summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/pickcdef.c
blob: 232a2f9edb6513a7b6f77d417003d406ba0652e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>
#include <stdbool.h>
#include <string.h>

#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"

#include "aom/aom_integer.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/pickcdef.h"
#include "av1/encoder/mcomp.h"

// Get primary and secondary filter strength for the given strength index and
// search method
static INLINE void get_cdef_filter_strengths(CDEF_PICK_METHOD pick_method,
                                             int *pri_strength,
                                             int *sec_strength,
                                             int strength_idx) {
  const int tot_sec_filter =
      (pick_method == CDEF_FAST_SEARCH_LVL5)
          ? REDUCED_SEC_STRENGTHS_LVL5
          : ((pick_method >= CDEF_FAST_SEARCH_LVL3) ? REDUCED_SEC_STRENGTHS_LVL3
                                                    : CDEF_SEC_STRENGTHS);
  const int pri_idx = strength_idx / tot_sec_filter;
  const int sec_idx = strength_idx % tot_sec_filter;
  *pri_strength = pri_idx;
  *sec_strength = sec_idx;
  if (pick_method == CDEF_FULL_SEARCH) return;

  switch (pick_method) {
    case CDEF_FAST_SEARCH_LVL1:
      assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL1);
      *pri_strength = priconv_lvl1[pri_idx];
      break;
    case CDEF_FAST_SEARCH_LVL2:
      assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL2);
      *pri_strength = priconv_lvl2[pri_idx];
      break;
    case CDEF_FAST_SEARCH_LVL3:
      assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL2);
      assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL3);
      *pri_strength = priconv_lvl2[pri_idx];
      *sec_strength = secconv_lvl3[sec_idx];
      break;
    case CDEF_FAST_SEARCH_LVL4:
      assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL4);
      assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL3);
      *pri_strength = priconv_lvl4[pri_idx];
      *sec_strength = secconv_lvl3[sec_idx];
      break;
    case CDEF_FAST_SEARCH_LVL5:
      assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL4);
      assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL5);
      *pri_strength = priconv_lvl5[pri_idx];
      *sec_strength = secconv_lvl5[sec_idx];
      break;
    default: assert(0 && "Invalid CDEF search method");
  }
}

// Store CDEF filter strength calculated from strength index for given search
// method
#define STORE_CDEF_FILTER_STRENGTH(cdef_strength, pick_method, strength_idx) \
  do {                                                                       \
    get_cdef_filter_strengths((pick_method), &pri_strength, &sec_strength,   \
                              (strength_idx));                               \
    cdef_strength = pri_strength * CDEF_SEC_STRENGTHS + sec_strength;        \
  } while (0)

/* Search for the best strength to add as an option, knowing we
   already selected nb_strengths options. */
static uint64_t search_one(int *lev, int nb_strengths,
                           uint64_t mse[][TOTAL_STRENGTHS], int sb_count,
                           CDEF_PICK_METHOD pick_method) {
  uint64_t tot_mse[TOTAL_STRENGTHS];
  const int total_strengths = nb_cdef_strengths[pick_method];
  int i, j;
  uint64_t best_tot_mse = (uint64_t)1 << 63;
  int best_id = 0;
  memset(tot_mse, 0, sizeof(tot_mse));
  for (i = 0; i < sb_count; i++) {
    int gi;
    uint64_t best_mse = (uint64_t)1 << 63;
    /* Find best mse among already selected options. */
    for (gi = 0; gi < nb_strengths; gi++) {
      if (mse[i][lev[gi]] < best_mse) {
        best_mse = mse[i][lev[gi]];
      }
    }
    /* Find best mse when adding each possible new option. */
    for (j = 0; j < total_strengths; j++) {
      uint64_t best = best_mse;
      if (mse[i][j] < best) best = mse[i][j];
      tot_mse[j] += best;
    }
  }
  for (j = 0; j < total_strengths; j++) {
    if (tot_mse[j] < best_tot_mse) {
      best_tot_mse = tot_mse[j];
      best_id = j;
    }
  }
  lev[nb_strengths] = best_id;
  return best_tot_mse;
}

/* Search for the best luma+chroma strength to add as an option, knowing we
   already selected nb_strengths options. */
static uint64_t search_one_dual(int *lev0, int *lev1, int nb_strengths,
                                uint64_t (**mse)[TOTAL_STRENGTHS], int sb_count,
                                CDEF_PICK_METHOD pick_method) {
  uint64_t tot_mse[TOTAL_STRENGTHS][TOTAL_STRENGTHS];
  int i, j;
  uint64_t best_tot_mse = (uint64_t)1 << 63;
  int best_id0 = 0;
  int best_id1 = 0;
  const int total_strengths = nb_cdef_strengths[pick_method];
  memset(tot_mse, 0, sizeof(tot_mse));
  for (i = 0; i < sb_count; i++) {
    int gi;
    uint64_t best_mse = (uint64_t)1 << 63;
    /* Find best mse among already selected options. */
    for (gi = 0; gi < nb_strengths; gi++) {
      uint64_t curr = mse[0][i][lev0[gi]];
      curr += mse[1][i][lev1[gi]];
      if (curr < best_mse) {
        best_mse = curr;
      }
    }
    /* Find best mse when adding each possible new option. */
    for (j = 0; j < total_strengths; j++) {
      int k;
      for (k = 0; k < total_strengths; k++) {
        uint64_t best = best_mse;
        uint64_t curr = mse[0][i][j];
        curr += mse[1][i][k];
        if (curr < best) best = curr;
        tot_mse[j][k] += best;
      }
    }
  }
  for (j = 0; j < total_strengths; j++) {
    int k;
    for (k = 0; k < total_strengths; k++) {
      if (tot_mse[j][k] < best_tot_mse) {
        best_tot_mse = tot_mse[j][k];
        best_id0 = j;
        best_id1 = k;
      }
    }
  }
  lev0[nb_strengths] = best_id0;
  lev1[nb_strengths] = best_id1;
  return best_tot_mse;
}

