summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webnn/resources/utils.js
blob: 375c71174a8d110ee729ab452b097c0bed2522c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
'use strict';

// https://webmachinelearning.github.io/webnn/#enumdef-mloperanddatatype
const TypedArrayDict = {
  // workaround use Uint16 for Float16
  float16: Uint16Array,

  float32: Float32Array,
  int32: Int32Array,
  uint32: Uint32Array,
  int8: Int8Array,
  uint8: Uint8Array,
  int64: BigInt64Array,
};

const getTypedArrayData = (type, data) => {
  let outData;
  if (type === 'float16') {
    // workaround to convert Float16 to Uint16
    outData = new TypedArrayDict[type](data.length);
    for (let i = 0; i < data.length; i++) {
      outData[i] = toHalf(data[i]);
    }
  } else if (type === 'int64') {
    outData = new TypedArrayDict[type](data.length);
    for (let i = 0; i < data.length; i++) {
      outData[i] = BigInt(data[i]);
    }
  } else {
    outData = new TypedArrayDict[type](data);
  }
  return outData;
};

const sizeOfShape = (array) => {
  return array.reduce((accumulator, currentValue) => accumulator * currentValue, 1);
};

/**
 * Get tests resources from test data JSON file of specified operation name.
 * @param {String} operationName - An operation name
 * @returns {Object} Tests resources
 */
const loadTests = (operationName) => {
  const loadJSON = (file) => {
    let xmlhttp = new XMLHttpRequest();
    xmlhttp.open("GET", file, false);
    xmlhttp.overrideMimeType("application/json");
    xmlhttp.send();
    if (xmlhttp.status == 200 && xmlhttp.readyState == 4) {
      return xmlhttp.responseText;
    } else {
      throw new Error(`Failed to load ${file}`);
    }
  };

  const capitalLetterMatches = operationName.match(/[A-Z]/g);
  if (capitalLetterMatches !== null) {
    // for example: the test data JSON file for leakyRelu is leaky_relu.json and for reduceLogSum is reduce_log_sum.json
    capitalLetterMatches.forEach(
      capitalLetter => operationName = operationName.replace(capitalLetter, `_${capitalLetter.toLowerCase()}`)
    )
  }
  const json = loadJSON(`/webnn/resources/test_data/${operationName}.json`);
  const resources = JSON.parse(json.replace(/\\"|"(?:\\"|[^"])*"|(\/\/.*|\/\*[\s\S]*?\*\/)/g, (m, g) => g ? "" : m));
  return resources.tests;
};

/**
 * Get exptected data and data type from given resources with output name.
 * @param {Array} resources - An array of expected resources
 * @param {String} outputName - An output name
 * @returns {Array.<[Number[], String]>} An array of expected data array and data type
 */
const getExpectedDataAndType = (resources, outputName) => {
  let ret;
  for (let subResources of resources) {
    if (subResources.name === outputName) {
      ret = [subResources.data, subResources.type];
      break;
    }
  }
  if (ret === undefined) {
    throw new Error(`Failed to get expected data sources and type by ${outputName}`);
  }
  return ret;
};

/**
 * Get ULP tolerance of conv2d/convTranspose2d operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getConv2dPrecisionTolerance = (resources, operationName) => {
  // number of reduced input elements multiplied by filter and summed (a sliding dot product like pooling)
  const inputNameArray = Object.keys(resources.inputs);
  const inputShape = resources.inputs[inputNameArray[0]].shape;
  const filterShape = resources.inputs[inputNameArray[1]].shape;
  const options = resources.options;
  let groups = 1;
  let inputChannels = inputShape[1]; // default nchw inputLayout
  // default oihw filterLayout for conv2d or default iohw filterLayout for convTranspose2d
  let filterWidth = filterShape[3];
  let filterHeight = filterShape[2];
  if (options) {
    if (options.groups) {
      groups = options.groups;
    }
    if (options.inputLayout) {
      if (!['nchw', 'nhwc'].includes(options.inputLayout)) {
        throw new Error(`Unsupported inputLayout ${options.inputLayout}`);
      }
      inputChannels = options.inputLayout === 'nchw' ? inputChannels : inputShape[3];
    }
    if (options.filterLayout) {
      let filterLayouts = ['oihw', 'hwio', 'ohwi', 'ihwo']; // default for conv2d
      if (operationName === 'convTranspose2d') {
        filterLayouts = ['iohw', 'hwoi', 'ohwi'];
      }
      if (!filterLayouts.includes(options.filterLayout)) {
        throw new Error(`Unsupported filterLayout ${options.filterLayout}`);
      }
      switch (options.filterLayout) {
        case 'oihw':
        case 'iohw':
          // Just use the existing filterWidth and filterHeight above.
          break;
        case 'hwio':
        case 'hwoi':
          filterWidth = filterShape[1];
          filterHeight = filterShape[0];
          break;
        case 'ohwi':
        case 'ihwo':
          filterWidth = filterShape[2];
          filterHeight = filterShape[1];
          break;
        default:
          break;
      }
    }
  }
  const tolerance = filterWidth * filterHeight * (inputChannels / groups) * 2;
  return tolerance;
};

