summaryrefslogtreecommitdiffstats
path: root/netwerk/ipc/ChannelEventQueue.h
blob: 1b61088e91bd0e2df3db28752fb85ec632ab4038 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set sw=2 ts=8 et tw=80 :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_net_ChannelEventQueue_h
#define mozilla_net_ChannelEventQueue_h

#include "nsTArray.h"
#include "nsIEventTarget.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Mutex.h"
#include "mozilla/RecursiveMutex.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"

class nsISupports;

namespace mozilla {
namespace net {

class ChannelEvent {
 public:
  MOZ_COUNTED_DEFAULT_CTOR(ChannelEvent)
  MOZ_COUNTED_DTOR_VIRTUAL(ChannelEvent) virtual void Run() = 0;
  virtual already_AddRefed<nsIEventTarget> GetEventTarget() = 0;
};

// Note that MainThreadChannelEvent should not be used in child process since
// GetEventTarget() directly returns an unlabeled event target.
class MainThreadChannelEvent : public ChannelEvent {
 public:
  MOZ_COUNTED_DEFAULT_CTOR(MainThreadChannelEvent)
  MOZ_COUNTED_DTOR_OVERRIDE(MainThreadChannelEvent)

  already_AddRefed<nsIEventTarget> GetEventTarget() override {
    MOZ_ASSERT(XRE_IsParentProcess());

    return do_AddRef(GetMainThreadSerialEventTarget());
  }
};

class ChannelFunctionEvent : public ChannelEvent {
 public:
  ChannelFunctionEvent(
      std::function<already_AddRefed<nsIEventTarget>()>&& aGetEventTarget,
      std::function<void()>&& aCallback)
      : mGetEventTarget(std::move(aGetEventTarget)),
        mCallback(std::move(aCallback)) {}

  void Run() override { mCallback(); }
  already_AddRefed<nsIEventTarget> GetEventTarget() override {
    return mGetEventTarget();
  }

 private:
  const std::function<already_AddRefed<nsIEventTarget>()> mGetEventTarget;
  const std::function<void()> mCallback;
};

// UnsafePtr is a work-around our static analyzer that requires all
// ref-counted objects to be captured in lambda via a RefPtr
// The ChannelEventQueue makes it safe to capture "this" by pointer only.
// This is required as work-around to prevent cycles until bug 1596295
// is resolved.
template <typename T>
class UnsafePtr {
 public:
  explicit UnsafePtr(T* aPtr) : mPtr(aPtr) {}

  T& operator*() const { return *mPtr; }
  T* operator->() const {
    MOZ_ASSERT(mPtr, "dereferencing a null pointer");
    return mPtr;
  }
  operator T*() const& { return mPtr; }
  explicit operator bool() const { return mPtr != nullptr; }

 private:
  T* const mPtr;
};

class NeckoTargetChannelFunctionEvent : public ChannelFunctionEvent {
 public:
  template <typename T>
  NeckoTargetChannelFunctionEvent(T* aChild, std::function<void()>&& aCallback)
      : ChannelFunctionEvent(
            [child = UnsafePtr<T>(aChild)]() {
              MOZ_ASSERT(child);
              return child->GetNeckoTarget();
            },
            std::move(aCallback)) {}
};

// Workaround for Necko re-entrancy dangers. We buffer IPDL messages in a
// queue if still dispatching previous one(s) to listeners/observers.
// Otherwise synchronous XMLHttpRequests and/or other code that spins the
// event loop (ex: IPDL rpc) could cause listener->OnDataAvailable (for
// instance) to be dispatched and called before mListener->OnStartRequest has
// completed.
// The ChannelEventQueue implementation ensures strict ordering of
// event execution across target threads.

class ChannelEventQueue final {
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ChannelEventQueue)

 public:
  explicit ChannelEventQueue(nsISupports* owner)
      : mSuspendCount(0),
        mSuspended(false),
        mForcedCount(0),
        mFlushing(false),
        mHasCheckedForXMLHttpRequest(false),
        mForXMLHttpRequest(false),
        mOwner(owner),
        mMutex("ChannelEventQueue::mMutex"),
        mRunningMutex("ChannelEventQueue::mRunningMutex") {}

  // Puts IPDL-generated channel event into queue, to be run later
  // automatically when EndForcedQueueing and/or Resume is called.
  //
  // @param aCallback - the ChannelEvent
  // @param aAssertionWhenNotQueued - this optional param will be used in an
  //   assertion when the event is executed directly.
  inline void RunOrEnqueue(ChannelEvent* aCallback,
                           bool aAssertionWhenNotQueued = false);

