summaryrefslogtreecommitdiffstats
path: root/security/manager/ssl/AppSignatureVerification.cpp
blob: 991006e1c1e628b78ccf0081cc37050079e81eaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsNSSCertificateDB.h"

#include "AppTrustDomain.h"
#include "CryptoTask.h"
#include "NSSCertDBTrustDomain.h"
#include "ScopedNSSTypes.h"
#include "SharedCertVerifier.h"
#include "certdb.h"
#include "cms.h"
#include "cosec.h"
#include "mozilla/Base64.h"
#include "mozilla/Casting.h"
#include "mozilla/Logging.h"
#include "mozilla/Preferences.h"
#include "mozilla/RefPtr.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "nsCOMPtr.h"
#include "nsComponentManagerUtils.h"
#include "nsDependentString.h"
#include "nsHashKeys.h"
#include "nsIFile.h"
#include "nsIInputStream.h"
#include "nsIStringEnumerator.h"
#include "nsIZipReader.h"
#include "nsNSSCertificate.h"
#include "nsNetUtil.h"
#include "nsProxyRelease.h"
#include "nsString.h"
#include "nsTHashtable.h"
#include "mozpkix/pkix.h"
#include "mozpkix/pkixnss.h"
#include "mozpkix/pkixutil.h"
#include "secerr.h"
#include "secmime.h"

using namespace mozilla::pkix;
using namespace mozilla;
using namespace mozilla::psm;

extern mozilla::LazyLogModule gPIPNSSLog;

namespace {

// A convenient way to pair the bytes of a digest with the algorithm that
// purportedly produced those bytes. Only SHA-1 and SHA-256 are supported.
struct DigestWithAlgorithm {
  nsresult ValidateLength() const {
    size_t hashLen;
    switch (mAlgorithm) {
      case SEC_OID_SHA256:
        hashLen = SHA256_LENGTH;
        break;
      case SEC_OID_SHA1:
        hashLen = SHA1_LENGTH;
        break;
      default:
        MOZ_ASSERT_UNREACHABLE(
            "unsupported hash type in DigestWithAlgorithm::ValidateLength");
        return NS_ERROR_FAILURE;
    }
    if (mDigest.Length() != hashLen) {
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }
    return NS_OK;
  }

  nsAutoCString mDigest;
  SECOidTag mAlgorithm;
};

// The digest must have a lifetime greater than or equal to the returned string.
inline nsDependentCSubstring DigestToDependentString(
    nsTArray<uint8_t>& digest) {
  return nsDependentCSubstring(BitwiseCast<char*, uint8_t*>(digest.Elements()),
                               digest.Length());
}

// Reads a maximum of 8MB from a stream into the supplied buffer.
// The reason for the 8MB limit is because this function is used to read
// signature-related files and we want to avoid OOM. The uncompressed length of
// an entry can be hundreds of times larger than the compressed version,
// especially if someone has specifically crafted the entry to cause OOM or to
// consume massive amounts of disk space.
//
// @param stream  The input stream to read from.
// @param buf     The buffer that we read the stream into, which must have
//                already been allocated.
nsresult ReadStream(const nsCOMPtr<nsIInputStream>& stream,
                    /*out*/ SECItem& buf) {
  // The size returned by Available() might be inaccurate so we need
  // to check that Available() matches up with the actual length of
  // the file.
  uint64_t length;
  nsresult rv = stream->Available(&length);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return rv;
  }

  // Cap the maximum accepted size of signature-related files at 8MB (which
  // should be much larger than necessary for our purposes) to avoid OOM.
  static const uint32_t MAX_LENGTH = 8 * 1000 * 1000;
  if (length > MAX_LENGTH) {
    return NS_ERROR_FILE_TOO_BIG;
  }

  // With bug 164695 in mind we +1 to leave room for null-terminating
  // the buffer.
  SECITEM_AllocItem(buf, static_cast<uint32_t>(length + 1));

  // buf.len == length + 1. We attempt to read length + 1 bytes
  // instead of length, so that we can check whether the metadata for
  // the entry is incorrect.
  uint32_t bytesRead;
  rv = stream->Read(BitwiseCast<char*, unsigned char*>(buf.data), buf.len,
                    &bytesRead);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return rv;
  }
  if (bytesRead != length) {
    return NS_ERROR_FILE_CORRUPTED;
  }

  buf.data[buf.len - 1] = 0;  // null-terminate

  return NS_OK;
}

// Finds exactly one (signature metadata) JAR entry that matches the given
// search pattern, and then loads it. Fails if there are no matches or if
// there is more than one match. If bufDigest is not null then on success
// bufDigest will contain the digeset of the entry using the given digest
// algorithm.
nsresult FindAndLoadOneEntry(
    nsIZipReader* zip, const nsACString& searchPattern,
    /*out*/ nsACString& filename,
    /*out*/ SECItem& buf,
    /*optional, in*/ SECOidTag digestAlgorithm = SEC_OID_SHA1,
    /*optional, out*/ nsTArray<uint8_t>* bufDigest = nullptr) {
  nsCOMPtr<nsIUTF8StringEnumerator> files;
  nsresult rv = zip->FindEntries(searchPattern, getter_AddRefs(files));
  if (NS_FAILED(rv) || !files) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }

  bool more;
  rv = files->HasMore(&more);
  NS_ENSURE_SUCCESS(rv, rv);
  if (!more) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }

  rv = files->GetNext(filename);
  NS_ENSURE_SUCCESS(rv, rv);

  // Check if there is more than one match, if so then error!
  rv = files->HasMore(&more);
  NS_ENSURE_SUCCESS(rv, rv);
  if (more) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }

  nsCOMPtr<nsIInputStream> stream;
  rv = zip->GetInputStream(filename, getter_AddRefs(stream));
  NS_ENSURE_SUCCESS(rv, rv);

  rv = ReadStream(stream, buf);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return NS_ERROR_SIGNED_JAR_ENTRY_INVALID;
  }

  if (bufDigest) {
    rv = Digest::DigestBuf(digestAlgorithm,
                           Span<uint8_t>{buf.data, buf.len - 1}, *bufDigest);
    NS_ENSURE_SUCCESS(rv, rv);
  }

  return NS_OK;
}

// Verify the digest of an entry. We avoid loading the entire entry into memory
// at once, which would require memory in proportion to the size of the largest
// entry. Instead, we require only a small, fixed amount of memory.
//
// @param stream  an input stream from a JAR entry or file depending on whether
//                it is from a signed archive or unpacked into a directory
// @param digestFromManifest The digest that we're supposed to check the file's
//                           contents against, from the manifest
// @param buf A scratch buffer that we use for doing the I/O, which must have
//            already been allocated. The size of this buffer is the unit
//            size of our I/O.
nsresult VerifyStreamContentDigest(
    nsIInputStream* stream, const DigestWithAlgorithm& digestFromManifest,
    SECItem& buf) {
  MOZ_ASSERT(buf.len > 0);
  nsresult rv = digestFromManifest.ValidateLength();
  if (NS_FAILED(rv)) {
    return rv;
  }

  uint64_t len64;
  rv = stream->Available(&len64);
  NS_ENSURE_SUCCESS(rv, rv);
  if (len64 > UINT32_MAX) {
    return NS_ERROR_SIGNED_JAR_ENTRY_TOO_LARGE;
  }

