summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/ssl/tls13hkdf.c
blob: ed6cdd559fa1bb5057bf5540a272f775a77d1c17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * TLS 1.3 Protocol
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "keyhi.h"
#include "pk11func.h"
#include "secitem.h"
#include "ssl.h"
#include "sslt.h"
#include "sslerr.h"
#include "sslimpl.h"

/* This table contains the mapping between TLS hash identifiers and the
 * PKCS#11 identifiers */
static const struct {
    SSLHashType hash;
    CK_MECHANISM_TYPE pkcs11Mech;
    unsigned int hashSize;
} kTlsHkdfInfo[] = {
    { ssl_hash_none, 0, 0 },
    { ssl_hash_md5, 0, 0 },
    { ssl_hash_sha1, 0, 0 },
    { ssl_hash_sha224, 0 },
    { ssl_hash_sha256, CKM_SHA256, 32 },
    { ssl_hash_sha384, CKM_SHA384, 48 },
    { ssl_hash_sha512, CKM_SHA512, 64 }
};

SECStatus
tls13_HkdfExtract(PK11SymKey *ikm1, PK11SymKey *ikm2, SSLHashType baseHash,
                  PK11SymKey **prkp)
{
    CK_HKDF_PARAMS params;
    SECItem paramsi;
    PK11SymKey *prk;
    static const PRUint8 zeroKeyBuf[HASH_LENGTH_MAX];
    SECItem zeroKeyItem = { siBuffer, CONST_CAST(PRUint8, zeroKeyBuf), kTlsHkdfInfo[baseHash].hashSize };
    PK11SlotInfo *slot = NULL;
    PK11SymKey *newIkm2 = NULL;
    PK11SymKey *newIkm1 = NULL;
    SECStatus rv;

    params.bExtract = CK_TRUE;
    params.bExpand = CK_FALSE;
    params.prfHashMechanism = kTlsHkdfInfo[baseHash].pkcs11Mech;
    params.pInfo = NULL;
    params.ulInfoLen = 0UL;
    params.pSalt = NULL;
    params.ulSaltLen = 0UL;
    params.hSaltKey = CK_INVALID_HANDLE;

    if (!ikm1) {
        /* PKCS #11 v3.0 has and explict NULL value, which equates to
         * a sequence of zeros equal in length to the HMAC. */
        params.ulSaltType = CKF_HKDF_SALT_NULL;
    } else {
        /* PKCS #11 v3.0 can take the salt as a key handle */
        params.hSaltKey = PK11_GetSymKeyHandle(ikm1);
        params.ulSaltType = CKF_HKDF_SALT_KEY;

        /* if we have both keys, make sure they are in the same slot */
        if (ikm2) {
            rv = PK11_SymKeysToSameSlot(CKM_HKDF_DERIVE,
                                        CKA_DERIVE, CKA_DERIVE,
                                        ikm2, ikm1, &newIkm2, &newIkm1);
            if (rv != SECSuccess) {
                SECItem *salt;
                /* couldn't move the keys, try extracting the salt */
                rv = PK11_ExtractKeyValue(ikm1);
                if (rv != SECSuccess)
                    return rv;
                salt = PK11_GetKeyData(ikm1);
                if (!salt)
                    return SECFailure;
                PORT_Assert(salt->len > 0);
                /* Set up for Salt as Data instead of Salt as key */
                params.pSalt = salt->data;
                params.ulSaltLen = salt->len;
                params.ulSaltType = CKF_HKDF_SALT_DATA;
            }
            /* use the new keys */
            if (newIkm1) {
                /* we've moved the key, get the handle for the new key */
                params.hSaltKey = PK11_GetSymKeyHandle(newIkm1);
                /* we don't use ikm1 after this, so don't bother setting it */
            }
            if (newIkm2) {
                /* new ikm2 key, use the new key */
                ikm2 = newIkm2;
            }
        }
    }
    paramsi.data = (unsigned char *)&params;
    paramsi.len = sizeof(params);