/**
 * Get ULP tolerance of gemm operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getGemmPrecisionTolerance = (resources, operationName) => {
  // GEMM : alpha * (A x B) + beta * C
  // An upper bound for the worst serial ordering is bounded by
  // the number of lossy operations, where matrix multiplication
  // is a dot product (mul and add times the number of elements)
  // plus bias operations.
  const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const options = {...resources.options};
  const width = options.aTranspose ? shapeA[0] : shapeA[1];
  let tolerance = width * 2;
  // default options.alpha is 1.0
  if (options.alpha !== undefined && options.alpha !== 1.0) {
    tolerance++;
  }
  if (options.c && options.beta !== 0.0) {
    // default options.beta is 1.0
    if (options.beta !== undefined && options.beta !== 1.0) {
      tolerance++;
    }
    tolerance++;
  }
  return tolerance;
};

/**
 * Get ULP tolerance of matmul operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getMatmulPrecisionTolerance = (resources, operationName) => {
  // Matmul : Compute the matrix product of two input tensors.
  // If a is 1-D, WebNN converts it to a 2-D tensor by prepending a 1 to its dimensions, [n] -> [1, n].
  // So we can just always check the last dimension here.
  const shapeA = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const tolerance = shapeA[shapeA.length - 1] * 2;
  return tolerance;
};

/**
 * Get ULP tolerance of averagePool2d or l2Pool2d operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getAveragePool2dPrecisionTolerance = (resources, operationName) => {
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  let height;
  let width;
  const options = {...resources.options};
  if (options.windowDimensions) {
    height = options.windowDimensions[0];
    width = options.windowDimensions[1];
  } else {
    // If not present, the window dimensions are assumed to be the height and width dimensions of the input shape
    if (options.layout && options.layout === 'nhwc') {
      height = inputShape[1];
      width = inputShape[2];
    } else {
      // nhwc layout of input
      height = inputShape[2];
      width = inputShape[3];
    }
  }

  const tolerance = height * width + 2;
  return tolerance;
};

/**
 * Get ULP tolerance of softmax operation.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getSoftmaxPrecisionTolerance = (resources, operationName) => {
  // Compute the softmax values of the 2-D input tensor along axis 1.
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const tolerance = inputShape[1] * 3 + 3;
  return tolerance;
};

/**
 * Get ULP tolerance of reduction operations.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getReductionPrecisionTolerance = (resources, operationName) => {
  const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
  const rank = inputShape.length;
  const options = {...resources.options};
  let sizes;
  if (options && options.axes) {
    sizes = options.axes.map(
                (axis) => axis < 0 ? inputShape[axis + rank] : inputShape[axis]
    );
  } else {
    sizes = inputShape;
  }
  const reducedElementCount = sizes.reduce(
                                  (accumulator, currentValue) => accumulator * currentValue
  );
  let tolerance;
  switch (operationName) {
    case 'reduceL1':
    case 'reduceProduct':
    case 'reduceSum':
      tolerance = reducedElementCount;
      break;
    case 'reduceL2':
      tolerance = reducedElementCount * 2 + 1;
      break;
    case 'reduceMean':
      tolerance = reducedElementCount + 2;
      break;
    case 'reduceLogSum':
      tolerance = reducedElementCount + 18;
      break;
    case 'reduceLogSumExp':
      tolerance = reducedElementCount * 2 + 18;
      break;
    case 'reduceSumSquare':
      tolerance = reducedElementCount * 2;
      break;
    default:
      break;
  }
  return tolerance;
};

/**
 * Get ULP tolerance of resample2d operations.
 * @param {Object} resources - Resources used for building a graph
 * @param {String} operationName - An operation name
 * @returns {Number} A tolerance number
 */
const getResample2dPrecisionTolerance = (resources, operationName) => {
  const options = {...resources.options};
  let tolerance;
  if (options.mode && options.mode === 'linear') {
    // interpolation mode is linear
    const precisionType = resources.expected.type;
    if (precisionType === 'float32') {
      tolerance = 84;
    } else if (precisionType === 'float16') {
      tolerance = 10;
    } else {
      tolerance = 1;
    }
  } else {
    // interpolation mode is nearest-neighbor
    tolerance = 0;
  }
  return tolerance;
};