  // Append ChannelEvent in front of the event queue.
  inline void PrependEvent(UniquePtr<ChannelEvent>&& aEvent);
  inline void PrependEvents(nsTArray<UniquePtr<ChannelEvent>>& aEvents);

  // After StartForcedQueueing is called, RunOrEnqueue() will start enqueuing
  // events that will be run/flushed when EndForcedQueueing is called.
  // - Note: queueing may still be required after EndForcedQueueing() (if the
  //   queue is suspended, etc):  always call RunOrEnqueue() to avoid race
  //   conditions.
  inline void StartForcedQueueing();
  inline void EndForcedQueueing();

  // Suspend/resume event queue.  RunOrEnqueue() will start enqueuing
  // events and they will be run/flushed when resume is called.  These should be
  // called when the channel owning the event queue is suspended/resumed.
  void Suspend();
  // Resume flushes the queue asynchronously, i.e. items in queue will be
  // dispatched in a new event on the current thread.
  void Resume();

  void NotifyReleasingOwner() {
    MutexAutoLock lock(mMutex);
    mOwner = nullptr;
  }

#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
  bool IsEmpty() {
    MutexAutoLock lock(mMutex);
    return mEventQueue.IsEmpty();
  }
#endif

 private:
  // Private destructor, to discourage deletion outside of Release():
  ~ChannelEventQueue() = default;

  void SuspendInternal();
  void ResumeInternal();

  bool MaybeSuspendIfEventsAreSuppressed() MOZ_REQUIRES(mMutex);

  inline void MaybeFlushQueue();
  void FlushQueue();
  inline void CompleteResume();

  ChannelEvent* TakeEvent();

  nsTArray<UniquePtr<ChannelEvent>> mEventQueue MOZ_GUARDED_BY(mMutex);

  uint32_t mSuspendCount MOZ_GUARDED_BY(mMutex);
  bool mSuspended MOZ_GUARDED_BY(mMutex);
  uint32_t mForcedCount  // Support ForcedQueueing on multiple thread.
      MOZ_GUARDED_BY(mMutex);
  bool mFlushing MOZ_GUARDED_BY(mMutex);

  // Whether the queue is associated with an XHR. This is lazily instantiated
  // the first time it is needed. These are MainThread-only.
  bool mHasCheckedForXMLHttpRequest;
  bool mForXMLHttpRequest;

  // Keep ptr to avoid refcount cycle: only grab ref during flushing.
  nsISupports* mOwner MOZ_GUARDED_BY(mMutex);

  // For atomic mEventQueue operation and state update
  Mutex mMutex;

  // To guarantee event execution order among threads
  RecursiveMutex mRunningMutex MOZ_ACQUIRED_BEFORE(mMutex);

  friend class AutoEventEnqueuer;
};

inline void ChannelEventQueue::RunOrEnqueue(ChannelEvent* aCallback,
                                            bool aAssertionWhenNotQueued) {
  MOZ_ASSERT(aCallback);
  // Events execution could be a destruction of the channel (and our own
  // destructor) unless we make sure its refcount doesn't drop to 0 while this
  // method is running.
  nsCOMPtr<nsISupports> kungFuDeathGrip;

  // To avoid leaks.
  UniquePtr<ChannelEvent> event(aCallback);

  // To guarantee that the running event and all the events generated within
  // it will be finished before events on other threads.
  RecursiveMutexAutoLock lock(mRunningMutex);
  {
    MutexAutoLock lock(mMutex);
    kungFuDeathGrip = mOwner;  // must be under the lock

    bool enqueue = !!mForcedCount || mSuspended || mFlushing ||
                   !mEventQueue.IsEmpty() ||
                   MaybeSuspendIfEventsAreSuppressed();
    // To ensure strict ordering of events across multiple threads we buffer the
    // events for the below cases:
    // a. event queuing is forced by AutoEventEnqueuer
    // b. event queue is suspended
    // c. an event is currently flushed/executed from the queue
    // d. queue is non-empty (pending events on remote thread targets)
    if (enqueue) {
      mEventQueue.AppendElement(std::move(event));
      return;
    }

    nsCOMPtr<nsIEventTarget> target = event->GetEventTarget();
    MOZ_ASSERT(target);

    bool isCurrentThread = false;
    DebugOnly<nsresult> rv = target->IsOnCurrentThread(&isCurrentThread);
    MOZ_ASSERT(NS_SUCCEEDED(rv));

    if (!isCurrentThread) {
      // Leverage Suspend/Resume mechanism to trigger flush procedure without
      // creating a new one.
      // The execution of further events in the queue is blocked until the
      // target thread completes the execution of this event.
      // A callback is dispatched to the target thread to flush events from the
      // queue. This is done
      // by ResumeInternal which dispatches a runnable
      // (CompleteResumeRunnable) to the target thread. The target thread will
      // call CompleteResume to flush the queue. All the events are run
      // synchronously in their respective target threads.
      SuspendInternal();
      mEventQueue.AppendElement(std::move(event));
      ResumeInternal();
      return;
    }
  }