    PORT_Assert(kTlsHkdfInfo[baseHash].pkcs11Mech);
    PORT_Assert(kTlsHkdfInfo[baseHash].hashSize);
    PORT_Assert(kTlsHkdfInfo[baseHash].hash == baseHash);

    /* A zero ikm2 is a key of hash-length 0s. */
    if (!ikm2) {
        /* if we have ikm1, put the zero key in the same slot */
        slot = ikm1 ? PK11_GetSlotFromKey(ikm1) : PK11_GetBestSlot(CKM_HKDF_DERIVE, NULL);
        if (!slot) {
            return SECFailure;
        }

        newIkm2 = PK11_ImportDataKey(slot, CKM_HKDF_DERIVE, PK11_OriginUnwrap,
                                     CKA_DERIVE, &zeroKeyItem, NULL);
        if (!newIkm2) {
            return SECFailure;
        }
        ikm2 = newIkm2;
    }
    PORT_Assert(ikm2);

    PRINT_BUF(50, (NULL, "HKDF Extract: IKM1/Salt", params.pSalt, params.ulSaltLen));
    PRINT_KEY(50, (NULL, "HKDF Extract: IKM2", ikm2));

    prk = PK11_Derive(ikm2, CKM_HKDF_DERIVE, &paramsi, CKM_HKDF_DERIVE,
                      CKA_DERIVE, 0);
    PK11_FreeSymKey(newIkm2);
    PK11_FreeSymKey(newIkm1);
    if (slot)
        PK11_FreeSlot(slot);
    if (!prk) {
        return SECFailure;
    }

    PRINT_KEY(50, (NULL, "HKDF Extract", prk));
    *prkp = prk;

    return SECSuccess;
}

SECStatus
tls13_HkdfExpandLabelGeneral(CK_MECHANISM_TYPE deriveMech, PK11SymKey *prk,
                             SSLHashType baseHash,
                             const PRUint8 *handshakeHash, unsigned int handshakeHashLen,
                             const char *label, unsigned int labelLen,
                             CK_MECHANISM_TYPE algorithm, unsigned int keySize,
                             SSLProtocolVariant variant, PK11SymKey **keyp)
{
    CK_HKDF_PARAMS params;
    SECItem paramsi = { siBuffer, NULL, 0 };
    /* Size of info array needs to be big enough to hold the maximum Prefix,
     * Label, plus HandshakeHash. If it's ever to small, the code will abort.
     */
    PRUint8 info[256];
    sslBuffer infoBuf = SSL_BUFFER(info);
    PK11SymKey *derived;
    SECStatus rv;
    const char *kLabelPrefixTls = "tls13 ";
    const char *kLabelPrefixDtls = "dtls13";
    const unsigned int kLabelPrefixLen =
        (variant == ssl_variant_stream) ? strlen(kLabelPrefixTls) : strlen(kLabelPrefixDtls);
    const char *kLabelPrefix =
        (variant == ssl_variant_stream) ? kLabelPrefixTls : kLabelPrefixDtls;

    PORT_Assert(prk);
    PORT_Assert(keyp);
    if ((handshakeHashLen > 255) ||
        (handshakeHash == NULL && handshakeHashLen > 0) ||
        (labelLen + kLabelPrefixLen > 255)) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    /*
     *  [draft-ietf-tls-tls13-11] Section 7.1:
     *
     *  HKDF-Expand-Label(Secret, Label, HashValue, Length) =
     *       HKDF-Expand(Secret, HkdfLabel, Length)
     *
     *  Where HkdfLabel is specified as:
     *
     *  struct HkdfLabel {
     *    uint16 length;
     *    opaque label<9..255>;
     *    opaque hash_value<0..255>;
     *  };
     *
     *  Where:
     *  - HkdfLabel.length is Length
     *  - HkdfLabel.hash_value is HashValue.
     *  - HkdfLabel.label is "TLS 1.3, " + Label
     *
     */
    rv = sslBuffer_AppendNumber(&infoBuf, keySize, 2);
    if (rv != SECSuccess) {
        return SECFailure;
    }
    rv = sslBuffer_AppendNumber(&infoBuf, labelLen + kLabelPrefixLen, 1);
    if (rv != SECSuccess) {
        return SECFailure;
    }
    rv = sslBuffer_Append(&infoBuf, kLabelPrefix, kLabelPrefixLen);
    if (rv != SECSuccess) {
        return SECFailure;
    }
    rv = sslBuffer_Append(&infoBuf, label, labelLen);
    if (rv != SECSuccess) {
        return SECFailure;
    }
    rv = sslBuffer_AppendVariable(&infoBuf, handshakeHash, handshakeHashLen, 1);
    if (rv != SECSuccess) {
        return SECFailure;
    }