  Digest digest;

  rv = digest.Begin(digestFromManifest.mAlgorithm);
  NS_ENSURE_SUCCESS(rv, rv);

  uint64_t totalBytesRead = 0;
  for (;;) {
    uint32_t bytesRead;
    rv = stream->Read(BitwiseCast<char*, unsigned char*>(buf.data), buf.len,
                      &bytesRead);
    NS_ENSURE_SUCCESS(rv, rv);

    if (bytesRead == 0) {
      break;  // EOF
    }

    totalBytesRead += bytesRead;
    if (totalBytesRead >= UINT32_MAX) {
      return NS_ERROR_SIGNED_JAR_ENTRY_TOO_LARGE;
    }

    rv = digest.Update(buf.data, bytesRead);
    NS_ENSURE_SUCCESS(rv, rv);
  }

  if (totalBytesRead != len64) {
    // The metadata we used for Available() doesn't match the actual size of
    // the entry.
    return NS_ERROR_SIGNED_JAR_ENTRY_INVALID;
  }

  // Verify that the digests match.
  nsTArray<uint8_t> outArray;
  rv = digest.End(outArray);
  NS_ENSURE_SUCCESS(rv, rv);

  nsDependentCSubstring digestStr(DigestToDependentString(outArray));
  if (!digestStr.Equals(digestFromManifest.mDigest)) {
    return NS_ERROR_SIGNED_JAR_MODIFIED_ENTRY;
  }

  return NS_OK;
}

nsresult VerifyEntryContentDigest(nsIZipReader* zip,
                                  const nsACString& aFilename,
                                  const DigestWithAlgorithm& digestFromManifest,
                                  SECItem& buf) {
  nsCOMPtr<nsIInputStream> stream;
  nsresult rv = zip->GetInputStream(aFilename, getter_AddRefs(stream));
  if (NS_FAILED(rv)) {
    return NS_ERROR_SIGNED_JAR_ENTRY_MISSING;
  }

  return VerifyStreamContentDigest(stream, digestFromManifest, buf);
}

// On input, nextLineStart is the start of the current line. On output,
// nextLineStart is the start of the next line.
nsresult ReadLine(/*in/out*/ const char*& nextLineStart,
                  /*out*/ nsCString& line, bool allowContinuations = true) {
  line.Truncate();
  size_t previousLength = 0;
  size_t currentLength = 0;
  for (;;) {
    const char* eol = strpbrk(nextLineStart, "\r\n");

    if (!eol) {  // Reached end of file before newline
      eol = nextLineStart + strlen(nextLineStart);
    }

    previousLength = currentLength;
    line.Append(nextLineStart, eol - nextLineStart);
    currentLength = line.Length();

    // The spec says "No line may be longer than 72 bytes (not characters)"
    // in its UTF8-encoded form.
    static const size_t lineLimit = 72;
    if (currentLength - previousLength > lineLimit) {
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }

    // The spec says: "Implementations should support 65535-byte
    // (not character) header values..."
    if (currentLength > 65535) {
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }

    if (*eol == '\r') {
      ++eol;
    }
    if (*eol == '\n') {
      ++eol;
    }

    nextLineStart = eol;

    if (*eol != ' ') {
      // not a continuation
      return NS_OK;
    }

    // continuation
    if (!allowContinuations) {
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }

    ++nextLineStart;  // skip space and keep appending
  }
}

// The header strings are defined in the JAR specification.
#define JAR_MF_SEARCH_STRING "(M|/M)ETA-INF/(M|m)(ANIFEST|anifest).(MF|mf)$"
#define JAR_COSE_MF_SEARCH_STRING "(M|/M)ETA-INF/cose.manifest$"
#define JAR_SF_SEARCH_STRING "(M|/M)ETA-INF/*.(SF|sf)$"
#define JAR_RSA_SEARCH_STRING "(M|/M)ETA-INF/*.(RSA|rsa)$"
#define JAR_COSE_SEARCH_STRING "(M|/M)ETA-INF/cose.sig$"
#define JAR_META_DIR "META-INF"
#define JAR_MF_HEADER "Manifest-Version: 1.0"
#define JAR_SF_HEADER "Signature-Version: 1.0"

nsresult ParseAttribute(const nsAutoCString& curLine,
                        /*out*/ nsAutoCString& attrName,
                        /*out*/ nsAutoCString& attrValue) {
  // Find the colon that separates the name from the value.
  int32_t colonPos = curLine.FindChar(':');
  if (colonPos == kNotFound) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }

  // set attrName to the name, skipping spaces between the name and colon
  int32_t nameEnd = colonPos;
  for (;;) {
    if (nameEnd == 0) {
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;  // colon with no name
    }
    if (curLine[nameEnd - 1] != ' ') break;
    --nameEnd;
  }
  curLine.Left(attrName, nameEnd);

  // Set attrValue to the value, skipping spaces between the colon and the
  // value. The value may be empty.
  int32_t valueStart = colonPos + 1;
  int32_t curLineLength = curLine.Length();
  while (valueStart != curLineLength && curLine[valueStart] == ' ') {
    ++valueStart;
  }
  curLine.Right(attrValue, curLineLength - valueStart);

  return NS_OK;
}

// Parses the version line of the MF or SF header.
nsresult CheckManifestVersion(const char*& nextLineStart,
                              const nsACString& expectedHeader) {
  // The JAR spec says: "Manifest-Version and Signature-Version must be first,
  // and in exactly that case (so that they can be recognized easily as magic
  // strings)."
  nsAutoCString curLine;
  nsresult rv = ReadLine(nextLineStart, curLine, false);
  if (NS_FAILED(rv)) {
    return rv;
  }
  if (!curLine.Equals(expectedHeader)) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }
  return NS_OK;
}