/* Search for the set of strengths that minimizes mse. */
static uint64_t joint_strength_search(int *best_lev, int nb_strengths,
                                      uint64_t mse[][TOTAL_STRENGTHS],
                                      int sb_count,
                                      CDEF_PICK_METHOD pick_method) {
  uint64_t best_tot_mse;
  int fast = (pick_method >= CDEF_FAST_SEARCH_LVL1 &&
              pick_method <= CDEF_FAST_SEARCH_LVL5);
  int i;
  best_tot_mse = (uint64_t)1 << 63;
  /* Greedy search: add one strength options at a time. */
  for (i = 0; i < nb_strengths; i++) {
    best_tot_mse = search_one(best_lev, i, mse, sb_count, pick_method);
  }
  /* Trying to refine the greedy search by reconsidering each
     already-selected option. */
  if (!fast) {
    for (i = 0; i < 4 * nb_strengths; i++) {
      int j;
      for (j = 0; j < nb_strengths - 1; j++) best_lev[j] = best_lev[j + 1];
      best_tot_mse =
          search_one(best_lev, nb_strengths - 1, mse, sb_count, pick_method);
    }
  }
  return best_tot_mse;
}

/* Search for the set of luma+chroma strengths that minimizes mse. */
static uint64_t joint_strength_search_dual(int *best_lev0, int *best_lev1,
                                           int nb_strengths,
                                           uint64_t (**mse)[TOTAL_STRENGTHS],
                                           int sb_count,
                                           CDEF_PICK_METHOD pick_method) {
  uint64_t best_tot_mse;
  int i;
  best_tot_mse = (uint64_t)1 << 63;
  /* Greedy search: add one strength options at a time. */
  for (i = 0; i < nb_strengths; i++) {
    best_tot_mse =
        search_one_dual(best_lev0, best_lev1, i, mse, sb_count, pick_method);
  }
  /* Trying to refine the greedy search by reconsidering each
     already-selected option. */
  for (i = 0; i < 4 * nb_strengths; i++) {
    int j;
    for (j = 0; j < nb_strengths - 1; j++) {
      best_lev0[j] = best_lev0[j + 1];
      best_lev1[j] = best_lev1[j + 1];
    }
    best_tot_mse = search_one_dual(best_lev0, best_lev1, nb_strengths - 1, mse,
                                   sb_count, pick_method);
  }
  return best_tot_mse;
}

static INLINE void init_src_params(int *src_stride, int *width, int *height,
                                   int *width_log2, int *height_log2,
                                   BLOCK_SIZE bsize) {
  *src_stride = block_size_wide[bsize];
  *width = block_size_wide[bsize];
  *height = block_size_high[bsize];
  *width_log2 = MI_SIZE_LOG2 + mi_size_wide_log2[bsize];
  *height_log2 = MI_SIZE_LOG2 + mi_size_wide_log2[bsize];
}
#if CONFIG_AV1_HIGHBITDEPTH
/* Compute MSE only on the blocks we filtered. */
static uint64_t compute_cdef_dist_highbd(void *dst, int dstride, uint16_t *src,
                                         cdef_list *dlist, int cdef_count,
                                         BLOCK_SIZE bsize, int coeff_shift,
                                         int row, int col) {
  assert(bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 ||
         bsize == BLOCK_8X8);
  uint64_t sum = 0;
  int bi, bx, by;
  uint16_t *dst16 = CONVERT_TO_SHORTPTR((uint8_t *)dst);
  uint16_t *dst_buff = &dst16[row * dstride + col];
  int src_stride, width, height, width_log2, height_log2;
  init_src_params(&src_stride, &width, &height, &width_log2, &height_log2,
                  bsize);
  for (bi = 0; bi < cdef_count; bi++) {
    by = dlist[bi].by;
    bx = dlist[bi].bx;
    sum += aom_mse_wxh_16bit_highbd(
        &dst_buff[(by << height_log2) * dstride + (bx << width_log2)], dstride,
        &src[bi << (height_log2 + width_log2)], src_stride, width, height);
  }
  return sum >> 2 * coeff_shift;
}
#endif

// Checks dual and quad block processing is applicable for block widths 8 and 4
// respectively.
static INLINE int is_dual_or_quad_applicable(cdef_list *dlist, int width,
                                             int cdef_count, int bi, int iter) {
  assert(width == 8 || width == 4);
  const int blk_offset = (width == 8) ? 1 : 3;
  if ((iter + blk_offset) >= cdef_count) return 0;

  if (dlist[bi].by == dlist[bi + blk_offset].by &&
      dlist[bi].bx + blk_offset == dlist[bi + blk_offset].bx)
    return 1;

  return 0;
}

static uint64_t compute_cdef_dist(void *dst, int dstride, uint16_t *src,
                                  cdef_list *dlist, int cdef_count,
                                  BLOCK_SIZE bsize, int coeff_shift, int row,
                                  int col) {
  assert(bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 ||
         bsize == BLOCK_8X8);
  uint64_t sum = 0;
  int bi, bx, by;
  int iter = 0;
  int inc = 1;
  uint8_t *dst8 = (uint8_t *)dst;
  uint8_t *dst_buff = &dst8[row * dstride + col];
  int src_stride, width, height, width_log2, height_log2;
  init_src_params(&src_stride, &width, &height, &width_log2, &height_log2,
                  bsize);