    params.bExtract = CK_FALSE;
    params.bExpand = CK_TRUE;
    params.prfHashMechanism = kTlsHkdfInfo[baseHash].pkcs11Mech;
    params.pInfo = SSL_BUFFER_BASE(&infoBuf);
    params.ulInfoLen = SSL_BUFFER_LEN(&infoBuf);
    paramsi.data = (unsigned char *)&params;
    paramsi.len = sizeof(params);
    derived = PK11_DeriveWithFlags(prk, deriveMech,
                                   &paramsi, algorithm,
                                   CKA_DERIVE, keySize,
                                   CKF_SIGN | CKF_VERIFY);
    if (!derived) {
        return SECFailure;
    }

    *keyp = derived;

#ifdef TRACE
    if (ssl_trace >= 50) {
        /* Make sure the label is null terminated. */
        char labelStr[100];
        PORT_Memcpy(labelStr, label, labelLen);
        labelStr[labelLen] = 0;
        SSL_TRC(50, ("HKDF Expand: label='tls13 %s',requested length=%d",
                     labelStr, keySize));
    }
    PRINT_KEY(50, (NULL, "PRK", prk));
    PRINT_BUF(50, (NULL, "Hash", handshakeHash, handshakeHashLen));
    PRINT_BUF(50, (NULL, "Info", SSL_BUFFER_BASE(&infoBuf),
                   SSL_BUFFER_LEN(&infoBuf)));
    PRINT_KEY(50, (NULL, "Derived key", derived));
#endif

    return SECSuccess;
}

SECStatus
tls13_HkdfExpandLabel(PK11SymKey *prk, SSLHashType baseHash,
                      const PRUint8 *handshakeHash, unsigned int handshakeHashLen,
                      const char *label, unsigned int labelLen,
                      CK_MECHANISM_TYPE algorithm, unsigned int keySize,
                      SSLProtocolVariant variant, PK11SymKey **keyp)
{
    return tls13_HkdfExpandLabelGeneral(CKM_HKDF_DERIVE, prk, baseHash,
                                        handshakeHash, handshakeHashLen,
                                        label, labelLen, algorithm, keySize,
                                        variant, keyp);
}

SECStatus
tls13_HkdfExpandLabelRaw(PK11SymKey *prk, SSLHashType baseHash,
                         const PRUint8 *handshakeHash, unsigned int handshakeHashLen,
                         const char *label, unsigned int labelLen,
                         SSLProtocolVariant variant, unsigned char *output,
                         unsigned int outputLen)
{
    PK11SymKey *derived = NULL;
    SECItem *rawkey;
    SECStatus rv;

    /* the result is not really a key, it's a data object */
    rv = tls13_HkdfExpandLabelGeneral(CKM_HKDF_DATA, prk, baseHash,
                                      handshakeHash, handshakeHashLen,
                                      label, labelLen, CKM_HKDF_DERIVE, outputLen,
                                      variant, &derived);
    if (rv != SECSuccess || !derived) {
        goto abort;
    }

    rv = PK11_ExtractKeyValue(derived);
    if (rv != SECSuccess) {
        goto abort;
    }

    rawkey = PK11_GetKeyData(derived);
    if (!rawkey) {
        goto abort;
    }

    PORT_Assert(rawkey->len == outputLen);
    memcpy(output, rawkey->data, outputLen);
    PK11_FreeSymKey(derived);

    return SECSuccess;

abort:
    if (derived) {
        PK11_FreeSymKey(derived);
    }
    PORT_SetError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
    return SECFailure;
}