// Refer to precision metrics on https://github.com/webmachinelearning/webnn/issues/265#issuecomment-1256242643
const PrecisionMetrics = {
  argMax: {ULP: {int64: 0}},
  argMin: {ULP: {int64: 0}},
  batchNormalization: {ULP: {float32: 6, float16: 6}},
  cast: {ULP: {float32: 1, float16: 1, int32: 0, uint32: 0, int64: 0, int8: 0, uint8: 0}},
  clamp: {ULP: {float32: 0, float16: 0}},
  concat: {ULP: {float32: 0, float16: 0}},
  constant: {ULP: {float32: 2, float16: 2, int32: 0, uint32: 0, int64: 0, int8: 0, uint8: 0}},
  conv2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
  convTranspose2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
  // Begin Element-wise binary operations
  add: {ULP: {float32: 1, float16: 1}},
  sub: {ULP: {float32: 1, float16: 1}},
  mul: {ULP: {float32: 1, float16: 1}},
  div: {ULP: {float32: 2, float16: 2}},
  max: {ULP: {float32: 0, float16: 0}},
  min: {ULP: {float32: 0, float16: 0}},
  pow: {ULP: {float32: 32, float16: 2}},
  // End Element-wise binary operations
  // Begin Element-wise logical operations
  equal: {ULP: {uint8: 0}},
  greater: {ULP: {uint8: 0}},
  greaterOrEqual: {ULP: {uint8: 0}},
  lesser: {ULP: {uint8: 0}},
  lesserOrEqual: {ULP: {uint8: 0}},
  logicalNot: {ULP: {uint8: 0}},
  // End Element-wise logical operations
  // Begin Element-wise unary operations
  abs: {ULP: {float32: 0, float16: 0}},
  ceil: {ULP: {float32: 0, float16: 0}},
  cos: {ATOL: {float32: 1/1024, float16: 1/512}},
  erf: {ATOL: {float32: 1/1024, float16: 1/512}},
  exp: {ULP: {float32: 32, float16: 1}},
  floor: {ULP: {float32: 0, float16: 0}},
  identity: {ULP: {float32: 0, float16: 0}},
  log: {ATOL: {float32: 1/1024, float16:  1/1024}},
  neg: {ULP: {float32: 0, float16: 0}},
  reciprocal: {ULP: {float32: 2, float16: 2}},
  sin: {ATOL: {float32: 1/1024, float16: 1/512}},
  sqrt: {ULP: {float32: 1, float16: 1}},
  tan: {ATOL: {float32: 1/1024, float16: 1/512}},
  // End Element-wise unary operations
  elu: {ULP: {float32: 18, float16: 18}},
  expand: {ULP: {float32: 0, float16: 0}},
  gather: {ULP: {float32: 0, float16: 0}},
  gemm: {ULP: {float32: getGemmPrecisionTolerance, float16: getGemmPrecisionTolerance}},
  instanceNormalization: {ULP: {float32: 840, float16: 8400}},
  hardSigmoid: {ULP: {float32: 2, float16: 2}},
  hardSwish: {ULP: {float32: 4, float16: 4}},
  layerNormalization: {ATOL: {float32: 1/1024, float16: 1/512}},
  leakyRelu: {ULP: {float32: 1, float16: 1}},
  linear: {ULP: {float32: 2, float16: 2}},
  matmul: {ULP: {float32: getMatmulPrecisionTolerance, float16: getMatmulPrecisionTolerance}},
  pad: {ULP: {float32: 0, float16: 0}},
  // Begin Pooling operations
  averagePool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
  l2Pool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
  maxPool2d: {ULP: {float32: 0, float16: 0}},
  // End Pooling operations
  prelu: {ULP: {float32: 1, float16: 1}},
  // Begin Reduction operations
  reduceL1: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceL2: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceLogSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceLogSumExp: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceMax: {ULP: {float32: 0, float16: 0}},
  reduceMean: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceMin: {ULP: {float32: 0, float16: 0}},
  reduceProduct: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceSum: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  reduceSumSquare: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
  // End Reduction operations
  relu: {ULP: {float32: 0, float16: 0}},
  resample2d: {ULP: {float32: getResample2dPrecisionTolerance, float16: getResample2dPrecisionTolerance}},
  reshape: {ULP: {float32: 0, float16: 0}},
  sigmoid: {ULP: {float32: 32+2, float16: 3}}, // float32 (leaving a few ULP for roundoff)
  slice: {ULP: {float32: 0, float16: 0}},
  softmax: {ULP: {float32: getSoftmaxPrecisionTolerance, float16: getSoftmaxPrecisionTolerance}},
  softplus: {ULP: {float32: 18, float16: 18}},
  softsign: {ULP: {float32: 3, float16: 3}},
  split: {ULP: {float32: 0, float16: 0}},
  tanh: {ATOL: {float32: 1/1024, float16: 1/512}},
  transpose: {ULP: {float32: 0, float16: 0}},
  triangular: {ULP: {float32: 0, float16: 0}},
  where: {ULP: {float32: 0, float16: 0}},
};