  const int num_blks = 16 / width;
  for (bi = 0; bi < cdef_count; bi += inc) {
    by = dlist[bi].by;
    bx = dlist[bi].bx;
    uint16_t *src_tmp = &src[bi << (height_log2 + width_log2)];
    uint8_t *dst_tmp =
        &dst_buff[(by << height_log2) * dstride + (bx << width_log2)];

    if (is_dual_or_quad_applicable(dlist, width, cdef_count, bi, iter)) {
      sum += aom_mse_16xh_16bit(dst_tmp, dstride, src_tmp, width, height);
      iter += num_blks;
      inc = num_blks;
    } else {
      sum += aom_mse_wxh_16bit(dst_tmp, dstride, src_tmp, src_stride, width,
                               height);
      iter += 1;
      inc = 1;
    }
  }

  return sum >> 2 * coeff_shift;
}

// Fill the boundary regions of the block with CDEF_VERY_LARGE, only if the
// region is outside frame boundary
static INLINE void fill_borders_for_fbs_on_frame_boundary(
    uint16_t *inbuf, int hfilt_size, int vfilt_size,
    bool is_fb_on_frm_left_boundary, bool is_fb_on_frm_right_boundary,
    bool is_fb_on_frm_top_boundary, bool is_fb_on_frm_bottom_boundary) {
  if (!is_fb_on_frm_left_boundary && !is_fb_on_frm_right_boundary &&
      !is_fb_on_frm_top_boundary && !is_fb_on_frm_bottom_boundary)
    return;
  if (is_fb_on_frm_bottom_boundary) {
    // Fill bottom region of the block
    const int buf_offset =
        (vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE + CDEF_HBORDER;
    fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, hfilt_size,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_bottom_boundary || is_fb_on_frm_left_boundary) {
    const int buf_offset = (vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE;
    // Fill bottom-left region of the block
    fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_bottom_boundary || is_fb_on_frm_right_boundary) {
    const int buf_offset =
        (vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE + hfilt_size + CDEF_HBORDER;
    // Fill bottom-right region of the block
    fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_top_boundary) {
    // Fill top region of the block
    fill_rect(&inbuf[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hfilt_size,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_top_boundary || is_fb_on_frm_left_boundary) {
    // Fill top-left region of the block
    fill_rect(inbuf, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_top_boundary || is_fb_on_frm_right_boundary) {
    const int buf_offset = hfilt_size + CDEF_HBORDER;
    // Fill top-right region of the block
    fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_left_boundary) {
    const int buf_offset = CDEF_VBORDER * CDEF_BSTRIDE;
    // Fill left region of the block
    fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, vfilt_size, CDEF_HBORDER,
              CDEF_VERY_LARGE);
  }
  if (is_fb_on_frm_right_boundary) {
    const int buf_offset = CDEF_VBORDER * CDEF_BSTRIDE;
    // Fill right region of the block
    fill_rect(&inbuf[buf_offset + hfilt_size + CDEF_HBORDER], CDEF_BSTRIDE,
              vfilt_size, CDEF_HBORDER, CDEF_VERY_LARGE);
  }
}

// Calculate the number of 8x8/4x4 filter units for which SSE can be calculated
// after CDEF filtering in single function call
static AOM_FORCE_INLINE int get_error_calc_width_in_filt_units(
    cdef_list *dlist, int cdef_count, int bi, int subsampling_x,
    int subsampling_y) {
  // TODO(Ranjit): Extend the optimization for 422
  if (subsampling_x != subsampling_y) return 1;

  // Combining more blocks seems to increase encode time due to increase in
  // control code
  if (bi + 3 < cdef_count && dlist[bi].by == dlist[bi + 3].by &&
      dlist[bi].bx + 3 == dlist[bi + 3].bx) {
    /* Calculate error for four 8x8/4x4 blocks using 32x8/16x4 block specific
     * logic if y co-ordinates match and x co-ordinates are
     * separated by 3 for first and fourth 8x8/4x4 blocks in dlist[]. */
    return 4;
  }
  if (bi + 1 < cdef_count && dlist[bi].by == dlist[bi + 1].by &&
      dlist[bi].bx + 1 == dlist[bi + 1].bx) {
    /* Calculate error for two 8x8/4x4 blocks using 16x8/8x4 block specific
     * logic if their y co-ordinates match and x co-ordinates are
     * separated by 1 for first and second 8x8/4x4 blocks in dlist[]. */
    return 2;
  }
  return 1;
}

// Returns the block error after CDEF filtering for a given strength
static INLINE uint64_t get_filt_error(
    const CdefSearchCtx *cdef_search_ctx, const struct macroblockd_plane *pd,
    cdef_list *dlist, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS], int *dirinit,
    int var[CDEF_NBLOCKS][CDEF_NBLOCKS], uint16_t *in, uint8_t *ref_buffer,
    int ref_stride, int row, int col, int pri_strength, int sec_strength,
    int cdef_count, int pli, int coeff_shift, BLOCK_SIZE bs) {
  uint64_t curr_sse = 0;
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(bs, pd->subsampling_x, pd->subsampling_y);
  const int bw_log2 = 3 - pd->subsampling_x;
  const int bh_log2 = 3 - pd->subsampling_y;

