summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/sha256-armv8.c
blob: 17fe126c4c92726fab05520d4ce5cd6d83b882e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef USE_HW_SHA2

#ifndef __ARM_FEATURE_CRYPTO
#error "Compiler option is invalid"
#endif

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prcpucfg.h"
#include "prtypes.h" /* for PRUintXX */
#include "prlong.h"
#include "blapi.h"
#include "sha256.h"

#include <arm_neon.h>

/* SHA-256 constants, K256. */
static const PRUint32 __attribute__((aligned(16))) K256[64] = {
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

#define ROUND(n, a, b, c, d)               \
    {                                      \
        uint32x4_t t = vaddq_u32(a, k##n); \
        uint32x4_t wt = w0;                \
        w0 = vsha256hq_u32(w0, w1, t);     \
        w1 = vsha256h2q_u32(w1, wt, t);    \
        if (n < 12) {                      \
            a = vsha256su0q_u32(a, b);     \
            a = vsha256su1q_u32(a, c, d);  \
        }                                  \
    }

void
SHA256_Compress_Native(SHA256Context *ctx)
{
    const uint32x4_t k0 = vld1q_u32(K256);
    const uint32x4_t k1 = vld1q_u32(K256 + 4);
    const uint32x4_t k2 = vld1q_u32(K256 + 8);
    const uint32x4_t k3 = vld1q_u32(K256 + 12);
    const uint32x4_t k4 = vld1q_u32(K256 + 16);
    const uint32x4_t k5 = vld1q_u32(K256 + 20);
    const uint32x4_t k6 = vld1q_u32(K256 + 24);
    const uint32x4_t k7 = vld1q_u32(K256 + 28);
    const uint32x4_t k8 = vld1q_u32(K256 + 32);
    const uint32x4_t k9 = vld1q_u32(K256 + 36);
    const uint32x4_t k10 = vld1q_u32(K256 + 40);
    const uint32x4_t k11 = vld1q_u32(K256 + 44);
    const uint32x4_t k12 = vld1q_u32(K256 + 48);
    const uint32x4_t k13 = vld1q_u32(K256 + 52);
    const uint32x4_t k14 = vld1q_u32(K256 + 56);
    const uint32x4_t k15 = vld1q_u32(K256 + 60);

    uint32x4_t h0 = vld1q_u32(ctx->h);
    uint32x4_t h1 = vld1q_u32(ctx->h + 4);

    unsigned char *input = ctx->u.b;

    uint32x4_t a = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input)));
    uint32x4_t b = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16)));
    uint32x4_t c = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32)));
    uint32x4_t d = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48)));

    uint32x4_t w0 = h0;
    uint32x4_t w1 = h1;

    ROUND(0, a, b, c, d)
    ROUND(1, b, c, d, a)
    ROUND(2, c, d, a, b)
    ROUND(3, d, a, b, c)
    ROUND(4, a, b, c, d)
    ROUND(5, b, c, d, a)
    ROUND(6, c, d, a, b)
    ROUND(7, d, a, b, c)
    ROUND(8, a, b, c, d)
    ROUND(9, b, c, d, a)
    ROUND(10, c, d, a, b)
    ROUND(11, d, a, b, c)
    ROUND(12, a, b, c, d)
    ROUND(13, b, c, d, a)
    ROUND(14, c, d, a, b)
    ROUND(15, d, a, b, c)

    h0 = vaddq_u32(h0, w0);
    h1 = vaddq_u32(h1, w1);

    vst1q_u32(ctx->h, h0);
    vst1q_u32(ctx->h + 4, h1);
}

void
SHA256_Update_Native(SHA256Context *ctx, const unsigned char *input,
                     unsigned int inputLen)
{
    const uint32x4_t k0 = vld1q_u32(K256);
    const uint32x4_t k1 = vld1q_u32(K256 + 4);
    const uint32x4_t k2 = vld1q_u32(K256 + 8);
    const uint32x4_t k3 = vld1q_u32(K256 + 12);
    const uint32x4_t k4 = vld1q_u32(K256 + 16);
    const uint32x4_t k5 = vld1q_u32(K256 + 20);
    const uint32x4_t k6 = vld1q_u32(K256 + 24);
    const uint32x4_t k7 = vld1q_u32(K256 + 28);
    const uint32x4_t k8 = vld1q_u32(K256 + 32);
    const uint32x4_t k9 = vld1q_u32(K256 + 36);
    const uint32x4_t k10 = vld1q_u32(K256 + 40);
    const uint32x4_t k11 = vld1q_u32(K256 + 44);
    const uint32x4_t k12 = vld1q_u32(K256 + 48);
    const uint32x4_t k13 = vld1q_u32(K256 + 52);
    const uint32x4_t k14 = vld1q_u32(K256 + 56);
    const uint32x4_t k15 = vld1q_u32(K256 + 60);

    unsigned int inBuf = ctx->sizeLo & 0x3f;
    if (!inputLen) {
        return;
    }

    /* Add inputLen into the count of bytes processed, before processing */
    if ((ctx->sizeLo += inputLen) < inputLen) {
        ctx->sizeHi++;
    }

    /* if data already in buffer, attemp to fill rest of buffer */
    if (inBuf) {
        unsigned int todo = SHA256_BLOCK_LENGTH - inBuf;
        if (inputLen < todo) {
            todo = inputLen;
        }
        memcpy(ctx->u.b + inBuf, input, todo);
        input += todo;
        inputLen -= todo;
        if (inBuf + todo == SHA256_BLOCK_LENGTH) {
            SHA256_Compress_Native(ctx);
        }
    }

    uint32x4_t h0 = vld1q_u32(ctx->h);
    uint32x4_t h1 = vld1q_u32(ctx->h + 4);

    /* if enough data to fill one or more whole buffers, process them. */
    while (inputLen >= SHA256_BLOCK_LENGTH) {
        uint32x4_t a, b, c, d;
        a = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input)));
        b = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16)));
        c = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32)));
        d = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48)));
        input += SHA256_BLOCK_LENGTH;
        inputLen -= SHA256_BLOCK_LENGTH;

        uint32x4_t w0 = h0;
        uint32x4_t w1 = h1;

        ROUND(0, a, b, c, d)
        ROUND(1, b, c, d, a)
        ROUND(2, c, d, a, b)
        ROUND(3, d, a, b, c)
        ROUND(4, a, b, c, d)
        ROUND(5, b, c, d, a)
        ROUND(6, c, d, a, b)
        ROUND(7, d, a, b, c)
        ROUND(8, a, b, c, d)
        ROUND(9, b, c, d, a)
        ROUND(10, c, d, a, b)
        ROUND(11, d, a, b, c)
        ROUND(12, a, b, c, d)
        ROUND(13, b, c, d, a)
        ROUND(14, c, d, a, b)
        ROUND(15, d, a, b, c)

        h0 = vaddq_u32(h0, w0);
        h1 = vaddq_u32(h1, w1);
    }

    vst1q_u32(ctx->h, h0);
    vst1q_u32(ctx->h + 4, h1);

    /* if data left over, fill it into buffer */
    if (inputLen) {
        memcpy(ctx->u.b, input, inputLen);
    }
}

#endif /* USE_HW_SHA2 */