// Parses a signature file (SF) based on the JDK 8 JAR Specification.
//
// The SF file must contain a SHA*-Digest-Manifest attribute in the main
// section (where the * is either 1 or 256, depending on the given digest
// algorithm). All other sections are ignored. This means that this will NOT
// parse old-style signature files that have separate digests per entry.
// The JDK8 x-Digest-Manifest variant is better because:
//
//   (1) It allows us to follow the principle that we should minimize the
//       processing of data that we do before we verify its signature. In
//       particular, with the x-Digest-Manifest style, we can verify the digest
//       of MANIFEST.MF before we parse it, which prevents malicious JARs
//       exploiting our MANIFEST.MF parser.
//   (2) It is more time-efficient and space-efficient to have one
//       x-Digest-Manifest instead of multiple x-Digest values.
//
// filebuf must be null-terminated. On output, mfDigest will contain the
// decoded value of the appropriate SHA*-DigestManifest, if found.
nsresult ParseSF(const char* filebuf, SECOidTag digestAlgorithm,
                 /*out*/ nsAutoCString& mfDigest) {
  const char* digestNameToFind = nullptr;
  switch (digestAlgorithm) {
    case SEC_OID_SHA256:
      digestNameToFind = "sha256-digest-manifest";
      break;
    case SEC_OID_SHA1:
      digestNameToFind = "sha1-digest-manifest";
      break;
    default:
      MOZ_ASSERT_UNREACHABLE("bad argument to ParseSF");
      return NS_ERROR_FAILURE;
  }

  const char* nextLineStart = filebuf;
  nsresult rv =
      CheckManifestVersion(nextLineStart, nsLiteralCString(JAR_SF_HEADER));
  if (NS_FAILED(rv)) {
    return rv;
  }

  for (;;) {
    nsAutoCString curLine;
    rv = ReadLine(nextLineStart, curLine);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (curLine.Length() == 0) {
      // End of main section (blank line or end-of-file). We didn't find the
      // SHA*-Digest-Manifest we were looking for.
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }

    nsAutoCString attrName;
    nsAutoCString attrValue;
    rv = ParseAttribute(curLine, attrName, attrValue);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (attrName.EqualsIgnoreCase(digestNameToFind)) {
      rv = Base64Decode(attrValue, mfDigest);
      if (NS_FAILED(rv)) {
        return rv;
      }

      // There could be multiple SHA*-Digest-Manifest attributes, which
      // would be an error, but it's better to just skip any erroneous
      // duplicate entries rather than trying to detect them, because:
      //
      //   (1) It's simpler, and simpler generally means more secure
      //   (2) An attacker can't make us accept a JAR we would otherwise
      //       reject just by adding additional SHA*-Digest-Manifest
      //       attributes.
      return NS_OK;
    }

    // ignore unrecognized attributes
  }

  MOZ_ASSERT_UNREACHABLE("somehow exited loop in ParseSF without returning");
  return NS_ERROR_FAILURE;
}

// Parses MANIFEST.MF. The filenames of all entries will be returned in
// mfItems. buf must be a pre-allocated scratch buffer that is used for doing
// I/O. Each file's contents are verified against the entry in the manifest with
// the digest algorithm that matches the given one. This algorithm comes from
// the signature file. If the signature file has a SHA-256 digest, then SHA-256
// entries must be present in the manifest file. If the signature file only has
// a SHA-1 digest, then only SHA-1 digests will be used in the manifest file.
nsresult ParseMF(const char* filebuf, nsIZipReader* zip,
                 SECOidTag digestAlgorithm,
                 /*out*/ nsTHashtable<nsCStringHashKey>& mfItems,
                 ScopedAutoSECItem& buf) {
  const char* digestNameToFind = nullptr;
  switch (digestAlgorithm) {
    case SEC_OID_SHA256:
      digestNameToFind = "sha256-digest";
      break;
    case SEC_OID_SHA1:
      digestNameToFind = "sha1-digest";
      break;
    default:
      MOZ_ASSERT_UNREACHABLE("bad argument to ParseMF");
      return NS_ERROR_FAILURE;
  }

  const char* nextLineStart = filebuf;
  nsresult rv =
      CheckManifestVersion(nextLineStart, nsLiteralCString(JAR_MF_HEADER));
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Skip the rest of the header section, which ends with a blank line.
  {
    nsAutoCString line;
    do {
      rv = ReadLine(nextLineStart, line);
      if (NS_FAILED(rv)) {
        return rv;
      }
    } while (line.Length() > 0);

    // Manifest containing no file entries is OK, though useless.
    if (*nextLineStart == '\0') {
      return NS_OK;
    }
  }

  nsAutoCString curItemName;
  nsAutoCString digest;

  for (;;) {
    nsAutoCString curLine;
    rv = ReadLine(nextLineStart, curLine);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (curLine.Length() == 0) {
      // end of section (blank line or end-of-file)

      if (curItemName.Length() == 0) {
        // '...Each section must start with an attribute with the name as
        // "Name",...', so every section must have a Name attribute.
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
      }

      if (digest.IsEmpty()) {
        // We require every entry to have a digest, since we require every
        // entry to be signed and we don't allow duplicate entries.
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
      }

      if (mfItems.Contains(curItemName)) {
        // Duplicate entry
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
      }

      // Verify that the entry's content digest matches the digest from this
      // MF section.
      DigestWithAlgorithm digestWithAlgorithm = {digest, digestAlgorithm};
      rv = VerifyEntryContentDigest(zip, curItemName, digestWithAlgorithm, buf);
      if (NS_FAILED(rv)) {
        return rv;
      }

      mfItems.PutEntry(curItemName);

      if (*nextLineStart == '\0') {
        // end-of-file
        break;
      }

      // reset so we know we haven't encountered either of these for the next
      // item yet.
      curItemName.Truncate();
      digest.Truncate();

      continue;  // skip the rest of the loop below
    }

    nsAutoCString attrName;
    nsAutoCString attrValue;
    rv = ParseAttribute(curLine, attrName, attrValue);
    if (NS_FAILED(rv)) {
      return rv;
    }

    // Lines to look for:

    // (1) Digest:
    if (attrName.EqualsIgnoreCase(digestNameToFind)) {
      if (!digest.IsEmpty()) {  // multiple SHA* digests in section
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
      }

      rv = Base64Decode(attrValue, digest);
      if (NS_FAILED(rv)) {
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
      }

      continue;
    }

    // (2) Name: associates this manifest section with a file in the jar.
    if (attrName.LowerCaseEqualsLiteral("name")) {
      if (MOZ_UNLIKELY(curItemName.Length() > 0))  // multiple names in section
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;

      if (MOZ_UNLIKELY(attrValue.Length() == 0))
        return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;

      curItemName = attrValue;

      continue;
    }

    // (3) Magic: the only other must-understand attribute
    if (attrName.LowerCaseEqualsLiteral("magic")) {
      // We don't understand any magic, so we can't verify an entry that
      // requires magic. Since we require every entry to have a valid
      // signature, we have no choice but to reject the entry.
      return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
    }