  // TODO(Ranjit): Extend this optimization for HBD
  if (!cdef_search_ctx->use_highbitdepth) {
    // If all 8x8/4x4 blocks in CDEF block need to be filtered, calculate the
    // error at CDEF block level
    const int tot_blk_count =
        (block_size_wide[plane_bsize] * block_size_high[plane_bsize]) >>
        (bw_log2 + bh_log2);
    if (cdef_count == tot_blk_count) {
      // Calculate the offset in the buffer based on block position
      const FULLPEL_MV this_mv = { row, col };
      const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
      if (pri_strength == 0 && sec_strength == 0) {
        // When CDEF strength is zero, filtering is not applied. Hence
        // error is calculated between source and unfiltered pixels
        curr_sse =
            aom_sse(&ref_buffer[buf_offset], ref_stride,
                    get_buf_from_fullmv(&pd->dst, &this_mv), pd->dst.stride,
                    block_size_wide[plane_bsize], block_size_high[plane_bsize]);
      } else {
        DECLARE_ALIGNED(32, uint8_t, tmp_dst8[1 << (MAX_SB_SIZE_LOG2 * 2)]);

        av1_cdef_filter_fb(tmp_dst8, NULL, (1 << MAX_SB_SIZE_LOG2), in,
                           cdef_search_ctx->xdec[pli],
                           cdef_search_ctx->ydec[pli], dir, dirinit, var, pli,
                           dlist, cdef_count, pri_strength,
                           sec_strength + (sec_strength == 3),
                           cdef_search_ctx->damping, coeff_shift);
        curr_sse =
            aom_sse(&ref_buffer[buf_offset], ref_stride, tmp_dst8,
                    (1 << MAX_SB_SIZE_LOG2), block_size_wide[plane_bsize],
                    block_size_high[plane_bsize]);
      }
    } else {
      // If few 8x8/4x4 blocks in CDEF block need to be filtered, filtering
      // functions produce 8-bit output and the error is calculated in 8-bit
      // domain
      if (pri_strength == 0 && sec_strength == 0) {
        int num_error_calc_filt_units = 1;
        for (int bi = 0; bi < cdef_count; bi = bi + num_error_calc_filt_units) {
          const uint8_t by = dlist[bi].by;
          const uint8_t bx = dlist[bi].bx;
          const int16_t by_pos = (by << bh_log2);
          const int16_t bx_pos = (bx << bw_log2);
          // Calculate the offset in the buffer based on block position
          const FULLPEL_MV this_mv = { row + by_pos, col + bx_pos };
          const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
          num_error_calc_filt_units = get_error_calc_width_in_filt_units(
              dlist, cdef_count, bi, pd->subsampling_x, pd->subsampling_y);
          curr_sse += aom_sse(
              &ref_buffer[buf_offset], ref_stride,
              get_buf_from_fullmv(&pd->dst, &this_mv), pd->dst.stride,
              num_error_calc_filt_units * (1 << bw_log2), (1 << bh_log2));
        }
      } else {
        DECLARE_ALIGNED(32, uint8_t, tmp_dst8[1 << (MAX_SB_SIZE_LOG2 * 2)]);
        av1_cdef_filter_fb(tmp_dst8, NULL, (1 << MAX_SB_SIZE_LOG2), in,
                           cdef_search_ctx->xdec[pli],
                           cdef_search_ctx->ydec[pli], dir, dirinit, var, pli,
                           dlist, cdef_count, pri_strength,
                           sec_strength + (sec_strength == 3),
                           cdef_search_ctx->damping, coeff_shift);
        int num_error_calc_filt_units = 1;
        for (int bi = 0; bi < cdef_count; bi = bi + num_error_calc_filt_units) {
          const uint8_t by = dlist[bi].by;
          const uint8_t bx = dlist[bi].bx;
          const int16_t by_pos = (by << bh_log2);
          const int16_t bx_pos = (bx << bw_log2);
          // Calculate the offset in the buffer based on block position
          const FULLPEL_MV this_mv = { row + by_pos, col + bx_pos };
          const FULLPEL_MV tmp_buf_pos = { by_pos, bx_pos };
          const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
          const int tmp_buf_offset =
              get_offset_from_fullmv(&tmp_buf_pos, (1 << MAX_SB_SIZE_LOG2));
          num_error_calc_filt_units = get_error_calc_width_in_filt_units(
              dlist, cdef_count, bi, pd->subsampling_x, pd->subsampling_y);
          curr_sse += aom_sse(
              &ref_buffer[buf_offset], ref_stride, &tmp_dst8[tmp_buf_offset],
              (1 << MAX_SB_SIZE_LOG2),
              num_error_calc_filt_units * (1 << bw_log2), (1 << bh_log2));
        }
      }
    }
  } else {
    DECLARE_ALIGNED(32, uint16_t, tmp_dst[1 << (MAX_SB_SIZE_LOG2 * 2)]);

    av1_cdef_filter_fb(NULL, tmp_dst, CDEF_BSTRIDE, in,
                       cdef_search_ctx->xdec[pli], cdef_search_ctx->ydec[pli],
                       dir, dirinit, var, pli, dlist, cdef_count, pri_strength,
                       sec_strength + (sec_strength == 3),
                       cdef_search_ctx->damping, coeff_shift);
    curr_sse = cdef_search_ctx->compute_cdef_dist_fn(
        ref_buffer, ref_stride, tmp_dst, dlist, cdef_count,
        cdef_search_ctx->bsize[pli], coeff_shift, row, col);
  }
  return curr_sse;
}