/**
 * Get precison tolerance value.
 * @param {String} operationName - An operation name
 * @param {String} metricType - Value: 'ULP', 'ATOL'
 * @param {Object} resources - Resources used for building a graph
 * @returns {Number} A tolerance number
 */
const getPrecisonTolerance = (operationName, metricType, resources) => {
  // the outputs by split or gru is a sequence
  const precisionType = Array.isArray(resources.expected) ? resources.expected[0].type : resources.expected.type;
  let tolerance = PrecisionMetrics[operationName][metricType][precisionType];
  // If the tolerance is dynamic, then evaluate the function to get the value.
  if (tolerance instanceof Function) {
    tolerance = tolerance(resources, operationName);
  }
  return tolerance;
};

/**
 * Get bitwise of the given value.
 * @param {Number} value
 * @param {String} dataType - A data type string, like "float32", "float16",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperanddatatype
 * @return {Number} A 64-bit signed integer.
 */
const getBitwise = (value, dataType) => {
  const buffer = new ArrayBuffer(8);
  const int64Array = new BigInt64Array(buffer);
  int64Array[0] = value < 0 ? ~BigInt(0) : BigInt(0);
  let typedArray;
  if (dataType === "float32") {
    typedArray = new Float32Array(buffer);
  } else {
    throw new AssertionError(`Data type ${dataType} is not supported`);
  }
  typedArray[0] = value;
  return int64Array[0];
};

/**
 * Assert that each array property in ``actual`` is a number being close enough to the corresponding
 * property in ``expected`` by the acceptable ULP distance ``nulp`` with given ``dataType`` data type.
 *
 * @param {Array} actual - Array of test values.
 * @param {Array} expected - Array of values expected to be close to the values in ``actual``.
 * @param {Number} nulp - A BigInt value indicates acceptable ULP distance.
 * @param {String} dataType - A data type string, value: "float32",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperanddatatype
 * @param {String} description - Description of the condition being tested.
 */
const assert_array_approx_equals_ulp = (actual, expected, nulp, dataType, description) => {
  /*
    * Test if two primitive arrays are equal within acceptable ULP distance
    */
  assert_true(actual.length === expected.length,
              `assert_array_approx_equals_ulp: ${description} lengths differ, expected ${expected.length} but got ${actual.length}`);
  let actualBitwise, expectedBitwise, distance;
  for (let i = 0; i < actual.length; i++) {
    if (actual[i] === expected[i]) {
      continue;
    } else {
      // measure the ULP distance
      if (dataType === 'float32') {
        actualBitwise = getBitwise(actual[i], dataType);
        expectedBitwise = getBitwise(expected[i], dataType);
      } else if (dataType === 'float16') {
        actualBitwise = actual[i];
        // convert expected data of Float16 to Uint16
        expectedBitwise = toHalf(expected[i]);
      } else if (dataType === 'int64') {
        actualBitwise = actual[i];
        expectedBitwise = BigInt(expected[i]);
      }
      distance = actualBitwise - expectedBitwise;
      distance = distance >= 0 ? distance : -distance;
      assert_true(distance <= nulp,
                  `assert_array_approx_equals_ulp: ${description} actual ${actual[i]} should be close enough to expected ${expected[i]} by the acceptable ${nulp} ULP distance, but they have ${distance} ULP distance`);
    }
  }
};