    // unrecognized attributes must be ignored
  }

  return NS_OK;
}

nsresult VerifyCertificate(Span<const uint8_t> signerCert,
                           AppTrustedRoot trustedRoot,
                           nsTArray<Span<const uint8_t>>&& collectedCerts) {
  AppTrustDomain trustDomain(std::move(collectedCerts));
  nsresult rv = trustDomain.SetTrustedRoot(trustedRoot);
  if (NS_FAILED(rv)) {
    return rv;
  }
  Input certDER;
  mozilla::pkix::Result result =
      certDER.Init(signerCert.Elements(), signerCert.Length());
  if (result != Success) {
    return mozilla::psm::GetXPCOMFromNSSError(MapResultToPRErrorCode(result));
  }

  result = BuildCertChain(
      trustDomain, certDER, Now(), EndEntityOrCA::MustBeEndEntity,
      KeyUsage::digitalSignature, KeyPurposeId::id_kp_codeSigning,
      CertPolicyId::anyPolicy, nullptr /*stapledOCSPResponse*/);
  if (result == mozilla::pkix::Result::ERROR_EXPIRED_CERTIFICATE ||
      result == mozilla::pkix::Result::ERROR_NOT_YET_VALID_CERTIFICATE) {
    // For code-signing you normally need trusted 3rd-party timestamps to
    // handle expiration properly. The signer could always mess with their
    // system clock so you can't trust the certificate was un-expired when
    // the signing took place. The choice is either to ignore expiration
    // or to enforce expiration at time of use. The latter leads to the
    // user-hostile result that perfectly good code stops working.
    //
    // Our package format doesn't support timestamps (nor do we have a
    // trusted 3rd party timestamper), but since we sign all of our apps and
    // add-ons ourselves we can trust ourselves not to mess with the clock
    // on the signing systems. We also have a revocation mechanism if we
    // need it. Under these conditions it's OK to ignore cert  errors related
    // to time validity (expiration and "not yet valid").
    //
    // This is an invalid approach if
    //  * we issue certs to let others sign their own packages
    //  * mozilla::pkix returns "expired" when there are "worse" problems
    //    with the certificate or chain.
    // (see bug 1267318)
    result = Success;
  }
  if (result != Success) {
    return mozilla::psm::GetXPCOMFromNSSError(MapResultToPRErrorCode(result));
  }

  return NS_OK;
}

// Given a SECOidTag representing a digest algorithm (either SEC_OID_SHA1 or
// SEC_OID_SHA256), returns the first signerInfo in the given signedData that
// purports to have been created using that digest algorithm, or nullptr if
// there is none.
// The returned signerInfo is owned by signedData, so the caller must ensure
// that the lifetime of the signerInfo is contained by the lifetime of the
// signedData.
NSSCMSSignerInfo* GetSignerInfoForDigestAlgorithm(NSSCMSSignedData* signedData,
                                                  SECOidTag digestAlgorithm) {
  MOZ_ASSERT(digestAlgorithm == SEC_OID_SHA1 ||
             digestAlgorithm == SEC_OID_SHA256);
  if (digestAlgorithm != SEC_OID_SHA1 && digestAlgorithm != SEC_OID_SHA256) {
    return nullptr;
  }

  int numSigners = NSS_CMSSignedData_SignerInfoCount(signedData);
  if (numSigners < 1) {
    return nullptr;
  }
  for (int i = 0; i < numSigners; i++) {
    NSSCMSSignerInfo* signerInfo =
        NSS_CMSSignedData_GetSignerInfo(signedData, i);
    // NSS_CMSSignerInfo_GetDigestAlgTag isn't exported from NSS.
    SECOidData* digestAlgOID = SECOID_FindOID(&signerInfo->digestAlg.algorithm);
    if (!digestAlgOID) {
      continue;
    }
    if (digestAlgorithm == digestAlgOID->offset) {
      return signerInfo;
    }
  }
  return nullptr;
}

Span<const uint8_t> GetPKCS7SignerCert(
    NSSCMSSignerInfo* signerInfo,
    nsTArray<Span<const uint8_t>>& collectedCerts) {
  if (!signerInfo) {
    return {};
  }
  // The NSS APIs use the term "CMS", but since these are all signed by Mozilla
  // infrastructure, we know they are actually PKCS7. This means that this only
  // needs to handle issuer/serial number signer identifiers.
  if (signerInfo->signerIdentifier.identifierType != NSSCMSSignerID_IssuerSN) {
    return {};
  }
  CERTIssuerAndSN* issuerAndSN = signerInfo->signerIdentifier.id.issuerAndSN;
  if (!issuerAndSN) {
    return {};
  }
  Input issuer;
  mozilla::pkix::Result result =
      issuer.Init(issuerAndSN->derIssuer.data, issuerAndSN->derIssuer.len);
  if (result != Success) {
    return {};
  }
  Input serialNumber;
  result = serialNumber.Init(issuerAndSN->serialNumber.data,
                             issuerAndSN->serialNumber.len);
  if (result != Success) {
    return {};
  }
  for (const auto& certDER : collectedCerts) {
    Input certInput;
    result = certInput.Init(certDER.Elements(), certDER.Length());
    if (result != Success) {
      continue;  // probably too big
    }
    // Since this only decodes the certificate and doesn't attempt to build a
    // verified chain with it, the EndEntityOrCA parameter doesn't matter.
    BackCert cert(certInput, EndEntityOrCA::MustBeEndEntity, nullptr);
    result = cert.Init();
    if (result != Success) {
      continue;
    }
    if (InputsAreEqual(issuer, cert.GetIssuer()) &&
        InputsAreEqual(serialNumber, cert.GetSerialNumber())) {
      return certDER;
    }
  }
  return {};
}

nsresult VerifySignature(AppTrustedRoot trustedRoot, const SECItem& buffer,
                         nsTArray<uint8_t>& detachedSHA1Digest,
                         nsTArray<uint8_t>& detachedSHA256Digest,
                         /*out*/ SECOidTag& digestAlgorithm,
                         /*out*/ nsTArray<uint8_t>& signerCert) {
  if (NS_WARN_IF(!buffer.data || buffer.len == 0 ||
                 detachedSHA1Digest.Length() == 0 ||
                 detachedSHA256Digest.Length() == 0)) {
    return NS_ERROR_INVALID_ARG;
  }

  UniqueNSSCMSMessage cmsMsg(NSS_CMSMessage_CreateFromDER(
      const_cast<SECItem*>(&buffer), nullptr, nullptr, nullptr, nullptr,
      nullptr, nullptr));
  if (!cmsMsg) {
    return NS_ERROR_CMS_VERIFY_NOT_SIGNED;
  }

  if (!NSS_CMSMessage_IsSigned(cmsMsg.get())) {
    return NS_ERROR_CMS_VERIFY_NOT_SIGNED;
  }

  NSSCMSContentInfo* cinfo = NSS_CMSMessage_ContentLevel(cmsMsg.get(), 0);
  if (!cinfo) {
    return NS_ERROR_CMS_VERIFY_NO_CONTENT_INFO;
  }

  // We're expecting this to be a PKCS#7 signedData content info.
  if (NSS_CMSContentInfo_GetContentTypeTag(cinfo) !=
      SEC_OID_PKCS7_SIGNED_DATA) {
    return NS_ERROR_CMS_VERIFY_NO_CONTENT_INFO;
  }