// Calculates MSE at block level.
// Inputs:
//   cdef_search_ctx: Pointer to the structure containing parameters related to
//   CDEF search context.
//   fbr: Row index in units of 64x64 block
//   fbc: Column index in units of 64x64 block
// Returns:
//   Nothing will be returned. Contents of cdef_search_ctx will be modified.
void av1_cdef_mse_calc_block(CdefSearchCtx *cdef_search_ctx,
                             struct aom_internal_error_info *error_info,
                             int fbr, int fbc, int sb_count) {
  // TODO(aomedia:3276): Pass error_info to the low-level functions as required
  // in future to handle error propagation.
  (void)error_info;
  const CommonModeInfoParams *const mi_params = cdef_search_ctx->mi_params;
  const YV12_BUFFER_CONFIG *ref = cdef_search_ctx->ref;
  const int coeff_shift = cdef_search_ctx->coeff_shift;
  const int *mi_wide_l2 = cdef_search_ctx->mi_wide_l2;
  const int *mi_high_l2 = cdef_search_ctx->mi_high_l2;

  // Declare and initialize the temporary buffers.
  DECLARE_ALIGNED(32, uint16_t, inbuf[CDEF_INBUF_SIZE]);
  cdef_list dlist[MI_SIZE_128X128 * MI_SIZE_128X128];
  int dir[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } };
  int var[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } };
  uint16_t *const in = inbuf + CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER;
  int nhb = AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
  int nvb = AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
  int hb_step = 1, vb_step = 1;
  BLOCK_SIZE bs;

  const MB_MODE_INFO *const mbmi =
      mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
                              MI_SIZE_64X64 * fbc];

  uint8_t *ref_buffer[MAX_MB_PLANE] = { ref->y_buffer, ref->u_buffer,
                                        ref->v_buffer };
  int ref_stride[MAX_MB_PLANE] = { ref->y_stride, ref->uv_stride,
                                   ref->uv_stride };

  if (mbmi->bsize == BLOCK_128X128 || mbmi->bsize == BLOCK_128X64 ||
      mbmi->bsize == BLOCK_64X128) {
    bs = mbmi->bsize;
    if (bs == BLOCK_128X128 || bs == BLOCK_128X64) {
      nhb = AOMMIN(MI_SIZE_128X128, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
      hb_step = 2;
    }
    if (bs == BLOCK_128X128 || bs == BLOCK_64X128) {
      nvb = AOMMIN(MI_SIZE_128X128, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
      vb_step = 2;
    }
  } else {
    bs = BLOCK_64X64;
  }
  // Get number of 8x8 blocks which are not skip. Cdef processing happens for
  // 8x8 blocks which are not skip.
  const int cdef_count = av1_cdef_compute_sb_list(
      mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64, dlist, bs);
  const bool is_fb_on_frm_left_boundary = (fbc == 0);
  const bool is_fb_on_frm_right_boundary =
      (fbc + hb_step == cdef_search_ctx->nhfb);
  const bool is_fb_on_frm_top_boundary = (fbr == 0);
  const bool is_fb_on_frm_bottom_boundary =
      (fbr + vb_step == cdef_search_ctx->nvfb);
  const int yoff = CDEF_VBORDER * (!is_fb_on_frm_top_boundary);
  const int xoff = CDEF_HBORDER * (!is_fb_on_frm_left_boundary);
  int dirinit = 0;
  for (int pli = 0; pli < cdef_search_ctx->num_planes; pli++) {
    /* We avoid filtering the pixels for which some of the pixels to
    average are outside the frame. We could change the filter instead,
    but it would add special cases for any future vectorization. */
    const int hfilt_size = (nhb << mi_wide_l2[pli]);
    const int vfilt_size = (nvb << mi_high_l2[pli]);
    const int ysize =
        vfilt_size + CDEF_VBORDER * (!is_fb_on_frm_bottom_boundary) + yoff;
    const int xsize =
        hfilt_size + CDEF_HBORDER * (!is_fb_on_frm_right_boundary) + xoff;
    const int row = fbr * MI_SIZE_64X64 << mi_high_l2[pli];
    const int col = fbc * MI_SIZE_64X64 << mi_wide_l2[pli];
    struct macroblockd_plane pd = cdef_search_ctx->plane[pli];
    cdef_search_ctx->copy_fn(&in[(-yoff * CDEF_BSTRIDE - xoff)], CDEF_BSTRIDE,
                             pd.dst.buf, row - yoff, col - xoff, pd.dst.stride,
                             ysize, xsize);
    fill_borders_for_fbs_on_frame_boundary(
        inbuf, hfilt_size, vfilt_size, is_fb_on_frm_left_boundary,
        is_fb_on_frm_right_boundary, is_fb_on_frm_top_boundary,
        is_fb_on_frm_bottom_boundary);
    for (int gi = 0; gi < cdef_search_ctx->total_strengths; gi++) {
      int pri_strength, sec_strength;
      get_cdef_filter_strengths(cdef_search_ctx->pick_method, &pri_strength,
                                &sec_strength, gi);
      const uint64_t curr_mse = get_filt_error(
          cdef_search_ctx, &pd, dlist, dir, &dirinit, var, in, ref_buffer[pli],
          ref_stride[pli], row, col, pri_strength, sec_strength, cdef_count,
          pli, coeff_shift, bs);
      if (pli < 2)
        cdef_search_ctx->mse[pli][sb_count][gi] = curr_mse;
      else
        cdef_search_ctx->mse[1][sb_count][gi] += curr_mse;
    }
  }
  cdef_search_ctx->sb_index[sb_count] =
      MI_SIZE_64X64 * fbr * mi_params->mi_stride + MI_SIZE_64X64 * fbc;
}