  MOZ_RELEASE_ASSERT(!aAssertionWhenNotQueued);
  // execute the event synchronously if we are not queuing it and
  // the target thread is the current thread
  event->Run();
}

inline void ChannelEventQueue::StartForcedQueueing() {
  MutexAutoLock lock(mMutex);
  ++mForcedCount;
}

inline void ChannelEventQueue::EndForcedQueueing() {
  bool tryFlush = false;
  {
    MutexAutoLock lock(mMutex);
    MOZ_ASSERT(mForcedCount > 0);
    if (!--mForcedCount) {
      tryFlush = true;
    }
  }

  if (tryFlush) {
    MaybeFlushQueue();
  }
}

inline void ChannelEventQueue::PrependEvent(UniquePtr<ChannelEvent>&& aEvent) {
  MutexAutoLock lock(mMutex);

  // Prepending event while no queue flush foreseen might cause the following
  // channel events not run. This assertion here guarantee there must be a
  // queue flush, either triggered by Resume or EndForcedQueueing, to execute
  // the added event.
  MOZ_ASSERT(mSuspended || !!mForcedCount);

  mEventQueue.InsertElementAt(0, std::move(aEvent));
}

inline void ChannelEventQueue::PrependEvents(
    nsTArray<UniquePtr<ChannelEvent>>& aEvents) {
  MutexAutoLock lock(mMutex);

  // Prepending event while no queue flush foreseen might cause the following
  // channel events not run. This assertion here guarantee there must be a
  // queue flush, either triggered by Resume or EndForcedQueueing, to execute
  // the added events.
  MOZ_ASSERT(mSuspended || !!mForcedCount);

  mEventQueue.InsertElementsAt(0, aEvents.Length());

  for (uint32_t i = 0; i < aEvents.Length(); i++) {
    mEventQueue[i] = std::move(aEvents[i]);
  }
}

inline void ChannelEventQueue::CompleteResume() {
  bool tryFlush = false;
  {
    MutexAutoLock lock(mMutex);

    // channel may have been suspended again since Resume fired event to call
    // this.
    if (!mSuspendCount) {
      // we need to remain logically suspended (for purposes of queuing incoming
      // messages) until this point, else new incoming messages could run before
      // queued ones.
      mSuspended = false;
      tryFlush = true;
    }
  }

  if (tryFlush) {
    MaybeFlushQueue();
  }
}

inline void ChannelEventQueue::MaybeFlushQueue() {
  // Don't flush if forced queuing on, we're already being flushed, or
  // suspended, or there's nothing to flush
  bool flushQueue = false;

  {
    MutexAutoLock lock(mMutex);
    flushQueue = !mForcedCount && !mFlushing && !mSuspended &&
                 !mEventQueue.IsEmpty() && !MaybeSuspendIfEventsAreSuppressed();

    // Only one thread is allowed to run FlushQueue at a time.
    if (flushQueue) {
      mFlushing = true;
    }
  }

  if (flushQueue) {
    FlushQueue();
  }
}

// Ensures that RunOrEnqueue() will be collecting events during its lifetime
// (letting caller know incoming IPDL msgs should be queued). Flushes the queue
// when it goes out of scope.
class MOZ_STACK_CLASS AutoEventEnqueuer {
 public:
  explicit AutoEventEnqueuer(ChannelEventQueue* queue) : mEventQueue(queue) {
    {
      // Probably not actually needed, since NotifyReleasingOwner should
      // only happen after this, but safer to take it in case things change
      MutexAutoLock lock(queue->mMutex);
      mOwner = queue->mOwner;
    }
    mEventQueue->StartForcedQueueing();
  }
  ~AutoEventEnqueuer() { mEventQueue->EndForcedQueueing(); }

 private:
  RefPtr<ChannelEventQueue> mEventQueue;
  // Ensure channel object lives longer than ChannelEventQueue.
  nsCOMPtr<nsISupports> mOwner;
};

}  // namespace net
}  // namespace mozilla

#endif