/**
 * Assert actual results with expected results.
 * @param {String} operationName - An operation name
 * @param {(Number[]|Number)} actual
 * @param {(Number[]|Number)} expected
 * @param {Number} tolerance
 * @param {String} operandType  - An operand type string, value: "float32",
 *     more types, please see:
 *     https://webmachinelearning.github.io/webnn/#enumdef-mloperanddatatype
 * @param {String} metricType - Value: 'ULP', 'ATOL'
 */
const doAssert = (operationName, actual, expected, tolerance, operandType, metricType) => {
  const description = `test ${operationName} ${operandType}`;
  if (typeof expected === 'number') {
    // for checking a scalar output by matmul 1D x 1D
    expected = [expected];
    actual = [actual];
  }
  if (metricType === 'ULP') {
    assert_array_approx_equals_ulp(actual, expected, tolerance, operandType, description);
  } else if (metricType === 'ATOL') {
    assert_array_approx_equals(actual, expected, tolerance, description);
  }
};

/**
 * Check computed results with expected data.
 * @param {String} operationName - An operation name
 * @param {Object.<String, MLOperand>} namedOutputOperands
 * @param {Object.<MLNamedArrayBufferViews>} outputs - The resources of required outputs
 * @param {Object} resources - Resources used for building a graph
 */
const checkResults = (operationName, namedOutputOperands, outputs, resources) => {
  const metricType = Object.keys(PrecisionMetrics[operationName])[0];
  const expected = resources.expected;
  let tolerance;
  let operandType;
  let outputData;
  let expectedData;
  if (Array.isArray(expected)) {
    // the outputs of split() or gru() is a sequence
    for (let operandName in namedOutputOperands) {
      outputData = outputs[operandName];
      // for some operations which may have multi outputs of different types
      [expectedData, operandType] = getExpectedDataAndType(expected, operandName);
      tolerance = getPrecisonTolerance(operationName, metricType, resources);
      doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
    }
  } else {
    outputData = outputs[expected.name];
    expectedData = expected.data;
    operandType = expected.type;
    tolerance = getPrecisonTolerance(operationName, metricType, resources);
    doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
  }
};

/**
 * Create a constant operand
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for constant operand
 * @returns {MLOperand} A constant operand
 */
const createConstantOperand = (builder, resources) => {
  const bufferView = new TypedArrayDict[resources.type](resources.data);
  return builder.constant({dataType: resources.type, type: resources.type, dimensions: resources.shape}, bufferView);
};

/**
 * Create single input operands for a graph.
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {String} [inputOperandName] - An inputOperand name
 * @returns {MLOperand} An input operand
 */
const createSingleInputOperand = (builder, resources, inputOperandName) => {
  inputOperandName = inputOperandName ? inputOperandName : Object.keys(resources.inputs)[0];
  const inputResources = resources.inputs[inputOperandName];
  let operand;
  if (resources.inputs[inputOperandName].hasOwnProperty('constant') && resources.inputs[inputOperandName]['constant']) {
    operand = createConstantOperand(builder, resources.inputs[inputOperandName]);
  } else {
    operand = builder.input(inputOperandName, {dataType: inputResources.type, type: inputResources.type, dimensions: inputResources.shape});
  }
  return operand;
};

/**
 * Create multi input operands for a graph.
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLOperand[]} Input operands array
 */
const createMultiInputOperands = (builder, resources) => {
  let inputOperands = [];
  const inputOperandNameArray = Object.keys(resources.inputs);
  inputOperandNameArray.forEach(inputOperandName => {
    const operand = createSingleInputOperand(builder, resources, inputOperandName);
    inputOperands.push(operand);
  });
  return inputOperands;
};

/**
 * Build an operation which has a single input.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLNamedOperands}
 */
const buildOperationWithSingleInput = (operationName, builder, resources) => {
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  const outputOperand = resources.options ?
      builder[operationName](inputOperand, resources.options) : builder[operationName](inputOperand);
  namedOutputOperand[resources.expected.name] = outputOperand;
  return namedOutputOperand;
};

/**
 * Build an operation which has two inputs.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @returns {MLNamedOperands}
 */
const buildOperationWithTwoInputs = (operationName, builder, resources) => {
  // For example: MLOperand matmul(MLOperand a, MLOperand b);
  const namedOutputOperand = {};
  const [inputOperandA, inputOperandB] = createMultiInputOperands(builder, resources);
  const outputOperand = resources.options ?
      builder[operationName](inputOperandA, inputOperandB, resources.options) : builder[operationName](inputOperandA, inputOperandB);
  namedOutputOperand[resources.expected.name] = outputOperand;
  return namedOutputOperand;
};