// MSE calculation at frame level.
// Inputs:
//   cdef_search_ctx: Pointer to the structure containing parameters related to
//   CDEF search context.
// Returns:
//   Nothing will be returned. Contents of cdef_search_ctx will be modified.
static void cdef_mse_calc_frame(CdefSearchCtx *cdef_search_ctx,
                                struct aom_internal_error_info *error_info) {
  // Loop over each sb.
  for (int fbr = 0; fbr < cdef_search_ctx->nvfb; ++fbr) {
    for (int fbc = 0; fbc < cdef_search_ctx->nhfb; ++fbc) {
      // Checks if cdef processing can be skipped for particular sb.
      if (cdef_sb_skip(cdef_search_ctx->mi_params, fbr, fbc)) continue;
      // Calculate mse for each sb and store the relevant sb index.
      av1_cdef_mse_calc_block(cdef_search_ctx, error_info, fbr, fbc,
                              cdef_search_ctx->sb_count);
      cdef_search_ctx->sb_count++;
    }
  }
}

// Allocates memory for members of CdefSearchCtx.
// Inputs:
//   cdef_search_ctx: Pointer to the structure containing parameters
//   related to CDEF search context.
// Returns:
//   Nothing will be returned. Contents of cdef_search_ctx will be modified.
static void cdef_alloc_data(AV1_COMMON *cm, CdefSearchCtx *cdef_search_ctx) {
  const int nvfb = cdef_search_ctx->nvfb;
  const int nhfb = cdef_search_ctx->nhfb;
  CHECK_MEM_ERROR(
      cm, cdef_search_ctx->sb_index,
      aom_malloc(nvfb * nhfb * sizeof(cdef_search_ctx->sb_index[0])));
  cdef_search_ctx->sb_count = 0;
  CHECK_MEM_ERROR(cm, cdef_search_ctx->mse[0],
                  aom_malloc(sizeof(**cdef_search_ctx->mse) * nvfb * nhfb));
  CHECK_MEM_ERROR(cm, cdef_search_ctx->mse[1],
                  aom_malloc(sizeof(**cdef_search_ctx->mse) * nvfb * nhfb));
}

// Deallocates the memory allocated for members of CdefSearchCtx.
// Inputs:
//   cdef_search_ctx: Pointer to the structure containing parameters
//   related to CDEF search context.
// Returns:
//   Nothing will be returned.
void av1_cdef_dealloc_data(CdefSearchCtx *cdef_search_ctx) {
  if (cdef_search_ctx) {
    aom_free(cdef_search_ctx->mse[0]);
    cdef_search_ctx->mse[0] = NULL;
    aom_free(cdef_search_ctx->mse[1]);
    cdef_search_ctx->mse[1] = NULL;
    aom_free(cdef_search_ctx->sb_index);
    cdef_search_ctx->sb_index = NULL;
  }
}

// Initialize the parameters related to CDEF search context.
// Inputs:
//   frame: Pointer to compressed frame buffer
//   ref: Pointer to the frame buffer holding the source frame
//   cm: Pointer to top level common structure
//   xd: Pointer to common current coding block structure
//   cdef_search_ctx: Pointer to the structure containing parameters related to
//   CDEF search context.
//   pick_method: Search method used to select CDEF parameters
// Returns:
//   Nothing will be returned. Contents of cdef_search_ctx will be modified.
static AOM_INLINE void cdef_params_init(const YV12_BUFFER_CONFIG *frame,
                                        const YV12_BUFFER_CONFIG *ref,
                                        AV1_COMMON *cm, MACROBLOCKD *xd,
                                        CdefSearchCtx *cdef_search_ctx,
                                        CDEF_PICK_METHOD pick_method) {
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int num_planes = av1_num_planes(cm);
  cdef_search_ctx->mi_params = &cm->mi_params;
  cdef_search_ctx->ref = ref;
  cdef_search_ctx->nvfb =
      (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
  cdef_search_ctx->nhfb =
      (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
  cdef_search_ctx->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
  cdef_search_ctx->damping = 3 + (cm->quant_params.base_qindex >> 6);
  cdef_search_ctx->total_strengths = nb_cdef_strengths[pick_method];
  cdef_search_ctx->num_planes = num_planes;
  cdef_search_ctx->pick_method = pick_method;
  cdef_search_ctx->sb_count = 0;
  cdef_search_ctx->use_highbitdepth = cm->seq_params->use_highbitdepth;
  av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
                       num_planes);
  // Initialize plane wise information.
  for (int pli = 0; pli < num_planes; pli++) {
    cdef_search_ctx->xdec[pli] = xd->plane[pli].subsampling_x;
    cdef_search_ctx->ydec[pli] = xd->plane[pli].subsampling_y;
    cdef_search_ctx->bsize[pli] =
        cdef_search_ctx->ydec[pli]
            ? (cdef_search_ctx->xdec[pli] ? BLOCK_4X4 : BLOCK_8X4)
            : (cdef_search_ctx->xdec[pli] ? BLOCK_4X8 : BLOCK_8X8);
    cdef_search_ctx->mi_wide_l2[pli] =
        MI_SIZE_LOG2 - xd->plane[pli].subsampling_x;
    cdef_search_ctx->mi_high_l2[pli] =
        MI_SIZE_LOG2 - xd->plane[pli].subsampling_y;
    cdef_search_ctx->plane[pli] = xd->plane[pli];
  }
  // Function pointer initialization.
#if CONFIG_AV1_HIGHBITDEPTH
  if (cm->seq_params->use_highbitdepth) {
    cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_highbd;
    cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist_highbd;
  } else {
    cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_lowbd;
    cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist;
  }
#else
  cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_lowbd;
  cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist;
#endif
}

