summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/filterintra_sse4.c
blob: d05bb0e15f07121f01759a24f3bc0c77950c051a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <smmintrin.h>
#include <string.h>

#include "config/av1_rtcd.h"

#include "aom_dsp/x86/synonyms.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"

//------------------------------------------------------------------------------
// filter_intra_predictor_sse4_1

// This shuffle mask selects 32-bit blocks in the order 0, 1, 0, 1, which
// duplicates the first 8 bytes of a 128-bit vector into the second 8 bytes.
#define DUPLICATE_FIRST_HALF 0x44

// Apply all filter taps to the given 7 packed 16-bit values, keeping the 8th
// at zero to preserve the sum.
static INLINE void filter_4x2_sse4_1(uint8_t *dst, const ptrdiff_t stride,
                                     const __m128i *pixels,
                                     const __m128i *taps_0_1,
                                     const __m128i *taps_2_3,
                                     const __m128i *taps_4_5,
                                     const __m128i *taps_6_7) {
  const __m128i mul_0_01 = _mm_maddubs_epi16(*pixels, *taps_0_1);
  const __m128i mul_0_23 = _mm_maddubs_epi16(*pixels, *taps_2_3);
  // |output_half| contains 8 partial sums.
  __m128i output_half = _mm_hadd_epi16(mul_0_01, mul_0_23);
  __m128i output = _mm_hadd_epi16(output_half, output_half);
  const __m128i output_row0 =
      _mm_packus_epi16(xx_roundn_epi16_unsigned(output, 4),
                       /* arbitrary pack arg */ output);
  xx_storel_32(dst, output_row0);
  const __m128i mul_1_01 = _mm_maddubs_epi16(*pixels, *taps_4_5);
  const __m128i mul_1_23 = _mm_maddubs_epi16(*pixels, *taps_6_7);
  output_half = _mm_hadd_epi16(mul_1_01, mul_1_23);
  output = _mm_hadd_epi16(output_half, output_half);
  const __m128i output_row1 =
      _mm_packus_epi16(xx_roundn_epi16_unsigned(output, 4),
                       /* arbitrary pack arg */ output);
  xx_storel_32(dst + stride, output_row1);
}

// 4xH transform sizes are given special treatment because xx_loadl_64 goes out
// of bounds and every block involves the left column. This implementation
// loads TL from the top row for the first block, so it is not
static INLINE void filter_4xh(uint8_t *dest, ptrdiff_t stride,
                              const uint8_t *const top_ptr,
                              const uint8_t *const left_ptr, int mode,
                              const int height) {
  const __m128i taps_0_1 = xx_load_128(av1_filter_intra_taps[mode][0]);
  const __m128i taps_2_3 = xx_load_128(av1_filter_intra_taps[mode][2]);
  const __m128i taps_4_5 = xx_load_128(av1_filter_intra_taps[mode][4]);
  const __m128i taps_6_7 = xx_load_128(av1_filter_intra_taps[mode][6]);
  __m128i top = xx_loadl_32(top_ptr - 1);
  __m128i pixels = _mm_insert_epi8(top, (int8_t)top_ptr[3], 4);
  __m128i left = (height == 4 ? xx_loadl_32(left_ptr) : xx_loadl_64(left_ptr));
  left = _mm_slli_si128(left, 5);

  // Relative pixels: top[-1], top[0], top[1], top[2], top[3], left[0], left[1],
  // left[2], left[3], left[4], left[5], left[6], left[7]
  pixels = _mm_or_si128(left, pixels);

  // Duplicate first 8 bytes.
  pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF);
  filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                    &taps_6_7);
  dest += stride;  // Move to y = 1.
  pixels = xx_loadl_32(dest);

  // Relative pixels: top[0], top[1], top[2], top[3], empty, left[-2], left[-1],
  // left[0], left[1], ...
  pixels = _mm_or_si128(left, pixels);

  // This mask rearranges bytes in the order: 6, 0, 1, 2, 3, 7, 8, 15. The last
  // byte is an unused value, which shall be multiplied by 0 when we apply the
  // filter.
  const int64_t kInsertTopLeftFirstMask = 0x0F08070302010006;

  // Insert left[-1] in front as TL and put left[0] and left[1] at the end.
  const __m128i pixel_order1 = _mm_set1_epi64x(kInsertTopLeftFirstMask);
  pixels = _mm_shuffle_epi8(pixels, pixel_order1);
  dest += stride;  // Move to y = 2.
  filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                    &taps_6_7);
  dest += stride;  // Move to y = 3.