  // signedData is non-owning
  NSSCMSSignedData* signedData =
      static_cast<NSSCMSSignedData*>(NSS_CMSContentInfo_GetContent(cinfo));
  if (!signedData) {
    return NS_ERROR_CMS_VERIFY_NO_CONTENT_INFO;
  }

  nsTArray<Span<const uint8_t>> collectedCerts;
  if (signedData->rawCerts) {
    for (size_t i = 0; signedData->rawCerts[i]; ++i) {
      Span<const uint8_t> cert(signedData->rawCerts[i]->data,
                               signedData->rawCerts[i]->len);
      collectedCerts.AppendElement(std::move(cert));
    }
  }

  NSSCMSSignerInfo* signerInfo =
      GetSignerInfoForDigestAlgorithm(signedData, SEC_OID_SHA256);
  nsTArray<uint8_t>* tmpDetachedDigest = &detachedSHA256Digest;
  digestAlgorithm = SEC_OID_SHA256;
  if (!signerInfo) {
    signerInfo = GetSignerInfoForDigestAlgorithm(signedData, SEC_OID_SHA1);
    if (!signerInfo) {
      return NS_ERROR_CMS_VERIFY_NOT_SIGNED;
    }
    tmpDetachedDigest = &detachedSHA1Digest;
    digestAlgorithm = SEC_OID_SHA1;
  }

  const SECItem detachedDigest = {
      siBuffer, tmpDetachedDigest->Elements(),
      static_cast<unsigned int>(tmpDetachedDigest->Length())};

  // Get the certificate that issued the PKCS7 signature.
  Span<const uint8_t> signerCertSpan =
      GetPKCS7SignerCert(signerInfo, collectedCerts);
  if (signerCertSpan.IsEmpty()) {
    return NS_ERROR_CMS_VERIFY_ERROR_PROCESSING;
  }

  nsresult rv =
      VerifyCertificate(signerCertSpan, trustedRoot, std::move(collectedCerts));
  if (NS_FAILED(rv)) {
    return rv;
  }
  signerCert.Clear();
  signerCert.AppendElements(signerCertSpan);

  // Ensure that the PKCS#7 data OID is present as the PKCS#9 contentType.
  const char* pkcs7DataOidString = "1.2.840.113549.1.7.1";
  ScopedAutoSECItem pkcs7DataOid;
  if (SEC_StringToOID(nullptr, &pkcs7DataOid, pkcs7DataOidString, 0) !=
      SECSuccess) {
    return NS_ERROR_CMS_VERIFY_ERROR_PROCESSING;
  }

  // NSS_CMSSignerInfo_Verify relies on NSS_CMSSignerInfo_GetSigningCertificate
  // having been called already. This relies on the signing certificate being
  // decoded as a CERTCertificate.
  // This assertion should never fail, as this certificate has been
  // successfully verified, which means it fits in the size of an unsigned int.
  SECItem signingCertificateItem = {
      siBuffer, const_cast<unsigned char*>(signerCertSpan.Elements()),
      AssertedCast<unsigned int>(signerCertSpan.Length())};
  UniqueCERTCertificate signingCertificateHandle(CERT_NewTempCertificate(
      CERT_GetDefaultCertDB(), &signingCertificateItem, nullptr, false, true));
  if (!signingCertificateHandle) {
    return mozilla::psm::GetXPCOMFromNSSError(SEC_ERROR_PKCS7_BAD_SIGNATURE);
  }
  // NB: This function does not return an owning reference, unlike with many
  // other NSS APIs.
  if (!NSS_CMSSignerInfo_GetSigningCertificate(signerInfo,
                                               CERT_GetDefaultCertDB())) {
    return mozilla::psm::GetXPCOMFromNSSError(SEC_ERROR_PKCS7_BAD_SIGNATURE);
  }
  return MapSECStatus(NSS_CMSSignerInfo_Verify(
      signerInfo, const_cast<SECItem*>(&detachedDigest), &pkcs7DataOid));
}

class CoseVerificationContext {
 public:
  explicit CoseVerificationContext(AppTrustedRoot aTrustedRoot)
      : mTrustedRoot(aTrustedRoot) {}
  ~CoseVerificationContext() = default;

  AppTrustedRoot GetTrustedRoot() { return mTrustedRoot; }
  void SetCert(Span<const uint8_t> certDER) {
    mCertDER.Clear();
    mCertDER.AppendElements(certDER);
  }

  nsTArray<uint8_t> TakeCert() { return std::move(mCertDER); }

 private:
  AppTrustedRoot mTrustedRoot;
  nsTArray<uint8_t> mCertDER;
};

// Verification function called from cose-rust.
// Returns true if everything goes well and the signature and certificate chain
// are good, false in any other case.
bool CoseVerificationCallback(const uint8_t* aPayload, size_t aPayloadLen,
                              const uint8_t** aCertChain, size_t aCertChainLen,
                              const size_t* aCertsLen, const uint8_t* aEECert,
                              size_t aEECertLen, const uint8_t* aSignature,
                              size_t aSignatureLen, uint8_t aSignatureAlgorithm,
                              void* ctx) {
  if (!ctx || !aPayload || !aEECert || !aSignature) {
    return false;
  }
  // The ctx here is a pointer to a CoseVerificationContext object
  CoseVerificationContext* context = static_cast<CoseVerificationContext*>(ctx);
  AppTrustedRoot aTrustedRoot = context->GetTrustedRoot();

  CK_MECHANISM_TYPE mechanism;
  SECOidTag oid;
  uint32_t hash_length;
  SECItem param = {siBuffer, nullptr, 0};
  switch (aSignatureAlgorithm) {
    case ES256:
      mechanism = CKM_ECDSA;
      oid = SEC_OID_SHA256;
      hash_length = SHA256_LENGTH;
      break;
    case ES384:
      mechanism = CKM_ECDSA;
      oid = SEC_OID_SHA384;
      hash_length = SHA384_LENGTH;
      break;
    case ES512:
      mechanism = CKM_ECDSA;
      oid = SEC_OID_SHA512;
      hash_length = SHA512_LENGTH;
      break;
    default:
      return false;
  }

  uint8_t hashBuf[HASH_LENGTH_MAX];
  SECStatus rv = PK11_HashBuf(oid, hashBuf, aPayload, aPayloadLen);
  if (rv != SECSuccess) {
    return false;
  }
  SECItem hashItem = {siBuffer, hashBuf, hash_length};
  Input certInput;
  if (certInput.Init(aEECert, aEECertLen) != Success) {
    return false;
  }
  // Since this only decodes the certificate and doesn't attempt to build a
  // verified chain with it, the EndEntityOrCA parameter doesn't matter.
  BackCert backCert(certInput, EndEntityOrCA::MustBeEndEntity, nullptr);
  if (backCert.Init() != Success) {
    return false;
  }
  Input spkiInput = backCert.GetSubjectPublicKeyInfo();
  SECItem spkiItem = {siBuffer, const_cast<uint8_t*>(spkiInput.UnsafeGetData()),
                      spkiInput.GetLength()};
  UniqueCERTSubjectPublicKeyInfo spki(
      SECKEY_DecodeDERSubjectPublicKeyInfo(&spkiItem));
  if (!spki) {
    return false;
  }
  UniqueSECKEYPublicKey key(SECKEY_ExtractPublicKey(spki.get()));
  SECItem signatureItem = {siBuffer, const_cast<uint8_t*>(aSignature),
                           static_cast<unsigned int>(aSignatureLen)};
  rv = PK11_VerifyWithMechanism(key.get(), mechanism, &param, &signatureItem,
                                &hashItem, nullptr);
  if (rv != SECSuccess) {
    return false;
  }

  nsTArray<Span<const uint8_t>> collectedCerts;
  for (size_t i = 0; i < aCertChainLen; ++i) {
    Span<const uint8_t> cert(aCertChain[i], aCertsLen[i]);
    collectedCerts.AppendElement(std::move(cert));
  }