void av1_pick_cdef_from_qp(AV1_COMMON *const cm, int skip_cdef,
                           int is_screen_content) {
  const int bd = cm->seq_params->bit_depth;
  const int q =
      av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, bd) >> (bd - 8);
  CdefInfo *const cdef_info = &cm->cdef_info;
  // Check the speed feature to avoid extra signaling.
  if (skip_cdef) {
    cdef_info->cdef_bits = 1;
    cdef_info->nb_cdef_strengths = 2;
  } else {
    cdef_info->cdef_bits = 0;
    cdef_info->nb_cdef_strengths = 1;
  }
  cdef_info->cdef_damping = 3 + (cm->quant_params.base_qindex >> 6);

  int predicted_y_f1 = 0;
  int predicted_y_f2 = 0;
  int predicted_uv_f1 = 0;
  int predicted_uv_f2 = 0;
  if (is_screen_content) {
    predicted_y_f1 =
        (int)(5.88217781e-06 * q * q + 6.10391455e-03 * q + 9.95043102e-02);
    predicted_y_f2 =
        (int)(-7.79934857e-06 * q * q + 6.58957830e-03 * q + 8.81045025e-01);
    predicted_uv_f1 =
        (int)(-6.79500136e-06 * q * q + 1.02695586e-02 * q + 1.36126802e-01);
    predicted_uv_f2 =
        (int)(-9.99613695e-08 * q * q - 1.79361339e-05 * q + 1.17022324e+0);
    predicted_y_f1 = clamp(predicted_y_f1, 0, 15);
    predicted_y_f2 = clamp(predicted_y_f2, 0, 3);
    predicted_uv_f1 = clamp(predicted_uv_f1, 0, 15);
    predicted_uv_f2 = clamp(predicted_uv_f2, 0, 3);
  } else {
    if (!frame_is_intra_only(cm)) {
      predicted_y_f1 = clamp((int)roundf(q * q * -0.0000023593946f +
                                         q * 0.0068615186f + 0.02709886f),
                             0, 15);
      predicted_y_f2 = clamp((int)roundf(q * q * -0.00000057629734f +
                                         q * 0.0013993345f + 0.03831067f),
                             0, 3);
      predicted_uv_f1 = clamp((int)roundf(q * q * -0.0000007095069f +
                                          q * 0.0034628846f + 0.00887099f),
                              0, 15);
      predicted_uv_f2 = clamp((int)roundf(q * q * 0.00000023874085f +
                                          q * 0.00028223585f + 0.05576307f),
                              0, 3);
    } else {
      predicted_y_f1 = clamp(
          (int)roundf(q * q * 0.0000033731974f + q * 0.008070594f + 0.0187634f),
          0, 15);
      predicted_y_f2 = clamp((int)roundf(q * q * 0.0000029167343f +
                                         q * 0.0027798624f + 0.0079405f),
                             0, 3);
      predicted_uv_f1 = clamp((int)roundf(q * q * -0.0000130790995f +
                                          q * 0.012892405f - 0.00748388f),
                              0, 15);
      predicted_uv_f2 = clamp((int)roundf(q * q * 0.0000032651783f +
                                          q * 0.00035520183f + 0.00228092f),
                              0, 3);
    }
  }
  cdef_info->cdef_strengths[0] =
      predicted_y_f1 * CDEF_SEC_STRENGTHS + predicted_y_f2;
  cdef_info->cdef_uv_strengths[0] =
      predicted_uv_f1 * CDEF_SEC_STRENGTHS + predicted_uv_f2;

  // mbmi->cdef_strength is already set in the encoding stage. We don't need to
  // set it again here.
  if (skip_cdef) {
    cdef_info->cdef_strengths[1] = 0;
    cdef_info->cdef_uv_strengths[1] = 0;
    return;
  }

  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
  const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
  MB_MODE_INFO **mbmi = mi_params->mi_grid_base;
  // mbmi is NULL when real-time rate control library is used.
  if (!mbmi) return;
  for (int r = 0; r < nvfb; ++r) {
    for (int c = 0; c < nhfb; ++c) {
      MB_MODE_INFO *current_mbmi = mbmi[MI_SIZE_64X64 * c];
      current_mbmi->cdef_strength = 0;
    }
    mbmi += MI_SIZE_64X64 * mi_params->mi_stride;
  }
}

void av1_cdef_search(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  CDEF_CONTROL cdef_control = cpi->oxcf.tool_cfg.cdef_control;

  assert(cdef_control != CDEF_NONE);
  if (cdef_control == CDEF_REFERENCE && cpi->ppi->rtc_ref.non_reference_frame) {
    CdefInfo *const cdef_info = &cm->cdef_info;
    cdef_info->nb_cdef_strengths = 1;
    cdef_info->cdef_bits = 0;
    cdef_info->cdef_strengths[0] = 0;
    cdef_info->cdef_uv_strengths[0] = 0;
    return;
  }