const buildBatchNorm = (operationName, builder, resources) => {
  // MLOperand batchNormalization(MLOperand input, MLOperand mean, MLOperand variance,
  //                              optional MLBatchNormalizationOptions options = {});
  const namedOutputOperand = {};
  const [inputOperand, meanOperand, varianceOperand] = createMultiInputOperands(builder, resources);
  const batchNormOptions = {...resources.options};
  if (batchNormOptions.scale) {
    batchNormOptions.scale = createConstantOperand(builder, batchNormOptions.scale);
  }
  if (batchNormOptions.bias) {
    batchNormOptions.bias = createConstantOperand(builder, batchNormOptions.bias);
  }
  if (batchNormOptions.activation) {
    batchNormOptions.activation = builder[batchNormOptions.activation]();
  }
  // invoke builder.batchNormalization()
  namedOutputOperand[resources.expected.name] =
      builder[operationName](inputOperand, meanOperand, varianceOperand, batchNormOptions);
  return namedOutputOperand;
};

const buildCast = (operationName, builder, resources) => {
  // MLOperand cast(MLOperand input, MLOperandDataType type);
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  // invoke builder.cast()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, resources.type);
  return namedOutputOperand;
};

const buildConcat = (operationName, builder, resources) => {
  // MLOperand concat(sequence<MLOperand> inputs, unsigned long axis);
  const namedOutputOperand = {};
  const inputOperands = [];
  let operand;
  for (let input of resources.inputs) {
    if (input.hasOwnProperty('constant') && input['constant']) {
      operand = createConstantOperand(builder, input);
    } else {
      operand = builder.input(input.name, {dataType: input.type, type: input.type, dimensions: input.shape});
    }
    inputOperands.push(operand);
  }
  // invoke builder.concat()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperands, resources.axis);
  return namedOutputOperand;
};

const buildConstantRange = (operationName, builder, resources) => {
  const namedOutputOperand = {};
  // invoke builder.constant(start, step, outputShape, type)
  namedOutputOperand[resources.expected.name] = builder[operationName](resources.inputs.start, resources.inputs.step, resources.outputShape, resources.type);
  return namedOutputOperand;
};

const buildConvTranspose2d = (operationName, builder, resources) => {
  // MLOperand convTranspose2d(MLOperand input, MLOperand filter, optional MLConvTranspose2dOptions options = {});
  const namedOutputOperand = {};
  const [inputOperand, filterOperand] = createMultiInputOperands(builder, resources);
  let convTranspose2dOptions = {...resources.options};
  if (convTranspose2dOptions.bias) {
    convTranspose2dOptions.bias = createConstantOperand(builder, convTranspose2dOptions.bias);
  }
  if (convTranspose2dOptions.activation) {
    convTranspose2dOptions.activation = builder[convTranspose2dOptions.activation]();
  }
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, filterOperand, convTranspose2dOptions);
  return namedOutputOperand;
};

const buildConv2d = (operationName, builder, resources) => {
  // MLOperand conv2d(MLOperand input, MLOperand filter, optional MLConv2dOptions options = {});
  const namedOutputOperand = {};
  const [inputOperand, filterOperand] = createMultiInputOperands(builder, resources);
  let conv2dOptions = {...resources.options};
  if (conv2dOptions.bias) {
    conv2dOptions.bias = createConstantOperand(builder, conv2dOptions.bias);
  }
  if (conv2dOptions.activation) {
    conv2dOptions.activation = builder[conv2dOptions.activation]();
  }
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, filterOperand, conv2dOptions);
  return namedOutputOperand;
};

const buildGemm = (operationName, builder, resources) => {
  // MLOperand gemm(MLOperand a, MLOperand b, optional MLGemmOptions options = {});
  const namedOutputOperand = {};
  const [inputOperandA, inputOperandB] = createMultiInputOperands(builder, resources);
  let gemmOptions = {...resources.options};
  if (gemmOptions.c) {
    if (gemmOptions.c.shape) {
      gemmOptions.c = createConstantOperand(builder, gemmOptions.c);
    } else {
      // MLOperand c;
      // Create a single-value operand when c is a scalar
      gemmOptions.c = builder.constant({dataType: 'float32', type: 'float32', dimensions: [1]}, new Float32Array([gemmOptions.c]));
    }
  }
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperandA, inputOperandB, gemmOptions);
  return namedOutputOperand;
};

const buildLayerNorm = (operationName, builder, resources) => {
  // MLOperand layerNormalization(MLOperand input, optional MLLayerNormalizationOptions options = {});
  // MLOperand instanceNormalization(MLOperand input, optional MLInstanceNormalizationOptions options = {});
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  const layerNormOptions = {...resources.options};
  if (layerNormOptions.scale) {
    layerNormOptions.scale = createConstantOperand(builder, layerNormOptions.scale);
  }
  if (layerNormOptions.bias) {
    layerNormOptions.bias = createConstantOperand(builder, layerNormOptions.bias);
  }
  // invoke builder.layerNormalization() or builder.instanceNormalization()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, layerNormOptions);
  return namedOutputOperand;
};