  Span<const uint8_t> certSpan = {aEECert, aEECertLen};
  nsresult nrv =
      VerifyCertificate(certSpan, aTrustedRoot, std::move(collectedCerts));
  bool result = true;
  if (NS_FAILED(nrv)) {
    result = false;
  }

  // Passing back the signing certificate in form of the DER cert.
  context->SetCert(certSpan);
  if (NS_FAILED(nrv)) {
    result = false;
  }

  return result;
}

nsresult VerifyAppManifest(SECOidTag aDigestToUse, nsCOMPtr<nsIZipReader> aZip,
                           nsTHashtable<nsCStringHashKey>& aIgnoredFiles,
                           const SECItem& aManifestBuffer) {
  // Allocate the I/O buffer only once per JAR, instead of once per entry, in
  // order to minimize malloc/free calls and in order to avoid fragmenting
  // memory.
  ScopedAutoSECItem buf(128 * 1024);

  nsTHashtable<nsCStringHashKey> items;

  nsresult rv =
      ParseMF(BitwiseCast<char*, unsigned char*>(aManifestBuffer.data), aZip,
              aDigestToUse, items, buf);
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Verify every entry in the file.
  nsCOMPtr<nsIUTF8StringEnumerator> entries;
  rv = aZip->FindEntries(""_ns, getter_AddRefs(entries));
  if (NS_FAILED(rv)) {
    return rv;
  }
  if (!entries) {
    return NS_ERROR_UNEXPECTED;
  }

  for (;;) {
    bool hasMore;
    rv = entries->HasMore(&hasMore);
    NS_ENSURE_SUCCESS(rv, rv);

    if (!hasMore) {
      break;
    }

    nsAutoCString entryFilename;
    rv = entries->GetNext(entryFilename);
    NS_ENSURE_SUCCESS(rv, rv);

    MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
            ("Verifying digests for %s", entryFilename.get()));

    if (entryFilename.Length() == 0) {
      return NS_ERROR_SIGNED_JAR_ENTRY_INVALID;
    }

    // The files that comprise the signature mechanism are not covered by the
    // signature. Ignore these files.
    if (aIgnoredFiles.Contains(entryFilename)) {
      continue;
    }

    // Entries with names that end in "/" are directory entries, which are not
    // signed.
    //
    // Since bug 1415991 we don't support unpacked JARs. The "/" entries are
    // therefore harmless.
    if (entryFilename.Last() == '/') {
      continue;
    }

    nsCStringHashKey* item = items.GetEntry(entryFilename);
    if (!item) {
      return NS_ERROR_SIGNED_JAR_UNSIGNED_ENTRY;
    }

    // Remove the item so we can check for leftover items later
    items.RemoveEntry(item);
  }

  // We verified that every entry that we require to be signed is signed. But,
  // were there any missing entries--that is, entries that are mentioned in the
  // manifest but missing from the archive?
  if (items.Count() != 0) {
    return NS_ERROR_SIGNED_JAR_ENTRY_MISSING;
  }

  return NS_OK;
}

// This corresponds to the preference "security.signed_app_signatures.policy".
// The lowest order bit determines which PKCS#7 algorithms are accepted.
// xxx_0_: SHA-1 and/or SHA-256 PKCS#7 allowed
// xxx_1_: SHA-256 PKCS#7 allowed
// The next two bits determine whether COSE is required and PKCS#7 is allowed
// x_00_x: COSE disabled, ignore files, PKCS#7 must verify
// x_01_x: COSE is verified if present, PKCS#7 must verify
// x_10_x: COSE is required, PKCS#7 must verify if present
// x_11_x: COSE is required, PKCS#7 disabled (fail when present)
class SignaturePolicy {
 public:
  explicit SignaturePolicy(int32_t preference)
      : mProcessCose(true),
        mCoseRequired(false),
        mProcessPK7(true),
        mPK7Required(true),
        mSHA1Allowed(true),
        mSHA256Allowed(true) {
    mCoseRequired = (preference & 0b100) != 0;
    mProcessCose = (preference & 0b110) != 0;
    mPK7Required = (preference & 0b100) == 0;
    mProcessPK7 = (preference & 0b110) != 0b110;
    if ((preference & 0b1) == 0) {
      mSHA1Allowed = true;
      mSHA256Allowed = true;
    } else {
      mSHA1Allowed = false;
      mSHA256Allowed = true;
    }
  }
  ~SignaturePolicy() = default;
  bool ProcessCOSE() { return mProcessCose; }
  bool COSERequired() { return mCoseRequired; }
  bool PK7Required() { return mPK7Required; }
  bool ProcessPK7() { return mProcessPK7; }
  bool IsPK7HashAllowed(SECOidTag aHashAlg) {
    if (aHashAlg == SEC_OID_SHA256 && mSHA256Allowed) {
      return true;
    }
    if (aHashAlg == SEC_OID_SHA1 && mSHA1Allowed) {
      return true;
    }
    return false;
  }

 private:
  bool mProcessCose;
  bool mCoseRequired;
  bool mProcessPK7;
  bool mPK7Required;
  bool mSHA1Allowed;
  bool mSHA256Allowed;
};

nsresult VerifyCOSESignature(AppTrustedRoot aTrustedRoot, nsIZipReader* aZip,
                             SignaturePolicy& aPolicy,
                             nsTHashtable<nsCStringHashKey>& aIgnoredFiles,
                             /* out */ bool& aVerified,
                             /* out */ nsTArray<uint8_t>& aCoseCertDER) {
  NS_ENSURE_ARG_POINTER(aZip);
  bool required = aPolicy.COSERequired();
  aVerified = false;

  // Read COSE signature file.
  nsAutoCString coseFilename;
  ScopedAutoSECItem coseBuffer;
  nsresult rv = FindAndLoadOneEntry(
      aZip, nsLiteralCString(JAR_COSE_SEARCH_STRING), coseFilename, coseBuffer);
  if (NS_FAILED(rv)) {
    return required ? NS_ERROR_SIGNED_JAR_WRONG_SIGNATURE : NS_OK;
  }

