
InitSize(size);
}
/**
* Returns the nth element of the array
*/
const T& operator[](const idx_t index) const {
MOZ_ASSERT(index < length);
MOZ_ASSERT(operator bool());
return UnsizedArray<T>::operator[](index);
}
/**
* Returns the number of elements in the array
*/
idx_t numElements() const { return length; }
/**
* Returns whether the array points somewhere and has at least one element.
*/
explicit operator bool() const {
return (length > 0) && UnsizedArray<T>::operator bool();
}
/**
* Iterator for an Array. Use is similar to that of STL const_iterators:
*
* struct S { ... };
* Array<S> a(buf, len);
* for (Array<S>::iterator it = a.begin(); it < a.end(); ++it) {
* // Do something with *it.
* }
*/
class iterator {
public:
iterator() : item(nullptr) {}
const T& operator*() const { return *item; }
const T* operator->() const { return item; }
iterator& operator++() {
++item;
return *this;
}
bool operator<(const iterator& other) const { return item < other.item; }
protected:
friend class Array<T>;
explicit iterator(const T& item) : item(&item) {}
private:
const T* item;
};
/**
* Returns an iterator pointing at the beginning of the Array
*/
iterator begin() const {
if (length) return iterator(UnsizedArray<T>::operator[](0));
return iterator();
}
/**
* Returns an iterator pointing past the end of the Array
*/
iterator end() const {
if (length) return iterator(UnsizedArray<T>::operator[](length));
return iterator();
}
/**
* Reverse iterator for an Array. Use is similar to that of STL
* const_reverse_iterators:
*
* struct S { ... };
* Array<S> a(buf, len);
* for (Array<S>::reverse_iterator it = a.rbegin(); it < a.rend(); ++it) {
* // Do something with *it.
* }
*/
class reverse_iterator {
public:
reverse_iterator() : item(nullptr) {}
const T& operator*() const {
const T* tmp = item;
return *--tmp;
}
const T* operator->() const { return &operator*(); }
reverse_iterator& operator++() {
--item;
return *this;
}
bool operator<(const reverse_iterator& other) const {
return item > other.item;
}
protected:
friend class Array<T>;
explicit reverse_iterator(const T& item) : item(&item) {}
private:
const T* item;
};
/**
* Returns a reverse iterator pointing at the end of the Array
*/
reverse_iterator rbegin() const {
if (length) return reverse_iterator(UnsizedArray<T>::operator[](length));
return reverse_iterator();
}
/**
* Returns a reverse iterator pointing past the beginning of the Array
*/
reverse_iterator rend() const {
if (length) return reverse_iterator(UnsizedArray<T>::operator[](0));
return reverse_iterator();
}
private:
idx_t length;
};
/**
* Transforms a pointer-to-function to a pointer-to-object pointing at the
* same address.
*/
template <typename T>
void* FunctionPtr(T func) {
union {
void* ptr;
T func;
} f;
f.func = func;
return f.ptr;
}
class AutoLock {
public:
explicit AutoLock(pthread_mutex_t* mutex) : mutex(mutex) {
if (pthread_mutex_lock(mutex)) MOZ_CRASH("pthread_mutex_lock failed");
}
~AutoLock() {
if (pthread_mutex_unlock(mutex)) MOZ_CRASH("pthread_mutex_unlock failed");
}
private:
pthread_mutex_t* mutex;
};
#endif /* Utils_h */
|