1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Implement TimeStamp::Now() with QueryPerformanceCounter() controlled with
// values of GetTickCount64().
#include "mozilla/DynamicallyLinkedFunctionPtr.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/Uptime.h"
#include <stdio.h>
#include <stdlib.h>
#include <intrin.h>
#include <windows.h>
// To enable logging define to your favorite logging API
#define LOG(x)
class AutoCriticalSection {
public:
explicit AutoCriticalSection(LPCRITICAL_SECTION aSection)
: mSection(aSection) {
::EnterCriticalSection(mSection);
}
~AutoCriticalSection() { ::LeaveCriticalSection(mSection); }
private:
LPCRITICAL_SECTION mSection;
};
// Estimate of the smallest duration of time we can measure.
static volatile ULONGLONG sResolution;
static volatile ULONGLONG sResolutionSigDigs;
static const double kNsPerSecd = 1000000000.0;
static const LONGLONG kNsPerMillisec = 1000000;
// ----------------------------------------------------------------------------
// Global constants
// ----------------------------------------------------------------------------
// Tolerance to failures settings.
//
// What is the interval we want to have failure free.
// in [ms]
static const uint32_t kFailureFreeInterval = 5000;
// How many failures we are willing to tolerate in the interval.
static const uint32_t kMaxFailuresPerInterval = 4;
// What is the threshold to treat fluctuations as actual failures.
// in [ms]
static const uint32_t kFailureThreshold = 50;
// If we are not able to get the value of GTC time increment, use this value
// which is the most usual increment.
static const DWORD kDefaultTimeIncrement = 156001;
// ----------------------------------------------------------------------------
// Global variables, not changing at runtime
// ----------------------------------------------------------------------------
// Result of QueryPerformanceFrequency
// We use default of 1 for the case we can't use QueryPerformanceCounter
// to make mt/ms conversions work despite that.
static uint64_t sFrequencyPerSec = 1;
namespace mozilla {
MFBT_API uint64_t GetQueryPerformanceFrequencyPerSec() {
return sFrequencyPerSec;
}
} // namespace mozilla
// How much we are tolerant to GTC occasional loose of resoltion.
// This number says how many multiples of the minimal GTC resolution
// detected on the system are acceptable. This number is empirical.
static const LONGLONG kGTCTickLeapTolerance = 4;
// Base tolerance (more: "inability of detection" range) threshold is calculated
// dynamically, and kept in sGTCResolutionThreshold.
//
// Schematically, QPC worked "100%" correctly if ((GTC_now - GTC_epoch) -
// (QPC_now - QPC_epoch)) was in [-sGTCResolutionThreshold,
// sGTCResolutionThreshold] interval every time we'd compared two time stamps.
// If not, then we check the overflow behind this basic threshold
// is in kFailureThreshold. If not, we condider it as a QPC failure. If too
// many failures in short time are detected, QPC is considered faulty and
// disabled.
//
// Kept in [mt]
static LONGLONG sGTCResolutionThreshold;
// If QPC is found faulty for two stamps in this interval, we engage
// the fault detection algorithm. For duration larger then this limit
// we bypass using durations calculated from QPC when jitter is detected,
// but don't touch the sUseQPC flag.
//
// Value is in [ms].
static const uint32_t kHardFailureLimit = 2000;
// Conversion to [mt]
static LONGLONG sHardFailureLimit;
// Conversion of kFailureFreeInterval and kFailureThreshold to [mt]
static LONGLONG sFailureFreeInterval;
static LONGLONG sFailureThreshold;
// ----------------------------------------------------------------------------
// Systemm status flags
// ----------------------------------------------------------------------------
// Flag for stable TSC that indicates platform where QPC is stable.
static bool sHasStableTSC = false;
// ----------------------------------------------------------------------------
// Global state variables, changing at runtime
// ----------------------------------------------------------------------------
// Initially true, set to false when QPC is found unstable and never
// returns back to true since that time.
static bool volatile sUseQPC = true;
// ----------------------------------------------------------------------------
// Global lock
// ----------------------------------------------------------------------------
// Thread spin count before entering the full wait state for sTimeStampLock.