  // Verify COSE signature.
  nsAutoCString mfFilename;
  ScopedAutoSECItem manifestBuffer;
  rv = FindAndLoadOneEntry(aZip, nsLiteralCString(JAR_COSE_MF_SEARCH_STRING),
                           mfFilename, manifestBuffer);
  if (NS_FAILED(rv)) {
    return required ? NS_ERROR_SIGNED_JAR_WRONG_SIGNATURE : rv;
  }
  MOZ_ASSERT(manifestBuffer.len >= 1);
  MOZ_ASSERT(coseBuffer.len >= 1);
  CoseVerificationContext context(aTrustedRoot);
  bool coseVerification = verify_cose_signature_ffi(
      manifestBuffer.data, manifestBuffer.len - 1, coseBuffer.data,
      coseBuffer.len - 1, &context, CoseVerificationCallback);
  if (!coseVerification) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }
  // CoseVerificationCallback sets the context certificate to the first cert
  // it encounters.
  aCoseCertDER = context.TakeCert();

  // aIgnoredFiles contains the PKCS#7 manifest and signature files iff the
  // PKCS#7 verification was successful.
  aIgnoredFiles.PutEntry(mfFilename);
  aIgnoredFiles.PutEntry(coseFilename);
  rv = VerifyAppManifest(SEC_OID_SHA256, aZip, aIgnoredFiles, manifestBuffer);
  if (NS_FAILED(rv)) {
    return rv;
  }

  aVerified = true;
  return NS_OK;
}

nsresult VerifyPK7Signature(
    AppTrustedRoot aTrustedRoot, nsIZipReader* aZip, SignaturePolicy& aPolicy,
    /* out */ nsTHashtable<nsCStringHashKey>& aIgnoredFiles,
    /* out */ bool& aVerified,
    /* out */ nsTArray<uint8_t>& aSignerCert,
    /* out */ SECOidTag& aHashAlgorithm) {
  NS_ENSURE_ARG_POINTER(aZip);
  bool required = aPolicy.PK7Required();
  aVerified = false;

  // Signature (RSA) file
  nsAutoCString sigFilename;
  ScopedAutoSECItem sigBuffer;
  nsresult rv = FindAndLoadOneEntry(
      aZip, nsLiteralCString(JAR_RSA_SEARCH_STRING), sigFilename, sigBuffer);
  if (NS_FAILED(rv)) {
    return required ? NS_ERROR_SIGNED_JAR_NOT_SIGNED : NS_OK;
  }

  // Signature (SF) file
  nsAutoCString sfFilename;
  ScopedAutoSECItem sfBuffer;
  rv = FindAndLoadOneEntry(aZip, nsLiteralCString(JAR_SF_SEARCH_STRING),
                           sfFilename, sfBuffer);
  if (NS_FAILED(rv)) {
    return required ? NS_ERROR_SIGNED_JAR_MANIFEST_INVALID : NS_OK;
  }

  // Calculate both the SHA-1 and SHA-256 hashes of the signature file - we
  // don't know what algorithm the PKCS#7 signature used.
  nsTArray<uint8_t> sfCalculatedSHA1Digest;
  rv = Digest::DigestBuf(SEC_OID_SHA1, sfBuffer.data, sfBuffer.len - 1,
                         sfCalculatedSHA1Digest);
  if (NS_FAILED(rv)) {
    return rv;
  }

  nsTArray<uint8_t> sfCalculatedSHA256Digest;
  rv = Digest::DigestBuf(SEC_OID_SHA256, sfBuffer.data, sfBuffer.len - 1,
                         sfCalculatedSHA256Digest);
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Verify PKCS#7 signature.
  // If we get here, the signature has to verify even if PKCS#7 is not required.
  sigBuffer.type = siBuffer;
  SECOidTag digestToUse;
  rv = VerifySignature(aTrustedRoot, sigBuffer, sfCalculatedSHA1Digest,
                       sfCalculatedSHA256Digest, digestToUse, aSignerCert);
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Check the digest used for the signature against the policy.
  if (!aPolicy.IsPK7HashAllowed(digestToUse)) {
    return NS_ERROR_SIGNED_JAR_WRONG_SIGNATURE;
  }

  nsAutoCString mfDigest;
  rv = ParseSF(BitwiseCast<char*, unsigned char*>(sfBuffer.data), digestToUse,
               mfDigest);
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Read PK7 manifest (MF) file.
  ScopedAutoSECItem manifestBuffer;
  nsTArray<uint8_t> digestArray;
  nsAutoCString mfFilename;
  rv = FindAndLoadOneEntry(aZip, nsLiteralCString(JAR_MF_SEARCH_STRING),
                           mfFilename, manifestBuffer, digestToUse,
                           &digestArray);
  if (NS_FAILED(rv)) {
    return rv;
  }

  nsDependentCSubstring calculatedDigest(
      BitwiseCast<char*, uint8_t*>(digestArray.Elements()),
      digestArray.Length());
  if (!mfDigest.Equals(calculatedDigest)) {
    return NS_ERROR_SIGNED_JAR_MANIFEST_INVALID;
  }

  // Verify PKCS7 manifest file hashes.
  aIgnoredFiles.PutEntry(sfFilename);
  aIgnoredFiles.PutEntry(sigFilename);
  aIgnoredFiles.PutEntry(mfFilename);
  rv = VerifyAppManifest(digestToUse, aZip, aIgnoredFiles, manifestBuffer);
  if (NS_FAILED(rv)) {
    aIgnoredFiles.Clear();
    return rv;
  }

  aVerified = true;
  aHashAlgorithm = digestToUse;
  return NS_OK;
}

class AppSignatureInfo final : public nsIAppSignatureInfo {
 public:
  NS_DECL_THREADSAFE_ISUPPORTS

  AppSignatureInfo(RefPtr<nsIX509Cert>&& signerCert,
                   nsIAppSignatureInfo::SignatureAlgorithm signatureAlgorithm)
      : mSignerCert(std::move(signerCert)),
        mSignatureAlgorithm(signatureAlgorithm) {}

  NS_IMETHODIMP GetSignerCert(nsIX509Cert** signerCert) override {
    *signerCert = do_AddRef(mSignerCert).take();
    return NS_OK;
  }

  NS_IMETHODIMP GetSignatureAlgorithm(
      nsIAppSignatureInfo::SignatureAlgorithm* signatureAlgorithm) override {
    *signatureAlgorithm = mSignatureAlgorithm;
    return NS_OK;
  }

 private:
  ~AppSignatureInfo() = default;

  RefPtr<nsIX509Cert> mSignerCert;
  nsIAppSignatureInfo::SignatureAlgorithm mSignatureAlgorithm;
};