const buildPad = (operationName, builder, resources) => {
  // MLOperand pad(MLOperand input, sequence<unsigned long> beginningPadding, sequence<unsigned long> endingPadding, optional MLPadOptions options = {});
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  // invoke builder.pad()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, resources.beginningPadding, resources.endingPadding, resources.options);
  return namedOutputOperand;
};

const buildReshape = (operationName, builder, resources) => {
  // MLOperand reshape(MLOperand input, sequence<unsigned long> newShape);
  // MLOperand expand(MLOperand input, sequence<unsigned long> newShape);
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  // invoke builder.reshape() or builder.expand()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, resources.newShape);
  return namedOutputOperand;
};

const buildSlice = (operationName, builder, resources) => {
  // MLOperand slice(MLOperand input, sequence<unsigned long> starts, sequence<unsigned long> sizes);
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  // invoke builder.slice()
  namedOutputOperand[resources.expected.name] = builder[operationName](inputOperand, resources.starts, resources.sizes);
  return namedOutputOperand;
};

const buildSplit = (operationName, builder, resources) => {
  // sequence<MLOperand> split(MLOperand input,
  //                           (unsigned long or sequence<unsigned long>) splits,
  //                           optional MLSplitOptions options = {});
  const namedOutputOperand = {};
  const inputOperand = createSingleInputOperand(builder, resources);
  // invoke builder.split()
  const outputOperands = builder[operationName](inputOperand, resources.splits, resources.options);
  resources.expected.forEach((resourceDict, index) => {
    namedOutputOperand[resourceDict.name] = outputOperands[index];
  });
  return namedOutputOperand;
};

const buildWhere = (operationName, builder, resources) => {
  // MLOperand where(MLOperand condition, MLOperand trueValues, MLOperand falseValues);
  const namedOutputOperand = {};
  const [conditionOperand, trueValuesOperand, falseValuesOperand] = createMultiInputOperands(builder, resources);
  // invoke builder.where()
  namedOutputOperand[resources.expected.name] = builder[operationName](conditionOperand, trueValuesOperand, falseValuesOperand);
  return namedOutputOperand;
};

/**
 * Build a graph.
 * @param {String} operationName - An operation name
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {Function} buildFunc - A build function for an operation
 * @returns [namedOperands, inputs, outputs]
 */
const buildGraph = (operationName, builder, resources, buildFunc) => {
  const namedOperands = buildFunc(operationName, builder, resources);
  let inputs = {};
  if (Array.isArray(resources.inputs)) {
    // the inputs of concat() is a sequence
    for (let subInput of resources.inputs) {
      if (!subInput.hasOwnProperty('constant') || !subInput.constant) {
        inputs[subInput.name] = getTypedArrayData(subInput.type, subInput.data);
      }
    }
  } else {
    for (let inputName in resources.inputs) {
      const subTestByName = resources.inputs[inputName];
      if (!subTestByName.hasOwnProperty('constant') || !subTestByName.constant) {
        inputs[inputName] = getTypedArrayData(subTestByName.type, subTestByName.data);
      }
    }
  }
  let outputs = {};
  if (Array.isArray(resources.expected)) {
    // the outputs of split() or gru() is a sequence
    for (let i = 0; i < resources.expected.length; i++) {
      const subExpected = resources.expected[i];
      outputs[subExpected.name] = new TypedArrayDict[subExpected.type](sizeOfShape(subExpected.shape));
    }
  } else {
    // matmul 1D with 1D produces a scalar which doesn't have its shape
    const shape = resources.expected.shape ? resources.expected.shape : [1];
    outputs[resources.expected.name] = new TypedArrayDict[resources.expected.type](sizeOfShape(shape));
  }
  return [namedOperands, inputs, outputs];
};

/**
 * Build a graph, compile graph and execute, then check computed results.
 * @param {String} operationName - An operation name
 * @param {MLContext} context - A ML context
 * @param {MLGraphBuilder} builder - A ML graph builder
 * @param {Object} resources - Resources used for building a graph
 * @param {Function} buildFunc - A build function for an operation
 */
const run = async (operationName, context, builder, resources, buildFunc) => {
  // build a graph
  const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
  // compile the graph up to the output operand
  const graph = await builder.build(namedOutputOperands);
  // execute the compiled graph
  const result = await context.compute(graph, inputs, outputs);
  checkResults(operationName, namedOutputOperands, result.outputs, resources);
};