// Inspired by Rob Arnold's work on PRMJ_Now().
static const DWORD kLockSpinCount = 4096;
// Common mutex (thanks the relative complexity of the logic, this is better
// then using CMPXCHG8B.)
// It is protecting the globals bellow.
static CRITICAL_SECTION sTimeStampLock;
// ----------------------------------------------------------------------------
// Global lock protected variables
// ----------------------------------------------------------------------------
// Timestamp in future until QPC must behave correctly.
// Set to now + kFailureFreeInterval on first QPC failure detection.
// Set to now + E * kFailureFreeInterval on following errors,
// where E is number of errors detected during last kFailureFreeInterval
// milliseconds, calculated simply as:
// E = (sFaultIntoleranceCheckpoint - now) / kFailureFreeInterval + 1.
// When E > kMaxFailuresPerInterval -> disable QPC.
//
// Kept in [mt]
static ULONGLONG sFaultIntoleranceCheckpoint = 0;
namespace mozilla {
// Result is in [mt]
static inline ULONGLONG PerformanceCounter() {
LARGE_INTEGER pc;
::QueryPerformanceCounter(&pc);
// QueryPerformanceCounter may slightly jitter (not be 100% monotonic.)
// This is a simple go-backward protection for such a faulty hardware.
AutoCriticalSection lock(&sTimeStampLock);
static decltype(LARGE_INTEGER::QuadPart) last;
if (last > pc.QuadPart) {
return last * 1000ULL;
}
last = pc.QuadPart;
return pc.QuadPart * 1000ULL;
}
static void InitThresholds() {
DWORD timeAdjustment = 0, timeIncrement = 0;
BOOL timeAdjustmentDisabled;
GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&timeAdjustmentDisabled);
LOG(("TimeStamp: timeIncrement=%d [100ns]", timeIncrement));
if (!timeIncrement) {
timeIncrement = kDefaultTimeIncrement;
}
// Ceiling to a millisecond
// Example values: 156001, 210000
DWORD timeIncrementCeil = timeIncrement;
// Don't want to round up if already rounded, values will be: 156000, 209999
timeIncrementCeil -= 1;
// Convert to ms, values will be: 15, 20
timeIncrementCeil /= 10000;
// Round up, values will be: 16, 21
timeIncrementCeil += 1;
// Convert back to 100ns, values will be: 160000, 210000
timeIncrementCeil *= 10000;
// How many milli-ticks has the interval rounded up
LONGLONG ticksPerGetTickCountResolutionCeiling =
(int64_t(timeIncrementCeil) * sFrequencyPerSec) / 10000LL;
// GTC may jump by 32 (2*16) ms in two steps, therefor use the ceiling value.
sGTCResolutionThreshold =
LONGLONG(kGTCTickLeapTolerance * ticksPerGetTickCountResolutionCeiling);
sHardFailureLimit = ms2mt(kHardFailureLimit);
sFailureFreeInterval = ms2mt(kFailureFreeInterval);
sFailureThreshold = ms2mt(kFailureThreshold);
}
static void InitResolution() {
// 10 total trials is arbitrary: what we're trying to avoid by
// looping is getting unlucky and being interrupted by a context
// switch or signal, or being bitten by paging/cache effects
ULONGLONG minres = ~0ULL;
if (sUseQPC) {
int loops = 10;
do {
ULONGLONG start = PerformanceCounter();
ULONGLONG end = PerformanceCounter();
ULONGLONG candidate = (end - start);
if (candidate < minres) {
minres = candidate;
}
} while (--loops && minres);
if (0 == minres) {
minres = 1;
}
} else {
// GetTickCount has only ~16ms known resolution
minres = ms2mt(16);
}
// Converting minres that is in [mt] to nanosecods, multiplicating
// the argument to preserve resolution.
ULONGLONG result = mt2ms(minres * kNsPerMillisec);
if (0 == result) {
result = 1;
}
sResolution = result;
// find the number of significant digits in mResolution, for the
// sake of ToSecondsSigDigits()
ULONGLONG sigDigs;
for (sigDigs = 1; !(sigDigs == result || 10 * sigDigs > result);
sigDigs *= 10)
;
sResolutionSigDigs = sigDigs;
}
// ----------------------------------------------------------------------------
// TimeStampValue implementation
// ----------------------------------------------------------------------------
MFBT_API TimeStampValue& TimeStampValue::operator+=(const int64_t aOther) {
mGTC += aOther;
mQPC += aOther;
return *this;
}
MFBT_API TimeStampValue& TimeStampValue::operator-=(const int64_t aOther) {
mGTC -= aOther;
mQPC -= aOther;
return *this;
}
// If the duration is less then two seconds, perform check of QPC stability
// by comparing both GTC and QPC calculated durations of this and aOther.