  // Compute the middle 8 rows before using common code for the final 4 rows.
  // Because the common code below this block assumes that
  if (height == 16) {
    // This shift allows us to use pixel_order2 twice after shifting by 2 later.
    left = _mm_slli_si128(left, 1);
    pixels = xx_loadl_32(dest);

    // Relative pixels: top[0], top[1], top[2], top[3], empty, empty, left[-4],
    // left[-3], left[-2], left[-1], left[0], left[1], left[2], left[3]
    pixels = _mm_or_si128(left, pixels);

    // This mask rearranges bytes in the order: 9, 0, 1, 2, 3, 7, 8, 15. The
    // last byte is an unused value, as above. The top-left was shifted to
    // position nine to keep two empty spaces after the top pixels.
    const int64_t kInsertTopLeftSecondMask = 0x0F0B0A0302010009;

    // Insert (relative) left[-1] in front as TL and put left[0] and left[1] at
    // the end.
    const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftSecondMask);
    pixels = _mm_shuffle_epi8(pixels, pixel_order2);
    dest += stride;  // Move to y = 4.

    // First 4x2 in the if body.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);

    // Clear all but final pixel in the first 8 of left column.
    __m128i keep_top_left = _mm_srli_si128(left, 13);
    dest += stride;  // Move to y = 5.
    pixels = xx_loadl_32(dest);
    left = _mm_srli_si128(left, 2);

    // Relative pixels: top[0], top[1], top[2], top[3], left[-6],
    // left[-5], left[-4], left[-3], left[-2], left[-1], left[0], left[1]
    pixels = _mm_or_si128(left, pixels);
    left = xx_loadl_64(left_ptr + 8);

    pixels = _mm_shuffle_epi8(pixels, pixel_order2);
    dest += stride;  // Move to y = 6.

    // Second 4x2 in the if body.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);

    // Position TL value so we can use pixel_order1.
    keep_top_left = _mm_slli_si128(keep_top_left, 6);
    dest += stride;  // Move to y = 7.
    pixels = xx_loadl_32(dest);
    left = _mm_slli_si128(left, 7);
    left = _mm_or_si128(left, keep_top_left);

    // Relative pixels: top[0], top[1], top[2], top[3], empty, empty,
    // left[-1], left[0], left[1], left[2], left[3], ...
    pixels = _mm_or_si128(left, pixels);
    pixels = _mm_shuffle_epi8(pixels, pixel_order1);
    dest += stride;  // Move to y = 8.

    // Third 4x2 in the if body.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);
    dest += stride;  // Move to y = 9.

    // Prepare final inputs.
    pixels = xx_loadl_32(dest);
    left = _mm_srli_si128(left, 2);

    // Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2]
    // left[-1], left[0], left[1], left[2], left[3], ...
    pixels = _mm_or_si128(left, pixels);
    pixels = _mm_shuffle_epi8(pixels, pixel_order1);
    dest += stride;  // Move to y = 10.

    // Fourth 4x2 in the if body.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);
    dest += stride;  // Move to y = 11.
  }

  // In both the 8 and 16 case, we assume that the left vector has the next TL
  // at position 8.
  if (height > 4) {
    // Erase prior left pixels by shifting TL to position 0.
    left = _mm_srli_si128(left, 8);
    left = _mm_slli_si128(left, 6);
    pixels = xx_loadl_32(dest);

    // Relative pixels: top[0], top[1], top[2], top[3], empty, empty,
    // left[-1], left[0], left[1], left[2], left[3], ...
    pixels = _mm_or_si128(left, pixels);
    pixels = _mm_shuffle_epi8(pixels, pixel_order1);
    dest += stride;  // Move to y = 12 or 4.

    // First of final two 4x2 blocks.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);
    dest += stride;  // Move to y = 13 or 5.
    pixels = xx_loadl_32(dest);
    left = _mm_srli_si128(left, 2);

    // Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2]
    // left[-1], left[0], left[1], left[2], left[3], ...
    pixels = _mm_or_si128(left, pixels);
    pixels = _mm_shuffle_epi8(pixels, pixel_order1);
    dest += stride;  // Move to y = 14 or 6.

    // Last of final two 4x2 blocks.
    filter_4x2_sse4_1(dest, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);
  }
}

static INLINE void filter_intra_predictor_sse4_1(void *const dest,
                                                 ptrdiff_t stride,
                                                 const void *const top_row,
                                                 const void *const left_column,
                                                 int mode, const int width,
                                                 const int height) {
  const uint8_t *const top_ptr = (const uint8_t *)top_row;
  const uint8_t *const left_ptr = (const uint8_t *)left_column;
  uint8_t *dst = (uint8_t *)dest;
  if (width == 4) {
    filter_4xh(dst, stride, top_ptr, left_ptr, mode, height);
    return;
  }

  // There is one set of 7 taps for each of the 4x2 output pixels.
  const __m128i taps_0_1 = xx_load_128(av1_filter_intra_taps[mode][0]);
  const __m128i taps_2_3 = xx_load_128(av1_filter_intra_taps[mode][2]);
  const __m128i taps_4_5 = xx_load_128(av1_filter_intra_taps[mode][4]);
  const __m128i taps_6_7 = xx_load_128(av1_filter_intra_taps[mode][6]);