/**
 * Run WebNN operation tests.
 * @param {(String[]|String)} operationName - An operation name array or an operation name
 * @param {Function} buildFunc - A build function for an operation
 * @param {String} deviceType - The execution device type for this test
 */
const testWebNNOperation = (operationName, buildFunc, deviceType = 'cpu') => {
  test(() => assert_not_equals(navigator.ml, undefined, "ml property is defined on navigator"));
  if (navigator.ml === undefined) {
    return;
  }
  let operationNameArray;
  if (typeof operationName === 'string') {
    operationNameArray = [operationName];
  } else if (Array.isArray(operationName)) {
    operationNameArray = operationName;
  }

  let context;
  let builder;
  operationNameArray.forEach((subOperationName) => {
    const tests = loadTests(subOperationName);
    promise_setup(async () => {
      context = await navigator.ml.createContext({deviceType});
      builder = new MLGraphBuilder(context);
    });
    for (const subTest of tests) {
      promise_test(async () => {
        await run(subOperationName, context, builder, subTest, buildFunc);
      }, `${subTest.name}`);
    }
  });
};

// ref: http://stackoverflow.com/questions/32633585/how-do-you-convert-to-half-floats-in-javascript
const toHalf = (value) => {
  let floatView = new Float32Array(1);
  let int32View = new Int32Array(floatView.buffer);

  /* This method is faster than the OpenEXR implementation (very often
   * used, eg. in Ogre), with the additional benefit of rounding, inspired
   * by James Tursa's half-precision code. */

  floatView[0] = value;
  let x = int32View[0];

  let bits = (x >> 16) & 0x8000; /* Get the sign */
  let m = (x >> 12) & 0x07ff; /* Keep one extra bit for rounding */
  let e = (x >> 23) & 0xff; /* Using int is faster here */

  /* If zero, or denormal, or exponent underflows too much for a denormal
    * half, return signed zero. */
  if (e < 103) {
    return bits;
  }

  /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  if (e > 142) {
    bits |= 0x7c00;
    /* If exponent was 0xff and one mantissa bit was set, it means NaN,
      * not Inf, so make sure we set one mantissa bit too. */
    bits |= ((e == 255) ? 0 : 1) && (x & 0x007fffff);
    return bits;
  }

  /* If exponent underflows but not too much, return a denormal */
  if (e < 113) {
    m |= 0x0800;
    /* Extra rounding may overflow and set mantissa to 0 and exponent
      * to 1, which is OK. */
    bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
    return bits;
  }

  bits |= ((e - 112) << 10) | (m >> 1);
  /* Extra rounding. An overflow will set mantissa to 0 and increment
    * the exponent, which is OK. */
  bits += m & 1;
  return bits;
};


/**
 * WebNN buffer creation.
 * @param {MLContext} context - the context used to create the buffer.
 * @param {Number} bufferSize - Size of the buffer to create, in bytes.
 */
const createBuffer = (context, bufferSize) => {
  let buffer;
  try {
    buffer = context.createBuffer({size: bufferSize});
    assert_equals(buffer.size, bufferSize);
  } catch (e) {
    assert_true(e instanceof DOMException);
    assert_equals(e.name, "NotSupportedError");
  }
  return buffer;
};

/**
 * WebNN destroy buffer twice test.
 * @param {String} testName - The name of the test operation.
 * @param {String} deviceType - The execution device type for this test.
 */
const testDestroyWebNNBuffer = (testName, deviceType = 'cpu') => {
  let context;
  let buffer;
  promise_setup(async () => {
    context = await navigator.ml.createContext({deviceType});
    buffer = createBuffer(context, 4);
  });
  promise_test(async () => {
    // MLBuffer is not supported for this deviceType.
    if (buffer === undefined) {
      return;
    }
    buffer.destroy();
    buffer.destroy();
  }, `${testName}`);
};

/**
 * WebNN create buffer test.
 * @param {String} testName - The name of the test operation.
 * @param {Number} bufferSize - Size of the buffer to create, in bytes.
 * @param {String} deviceType - The execution device type for this test.
 */
const testCreateWebNNBuffer = (testName, bufferSize, deviceType = 'cpu') => {
  let context;
  promise_setup(async () => {
      context = await navigator.ml.createContext({deviceType});
  });
  promise_test(async () => {
    createBuffer(context, bufferSize);
  }, `${testName} / ${bufferSize}`);
};