MFBT_API uint64_t TimeStampValue::CheckQPC(const TimeStampValue& aOther) const {
uint64_t deltaGTC = mGTC - aOther.mGTC;
if (!mHasQPC || !aOther.mHasQPC) { // Both not holding QPC
return deltaGTC;
}
uint64_t deltaQPC = mQPC - aOther.mQPC;
if (sHasStableTSC) { // For stable TSC there is no need to check
return deltaQPC;
}
// Check QPC is sane before using it.
int64_t diff = DeprecatedAbs(int64_t(deltaQPC) - int64_t(deltaGTC));
if (diff <= sGTCResolutionThreshold) {
return deltaQPC;
}
// Treat absolutely for calibration purposes
int64_t duration = DeprecatedAbs(int64_t(deltaGTC));
int64_t overflow = diff - sGTCResolutionThreshold;
LOG(("TimeStamp: QPC check after %llums with overflow %1.4fms",
mt2ms(duration), mt2ms_f(overflow)));
if (overflow <= sFailureThreshold) { // We are in the limit, let go.
return deltaQPC;
}
// QPC deviates, don't use it, since now this method may only return deltaGTC.
if (!sUseQPC) { // QPC already disabled, no need to run the fault tolerance
// algorithm.
return deltaGTC;
}
LOG(("TimeStamp: QPC jittered over failure threshold"));
if (duration < sHardFailureLimit) {
// Interval between the two time stamps is very short, consider
// QPC as unstable and record a failure.
uint64_t now = ms2mt(GetTickCount64());
AutoCriticalSection lock(&sTimeStampLock);
if (sFaultIntoleranceCheckpoint && sFaultIntoleranceCheckpoint > now) {
// There's already been an error in the last fault intollerant interval.
// Time since now to the checkpoint actually holds information on how many
// failures there were in the failure free interval we have defined.
uint64_t failureCount =
(sFaultIntoleranceCheckpoint - now + sFailureFreeInterval - 1) /
sFailureFreeInterval;
if (failureCount > kMaxFailuresPerInterval) {
sUseQPC = false;
LOG(("TimeStamp: QPC disabled"));
} else {
// Move the fault intolerance checkpoint more to the future, prolong it
// to reflect the number of detected failures.
++failureCount;
sFaultIntoleranceCheckpoint = now + failureCount * sFailureFreeInterval;
LOG(("TimeStamp: recording %dth QPC failure", failureCount));
}
} else {
// Setup fault intolerance checkpoint in the future for first detected
// error.
sFaultIntoleranceCheckpoint = now + sFailureFreeInterval;
LOG(("TimeStamp: recording 1st QPC failure"));
}
}
return deltaGTC;
}
MFBT_API uint64_t
TimeStampValue::operator-(const TimeStampValue& aOther) const {
if (IsNull() && aOther.IsNull()) {
return uint64_t(0);
}
return CheckQPC(aOther);
}
class TimeStampValueTests {
// Check that nullity is set/not set correctly.
static_assert(TimeStampValue{0}.IsNull());
static_assert(!TimeStampValue{1}.IsNull());
// Check that we ignore GTC when both TimeStampValues have QPC. (In each of
// these tests, looking at GTC would give a different result.)