  // This mask rearranges bytes in the order: 0, 1, 2, 3, 4, 8, 9, 15. The 15 at
  // the end is an unused value, which shall be multiplied by 0 when we apply
  // the filter.
  const int64_t kCondenseLeftMask = 0x0F09080403020100;

  // Takes the "left section" and puts it right after p0-p4.
  const __m128i pixel_order1 = _mm_set1_epi64x(kCondenseLeftMask);

  // This mask rearranges bytes in the order: 8, 0, 1, 2, 3, 9, 10, 15. The last
  // byte is unused as above.
  const int64_t kInsertTopLeftMask = 0x0F0A090302010008;

  // Shuffles the "top left" from the left section, to the front. Used when
  // grabbing data from left_column and not top_row.
  const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftMask);

  // This first pass takes care of the cases where the top left pixel comes from
  // top_row.
  __m128i pixels = xx_loadl_64(top_ptr - 1);
  __m128i left = _mm_slli_si128(xx_loadl_32(left_column), 8);
  pixels = _mm_or_si128(pixels, left);

  // Two sets of the same pixels to multiply with two sets of taps.
  pixels = _mm_shuffle_epi8(pixels, pixel_order1);
  filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                    &taps_6_7);
  left = _mm_srli_si128(left, 1);

  // Load
  pixels = xx_loadl_32(dst + stride);

  // Because of the above shift, this OR 'invades' the final of the first 8
  // bytes of |pixels|. This is acceptable because the 8th filter tap is always
  // a padded 0.
  pixels = _mm_or_si128(pixels, left);
  pixels = _mm_shuffle_epi8(pixels, pixel_order2);
  const ptrdiff_t stride2 = stride << 1;
  const ptrdiff_t stride4 = stride << 2;
  filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3,
                    &taps_4_5, &taps_6_7);
  dst += 4;
  for (int x = 3; x < width - 4; x += 4) {
    pixels = xx_loadl_32(top_ptr + x);
    pixels = _mm_insert_epi8(pixels, (int8_t)top_ptr[x + 4], 4);
    pixels = _mm_insert_epi8(pixels, (int8_t)dst[-1], 5);
    pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride - 1], 6);

    // Duplicate bottom half into upper half.
    pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF);
    filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);
    pixels = xx_loadl_32(dst + stride - 1);
    pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + 3], 4);
    pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 - 1], 5);
    pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + stride2 - 1], 6);

    // Duplicate bottom half into upper half.
    pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF);
    filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3,
                      &taps_4_5, &taps_6_7);
    dst += 4;
  }

  // Now we handle heights that reference previous blocks rather than top_row.
  for (int y = 4; y < height; y += 4) {
    // Leftmost 4x4 block for this height.
    dst -= width;
    dst += stride4;

    // Top Left is not available by offset in these leftmost blocks.
    pixels = xx_loadl_32(dst - stride);
    left = _mm_slli_si128(xx_loadl_32(left_ptr + y - 1), 8);
    left = _mm_insert_epi8(left, (int8_t)left_ptr[y + 3], 12);
    pixels = _mm_or_si128(pixels, left);
    pixels = _mm_shuffle_epi8(pixels, pixel_order2);
    filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                      &taps_6_7);

    // The bytes shifted into positions 6 and 7 will be ignored by the shuffle.
    left = _mm_srli_si128(left, 2);
    pixels = xx_loadl_32(dst + stride);
    pixels = _mm_or_si128(pixels, left);
    pixels = _mm_shuffle_epi8(pixels, pixel_order2);
    filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3,
                      &taps_4_5, &taps_6_7);

    dst += 4;

    // Remaining 4x4 blocks for this height.
    for (int x = 4; x < width; x += 4) {
      pixels = xx_loadl_32(dst - stride - 1);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[-stride + 3], 4);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[-1], 5);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride - 1], 6);

      // Duplicate bottom half into upper half.
      pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF);
      filter_4x2_sse4_1(dst, stride, &pixels, &taps_0_1, &taps_2_3, &taps_4_5,
                        &taps_6_7);
      pixels = xx_loadl_32(dst + stride - 1);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride + 3], 4);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 - 1], 5);
      pixels = _mm_insert_epi8(pixels, (int8_t)dst[stride2 + stride - 1], 6);

      // Duplicate bottom half into upper half.
      pixels = _mm_shuffle_epi32(pixels, DUPLICATE_FIRST_HALF);
      filter_4x2_sse4_1(dst + stride2, stride, &pixels, &taps_0_1, &taps_2_3,
                        &taps_4_5, &taps_6_7);
      dst += 4;
    }
  }
}

void av1_filter_intra_predictor_sse4_1(uint8_t *dst, ptrdiff_t stride,
                                       TX_SIZE tx_size, const uint8_t *above,
                                       const uint8_t *left, int mode) {
  const int bw = tx_size_wide[tx_size];
  const int bh = tx_size_high[tx_size];
  filter_intra_predictor_sse4_1(dst, stride, above, left, mode, bw, bh);
}