  // Indicate if external RC is used for testing
  const int rtc_ext_rc = cpi->rc.rtc_external_ratectrl;
  if (rtc_ext_rc) {
    av1_pick_cdef_from_qp(cm, 0, 0);
    return;
  }
  CDEF_PICK_METHOD pick_method = cpi->sf.lpf_sf.cdef_pick_method;
  if (pick_method == CDEF_PICK_FROM_Q) {
    const int use_screen_content_model =
        cm->quant_params.base_qindex >
            AOMMAX(cpi->sf.rt_sf.screen_content_cdef_filter_qindex_thresh,
                   cpi->rc.best_quality + 5) &&
        cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
    av1_pick_cdef_from_qp(cm, cpi->sf.rt_sf.skip_cdef_sb,
                          use_screen_content_model);
    return;
  }
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int damping = 3 + (cm->quant_params.base_qindex >> 6);
  const int fast = (pick_method >= CDEF_FAST_SEARCH_LVL1 &&
                    pick_method <= CDEF_FAST_SEARCH_LVL5);
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;

  if (!cpi->cdef_search_ctx)
    CHECK_MEM_ERROR(cm, cpi->cdef_search_ctx,
                    aom_malloc(sizeof(*cpi->cdef_search_ctx)));
  CdefSearchCtx *cdef_search_ctx = cpi->cdef_search_ctx;

  // Initialize parameters related to CDEF search context.
  cdef_params_init(&cm->cur_frame->buf, cpi->source, cm, xd, cdef_search_ctx,
                   pick_method);
  // Allocate CDEF search context buffers.
  cdef_alloc_data(cm, cdef_search_ctx);
  // Frame level mse calculation.
  if (cpi->mt_info.num_workers > 1) {
    av1_cdef_mse_calc_frame_mt(cpi);
  } else {
    cdef_mse_calc_frame(cdef_search_ctx, cm->error);
  }

  /* Search for different number of signaling bits. */
  int nb_strength_bits = 0;
  uint64_t best_rd = UINT64_MAX;
  CdefInfo *const cdef_info = &cm->cdef_info;
  int sb_count = cdef_search_ctx->sb_count;
  uint64_t(*mse[2])[TOTAL_STRENGTHS];
  mse[0] = cdef_search_ctx->mse[0];
  mse[1] = cdef_search_ctx->mse[1];
  /* Calculate the maximum number of bits required to signal CDEF strengths at
   * block level */
  const int total_strengths = nb_cdef_strengths[pick_method];
  const int joint_strengths =
      num_planes > 1 ? total_strengths * total_strengths : total_strengths;
  const int max_signaling_bits =
      joint_strengths == 1 ? 0 : get_msb(joint_strengths - 1) + 1;
  int rdmult = cpi->td.mb.rdmult;
  for (int i = 0; i <= 3; i++) {
    if (i > max_signaling_bits) break;
    int best_lev0[CDEF_MAX_STRENGTHS];
    int best_lev1[CDEF_MAX_STRENGTHS] = { 0 };
    const int nb_strengths = 1 << i;
    uint64_t tot_mse;
    if (num_planes > 1) {
      tot_mse = joint_strength_search_dual(best_lev0, best_lev1, nb_strengths,
                                           mse, sb_count, pick_method);
    } else {
      tot_mse = joint_strength_search(best_lev0, nb_strengths, mse[0], sb_count,
                                      pick_method);
    }

    const int total_bits = sb_count * i + nb_strengths * CDEF_STRENGTH_BITS *
                                              (num_planes > 1 ? 2 : 1);
    const int rate_cost = av1_cost_literal(total_bits);
    const uint64_t dist = tot_mse * 16;
    const uint64_t rd = RDCOST(rdmult, rate_cost, dist);
    if (rd < best_rd) {
      best_rd = rd;
      nb_strength_bits = i;
      memcpy(cdef_info->cdef_strengths, best_lev0,
             nb_strengths * sizeof(best_lev0[0]));
      if (num_planes > 1) {
        memcpy(cdef_info->cdef_uv_strengths, best_lev1,
               nb_strengths * sizeof(best_lev1[0]));
      }
    }
  }

  cdef_info->cdef_bits = nb_strength_bits;
  cdef_info->nb_cdef_strengths = 1 << nb_strength_bits;
  for (int i = 0; i < sb_count; i++) {
    uint64_t best_mse = UINT64_MAX;
    int best_gi = 0;
    for (int gi = 0; gi < cdef_info->nb_cdef_strengths; gi++) {
      uint64_t curr = mse[0][i][cdef_info->cdef_strengths[gi]];
      if (num_planes > 1) curr += mse[1][i][cdef_info->cdef_uv_strengths[gi]];
      if (curr < best_mse) {
        best_gi = gi;
        best_mse = curr;
      }
    }
    mi_params->mi_grid_base[cdef_search_ctx->sb_index[i]]->cdef_strength =
        best_gi;
  }
  if (fast) {
    for (int j = 0; j < cdef_info->nb_cdef_strengths; j++) {
      const int luma_strength = cdef_info->cdef_strengths[j];
      const int chroma_strength = cdef_info->cdef_uv_strengths[j];
      int pri_strength, sec_strength;

      STORE_CDEF_FILTER_STRENGTH(cdef_info->cdef_strengths[j], pick_method,
                                 luma_strength);
      STORE_CDEF_FILTER_STRENGTH(cdef_info->cdef_uv_strengths[j], pick_method,
                                 chroma_strength);
    }
  }

  cdef_info->cdef_damping = damping;
  // Deallocate CDEF search context buffers.
  av1_cdef_dealloc_data(cdef_search_ctx);
}