static_assert(TimeStampValue{1, 2, true} < TimeStampValue{1, 3, true});
static_assert(!(TimeStampValue{1, 2, true} == TimeStampValue{1, 3, true}));
static_assert(TimeStampValue{2, 2, true} < TimeStampValue{1, 3, true});
static_assert(TimeStampValue{2, 2, true} <= TimeStampValue{1, 3, true});
static_assert(!(TimeStampValue{2, 2, true} > TimeStampValue{1, 3, true}));
static_assert(TimeStampValue{1, 3, true} > TimeStampValue{1, 2, true});
static_assert(!(TimeStampValue{1, 3, true} == TimeStampValue{1, 2, true}));
static_assert(TimeStampValue{1, 3, true} > TimeStampValue{2, 2, true});
static_assert(TimeStampValue{1, 3, true} >= TimeStampValue{2, 2, true});
static_assert(!(TimeStampValue{1, 3, true} < TimeStampValue{2, 2, true}));
static_assert(TimeStampValue{1, 3, true} == TimeStampValue{2, 3, true});
static_assert(!(TimeStampValue{1, 3, true} < TimeStampValue{2, 3, true}));
static_assert(TimeStampValue{1, 2, true} != TimeStampValue{1, 3, true});
static_assert(!(TimeStampValue{1, 2, true} == TimeStampValue{1, 3, true}));
// Check that, if either TimeStampValue doesn't have QPC, we only look at the
// GTC values. These are the same cases as above, except that we accept the
// opposite results because we turn off QPC on one or both of the
// TimeStampValue's.
static_assert(TimeStampValue{1, 2, false} == TimeStampValue{1, 3, true});
static_assert(TimeStampValue{1, 2, true} == TimeStampValue{1, 3, false});
static_assert(TimeStampValue{1, 2, false} == TimeStampValue{1, 3, false});
static_assert(TimeStampValue{2, 2, false} > TimeStampValue{1, 3, true});
static_assert(TimeStampValue{2, 2, true} > TimeStampValue{1, 3, false});
static_assert(TimeStampValue{2, 2, false} > TimeStampValue{1, 3, false});
static_assert(TimeStampValue{1, 3, false} == TimeStampValue{1, 2, true});
static_assert(TimeStampValue{1, 3, true} == TimeStampValue{1, 2, false});
static_assert(TimeStampValue{1, 3, false} == TimeStampValue{1, 2, false});
static_assert(TimeStampValue{1, 3, false} < TimeStampValue{2, 2, true});
static_assert(TimeStampValue{1, 3, true} < TimeStampValue{2, 2, false});
static_assert(TimeStampValue{1, 3, false} < TimeStampValue{2, 2, false});
static_assert(TimeStampValue{1, 3, false} < TimeStampValue{2, 3, true});
static_assert(TimeStampValue{1, 3, true} < TimeStampValue{2, 3, false});
static_assert(TimeStampValue{1, 3, false} < TimeStampValue{2, 3, false});
static_assert(TimeStampValue{1, 2, false} == TimeStampValue{1, 3, true});
static_assert(TimeStampValue{1, 2, true} == TimeStampValue{1, 3, false});
static_assert(TimeStampValue{1, 2, false} == TimeStampValue{1, 3, false});
};
// ----------------------------------------------------------------------------
// TimeDuration and TimeStamp implementation
// ----------------------------------------------------------------------------
MFBT_API double BaseTimeDurationPlatformUtils::ToSeconds(int64_t aTicks) {
// Converting before arithmetic avoids blocked store forward
return double(aTicks) / (double(sFrequencyPerSec) * 1000.0);
}
MFBT_API double BaseTimeDurationPlatformUtils::ToSecondsSigDigits(
int64_t aTicks) {
// don't report a value < mResolution ...
LONGLONG resolution = sResolution;
LONGLONG resolutionSigDigs = sResolutionSigDigs;
LONGLONG valueSigDigs = resolution * (aTicks / resolution);
// and chop off insignificant digits
valueSigDigs = resolutionSigDigs * (valueSigDigs / resolutionSigDigs);
return double(valueSigDigs) / kNsPerSecd;
}
MFBT_API int64_t
BaseTimeDurationPlatformUtils::TicksFromMilliseconds(double aMilliseconds) {
double result = ms2mt(aMilliseconds);
if (result > double(INT64_MAX)) {
return INT64_MAX;
} else if (result < double(INT64_MIN)) {
return INT64_MIN;
}
return result;
}
MFBT_API int64_t BaseTimeDurationPlatformUtils::ResolutionInTicks() {
return static_cast<int64_t>(sResolution);
}
static bool HasStableTSC() {
#if defined(_M_ARM64)
// AArch64 defines that its system counter run at a constant rate
// regardless of the current clock frequency of the system. See "The
// Generic Timer", section D7, in the ARMARM for ARMv8.
return true;
#else
union {
int regs[4];
struct {
int nIds;
char cpuString[12];
};
} cpuInfo;
__cpuid(cpuInfo.regs, 0);
// Only allow Intel or AMD CPUs for now.