NS_IMPL_ISUPPORTS(AppSignatureInfo, nsIAppSignatureInfo)

nsresult OpenSignedAppFile(
    AppTrustedRoot aTrustedRoot, nsIFile* aJarFile, SignaturePolicy aPolicy,
    /* out */ nsIZipReader** aZipReader,
    /* out */ nsTArray<RefPtr<nsIAppSignatureInfo>>& aSignatureInfos) {
  NS_ENSURE_ARG_POINTER(aJarFile);

  if (aZipReader) {
    *aZipReader = nullptr;
  }

  aSignatureInfos.Clear();

  nsresult rv;

  static NS_DEFINE_CID(kZipReaderCID, NS_ZIPREADER_CID);
  nsCOMPtr<nsIZipReader> zip = do_CreateInstance(kZipReaderCID, &rv);
  NS_ENSURE_SUCCESS(rv, rv);

  rv = zip->Open(aJarFile);
  NS_ENSURE_SUCCESS(rv, rv);

  nsTHashtable<nsCStringHashKey> ignoredFiles;
  bool pk7Verified = false;
  nsTArray<uint8_t> pkcs7CertDER;
  SECOidTag pkcs7HashAlgorithm = SEC_OID_UNKNOWN;
  bool coseVerified = false;
  nsTArray<uint8_t> coseCertDER;

  // First we have to verify the PKCS#7 signature if there is one.
  // This signature covers all files (except for the signature files itself),
  // including the COSE signature files. Only when this verification is
  // successful the respective files will be ignored in the subsequent COSE
  // signature verification.
  if (aPolicy.ProcessPK7()) {
    rv = VerifyPK7Signature(aTrustedRoot, zip, aPolicy, ignoredFiles,
                            pk7Verified, pkcs7CertDER, pkcs7HashAlgorithm);
    if (NS_FAILED(rv)) {
      return rv;
    }
  }

  if (aPolicy.ProcessCOSE()) {
    rv = VerifyCOSESignature(aTrustedRoot, zip, aPolicy, ignoredFiles,
                             coseVerified, coseCertDER);
    if (NS_FAILED(rv)) {
      return rv;
    }
  }

  // Bits 1 and 2
  // 00 = Didn't Process PKCS#7 signatures
  // 01 = Processed but no valid cert or signature
  // 10 = Processed and valid cert found, but addon didn't match manifest
  // 11 = Processed and valid.
  // Bits 3 and 4 are the same but for COSE.
  uint32_t bucket = 0;
  bucket += aPolicy.ProcessCOSE();
  bucket += !coseCertDER.IsEmpty();
  bucket += coseVerified;
  bucket <<= 2;
  bucket += aPolicy.ProcessPK7();
  bucket += !pkcs7CertDER.IsEmpty();
  bucket += pk7Verified;
  Telemetry::Accumulate(Telemetry::ADDON_SIGNATURE_VERIFICATION_STATUS, bucket);

  if ((aPolicy.PK7Required() && !pk7Verified) ||
      (aPolicy.COSERequired() && !coseVerified)) {
    return NS_ERROR_SIGNED_JAR_WRONG_SIGNATURE;
  }

  // Return the reader to the caller if they want it
  if (aZipReader) {
    zip.forget(aZipReader);
  }

  // Return the signature information (a list of signing certificate and
  // algorithm pairs). If present, the COSE signature will be first, followed
  // by any PKCS7 signatures.
  if (coseVerified && !coseCertDER.IsEmpty()) {
    RefPtr<nsIX509Cert> signerCert(
        new nsNSSCertificate(std::move(coseCertDER)));
    aSignatureInfos.AppendElement(new AppSignatureInfo(
        std::move(signerCert),
        nsIAppSignatureInfo::SignatureAlgorithm::COSE_WITH_SHA256));
  }
  if (pk7Verified && !pkcs7CertDER.IsEmpty()) {
    RefPtr<nsIX509Cert> signerCert(
        new nsNSSCertificate(std::move(pkcs7CertDER)));
    nsIAppSignatureInfo::SignatureAlgorithm signatureAlgorithm;
    switch (pkcs7HashAlgorithm) {
      case SEC_OID_SHA1:
        signatureAlgorithm =
            nsIAppSignatureInfo::SignatureAlgorithm::PKCS7_WITH_SHA1;
        break;
      case SEC_OID_SHA256:
        signatureAlgorithm =
            nsIAppSignatureInfo::SignatureAlgorithm::PKCS7_WITH_SHA256;
        break;
      default:
        return NS_ERROR_FAILURE;
    }
    aSignatureInfos.AppendElement(
        new AppSignatureInfo(std::move(signerCert), signatureAlgorithm));
  }

  return NS_OK;
}

class OpenSignedAppFileTask final : public CryptoTask {
 public:
  OpenSignedAppFileTask(AppTrustedRoot aTrustedRoot, nsIFile* aJarFile,
                        SignaturePolicy aPolicy,
                        nsIOpenSignedAppFileCallback* aCallback)
      : mTrustedRoot(aTrustedRoot),
        mJarFile(aJarFile),
        mPolicy(aPolicy),
        mCallback(new nsMainThreadPtrHolder<nsIOpenSignedAppFileCallback>(
            "OpenSignedAppFileTask::mCallback", aCallback)) {}

 private:
  virtual nsresult CalculateResult() override {
    return OpenSignedAppFile(mTrustedRoot, mJarFile, mPolicy,
                             getter_AddRefs(mZipReader), mSignatureInfos);
  }

  virtual void CallCallback(nsresult rv) override {
    (void)mCallback->OpenSignedAppFileFinished(rv, mZipReader, mSignatureInfos);
  }

  const AppTrustedRoot mTrustedRoot;
  const nsCOMPtr<nsIFile> mJarFile;
  const SignaturePolicy mPolicy;
  nsMainThreadPtrHandle<nsIOpenSignedAppFileCallback> mCallback;
  nsCOMPtr<nsIZipReader> mZipReader;                      // out
  nsTArray<RefPtr<nsIAppSignatureInfo>> mSignatureInfos;  // out
};

static const int32_t sDefaultSignaturePolicy = 0b10;

}  // unnamed namespace

NS_IMETHODIMP
nsNSSCertificateDB::OpenSignedAppFileAsync(
    AppTrustedRoot aTrustedRoot, nsIFile* aJarFile,
    nsIOpenSignedAppFileCallback* aCallback) {
  NS_ENSURE_ARG_POINTER(aJarFile);
  NS_ENSURE_ARG_POINTER(aCallback);
  if (!NS_IsMainThread()) {
    return NS_ERROR_NOT_SAME_THREAD;
  }
  int32_t policyInt =
      Preferences::GetInt("security.signed_app_signatures.policy",
                          static_cast<int32_t>(sDefaultSignaturePolicy));
  SignaturePolicy policy(policyInt);
  RefPtr<OpenSignedAppFileTask> task(
      new OpenSignedAppFileTask(aTrustedRoot, aJarFile, policy, aCallback));
  return task->Dispatch();
}