// The order of the registers is reg[1], reg[3], reg[2]. We just adjust the
// string so that we can compare in one go.
if (_strnicmp(cpuInfo.cpuString, "GenuntelineI", sizeof(cpuInfo.cpuString)) &&
_strnicmp(cpuInfo.cpuString, "AuthcAMDenti", sizeof(cpuInfo.cpuString))) {
return false;
}
int regs[4];
// detect if the Advanced Power Management feature is supported
__cpuid(regs, 0x80000000);
if ((unsigned int)regs[0] < 0x80000007) {
// XXX should we return true here? If there is no APM there may be
// no way how TSC can run out of sync among cores.
return false;
}
__cpuid(regs, 0x80000007);
// if bit 8 is set than TSC will run at a constant rate
// in all ACPI P-states, C-states and T-states
return regs[3] & (1 << 8);
#endif
}
static bool gInitialized = false;
MFBT_API void TimeStamp::Startup() {
if (gInitialized) {
return;
}
gInitialized = true;
// Decide which implementation to use for the high-performance timer.
InitializeCriticalSectionAndSpinCount(&sTimeStampLock, kLockSpinCount);
bool forceGTC = false;
bool forceQPC = false;
char* modevar = getenv("MOZ_TIMESTAMP_MODE");
if (modevar) {
if (!strcmp(modevar, "QPC")) {
forceQPC = true;
} else if (!strcmp(modevar, "GTC")) {
forceGTC = true;
}
}
LARGE_INTEGER freq;
sUseQPC = !forceGTC && ::QueryPerformanceFrequency(&freq);
if (!sUseQPC) {
// No Performance Counter. Fall back to use GetTickCount64.
InitResolution();
LOG(("TimeStamp: using GetTickCount64"));
return;
}
sHasStableTSC = forceQPC || HasStableTSC();
LOG(("TimeStamp: HasStableTSC=%d", sHasStableTSC));
sFrequencyPerSec = freq.QuadPart;
LOG(("TimeStamp: QPC frequency=%llu", sFrequencyPerSec));
InitThresholds();
InitResolution();
return;
}
MFBT_API void TimeStamp::Shutdown() { DeleteCriticalSection(&sTimeStampLock); }
TimeStampValue NowInternal(bool aHighResolution) {
// sUseQPC is volatile
bool useQPC = (aHighResolution && sUseQPC);
// Both values are in [mt] units.
ULONGLONG QPC = useQPC ? PerformanceCounter() : uint64_t(0);
ULONGLONG GTC = ms2mt(GetTickCount64());
return TimeStampValue(GTC, QPC, useQPC);
}
MFBT_API TimeStamp TimeStamp::Now(bool aHighResolution) {
return TimeStamp(NowInternal(aHighResolution));
}
// Computes and returns the process uptime in microseconds.
// Returns 0 if an error was encountered.
MFBT_API uint64_t TimeStamp::ComputeProcessUptime() {
FILETIME start, foo, bar, baz;
bool success = GetProcessTimes(GetCurrentProcess(), &start, &foo, &bar, &baz);
if (!success) {
return 0;
}
static const StaticDynamicallyLinkedFunctionPtr<void(WINAPI*)(LPFILETIME)>
pGetSystemTimePreciseAsFileTime(L"kernel32.dll",
"GetSystemTimePreciseAsFileTime");
FILETIME now;
if (pGetSystemTimePreciseAsFileTime) {
pGetSystemTimePreciseAsFileTime(&now);
} else {
GetSystemTimeAsFileTime(&now);
}
ULARGE_INTEGER startUsec = {{start.dwLowDateTime, start.dwHighDateTime}};
ULARGE_INTEGER nowUsec = {{now.dwLowDateTime, now.dwHighDateTime}};
return (nowUsec.QuadPart - startUsec.QuadPart) / 10ULL;
}
} // namespace mozilla
|