summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jpegli/color_quantize.cc
blob: e8357e216020fcd8fc4d995a598a3c9edf6c2078 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jpegli/color_quantize.h"

#include <cmath>
#include <limits>
#include <unordered_map>

#include "lib/jpegli/decode_internal.h"
#include "lib/jpegli/error.h"

namespace jpegli {

namespace {

static constexpr int kNumColorCellBits[kMaxComponents] = {3, 4, 3, 3};
static constexpr int kCompW[kMaxComponents] = {2, 3, 1, 1};

int Pow(int a, int b) {
  int r = 1;
  for (int i = 0; i < b; ++i) {
    r *= a;
  }
  return r;
}

int ComponentOrder(j_decompress_ptr cinfo, int i) {
  if (cinfo->out_color_components == 3) {
    return i < 2 ? 1 - i : i;
  }
  return i;
}

int GetColorComponent(int i, int N) {
  return (i * 255 + (N - 1) / 2) / (N - 1);
}

}  // namespace

void ChooseColorMap1Pass(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  int components = cinfo->out_color_components;
  int desired = std::min(cinfo->desired_number_of_colors, 256);
  int num = 1;
  while (Pow(num + 1, components) <= desired) {
    ++num;
  }
  if (num == 1) {
    JPEGLI_ERROR("Too few colors (%d) in requested colormap", desired);
  }
  int actual = Pow(num, components);
  for (int i = 0; i < components; ++i) {
    m->num_colors_[i] = num;
  }
  while (actual < desired) {
    int total = actual;
    for (int i = 0; i < components; ++i) {
      int c = ComponentOrder(cinfo, i);
      int new_total = (actual / m->num_colors_[c]) * (m->num_colors_[c] + 1);
      if (new_total <= desired) {
        ++m->num_colors_[c];
        actual = new_total;
      }
    }
    if (actual == total) {
      break;
    }
  }
  cinfo->actual_number_of_colors = actual;
  cinfo->colormap = (*cinfo->mem->alloc_sarray)(
      reinterpret_cast<j_common_ptr>(cinfo), JPOOL_IMAGE, actual, components);
  int next_color[kMaxComponents] = {0};
  for (int i = 0; i < actual; ++i) {
    for (int c = 0; c < components; ++c) {
      cinfo->colormap[c][i] =
          GetColorComponent(next_color[c], m->num_colors_[c]);
    }
    int c = components - 1;
    while (c > 0 && next_color[c] + 1 == m->num_colors_[c]) {
      next_color[c--] = 0;
    }
    ++next_color[c];
  }
  if (!m->colormap_lut_) {
    m->colormap_lut_ = Allocate<uint8_t>(cinfo, components * 256, JPOOL_IMAGE);
  }
  int stride = actual;
  for (int c = 0; c < components; ++c) {
    int N = m->num_colors_[c];
    stride /= N;
    for (int i = 0; i < 256; ++i) {
      int index = ((2 * i - 1) * (N - 1) + 254) / 510;
      m->colormap_lut_[c * 256 + i] = index * stride;
    }
  }
}

namespace {

// 2^13 priority levels for the PQ seems to be a good compromise between
// accuracy, running time and stack space usage.
static const int kMaxPriority = 1 << 13;
static const int kMaxLevel = 3;

// This function is used in the multi-resolution grid to be able to compute
// the keys for the different resolutions by just shifting the first key.
inline int InterlaceBitsRGB(uint8_t r, uint8_t g, uint8_t b) {
  int z = 0;
  for (int i = 0; i < 7; ++i) {
    z += (r >> 5) & 4;
    z += (g >> 6) & 2;
    z += (b >> 7);
    z <<= 3;
    r <<= 1;
    g <<= 1;
    b <<= 1;
  }
  z += (r >> 5) & 4;
  z += (g >> 6) & 2;
  z += (b >> 7);
  return z;
}

// This function will compute the actual priorities of the colors based on
// the current distance from the palette, the population count and the signals
// from the multi-resolution grid.
inline int Priority(int d, int n, const int* density, const int* radius) {
  int p = d * n;
  for (int level = 0; level < kMaxLevel; ++level) {
    if (d > radius[level]) {
      p += density[level] * (d - radius[level]);
    }
  }
  return std::min(kMaxPriority - 1, p >> 4);
}

inline int ColorIntQuadDistanceRGB(uint8_t r1, uint8_t g1, uint8_t b1,
                                   uint8_t r2, uint8_t g2, uint8_t b2) {
  // weights for the intensity calculation
  static constexpr int ired = 2;
  static constexpr int igreen = 5;
  static constexpr int iblue = 1;
  // normalization factor for the intensity calculation (2^ishift)
  static constexpr int ishift = 3;
  const int rd = r1 - r2;
  const int gd = g1 - g2;
  const int bd = b1 - b2;
  const int id = ired * rd + igreen * gd + iblue * bd;
  return rd * rd + gd * gd + bd * bd + ((id * id) >> (2 * ishift));
}

inline int ScaleQuadDistanceRGB(int d) {
  return static_cast<int>(sqrt(d * 0.25) + 0.5);
}

// The function updates the minimal distances, the clustering and the
// quantization error after the insertion of the new color into the palette.
void AddToRGBPalette(const uint8_t* red, const uint8_t* green,
                     const uint8_t* blue,
                     const int* count,  // histogram of colors
                     const int index,   // index of color to be added
                     const int k,       // size of current palette
                     const int n,       // number of colors
                     int* dist,         // array of distances from palette
                     int* cluster,      // mapping of color indices to palette
                     int* center,       // the inverse mapping
                     int64_t* error) {  // measure of the quantization error
  center[k] = index;
  cluster[index] = k;
  *error -=
      static_cast<int64_t>(dist[index]) * static_cast<int64_t>(count[index]);
  dist[index] = 0;
  for (int j = 0; j < n; ++j) {
    if (dist[j] > 0) {
      const int d = ColorIntQuadDistanceRGB(
          red[index], green[index], blue[index], red[j], green[j], blue[j]);
      if (d < dist[j]) {
        *error += static_cast<int64_t>((d - dist[j])) *
                  static_cast<int64_t>(count[j]);
        dist[j] = d;
        cluster[j] = k;
      }
    }
  }
}

struct RGBPixelHasher {
  // A quick but good-enough hash to get 24 bits of RGB into the lower 12 bits.
  size_t operator()(uint32_t a) const { return (a ^ (a >> 12)) * 0x9e3779b9; }
};

struct WangHasher {
  // Thomas Wang's Hash.  Nearly perfect and still quite fast.  Above (for
  // pixels) we use a simpler hash because the number of hash calls is
  // proportional to the number of pixels and that hash dominates; we want the
  // cost to be minimal and we start with a large table.  We can use a better
  // hash for the histogram since the number of hash calls is proportional to
  // the number of unique colors in the image, which is hopefully much smaller.
  // Note that the difference is slight; e.g. replacing RGBPixelHasher with
  // WangHasher only slows things down by 5% on an Opteron.
  size_t operator()(uint32_t a) const {
    a = (a ^ 61) ^ (a >> 16);
    a = a + (a << 3);
    a = a ^ (a >> 4);
    a = a * 0x27d4eb2d;
    a = a ^ (a >> 15);
    return a;
  }
};

// Build an index of all the different colors in the input
// image. To do this we map the 24 bit RGB representation of the colors
// to a unique integer index assigned to the different colors in order of
// appearance in the image.  Return the number of unique colors found.
// The colors are pre-quantized to 3 * 6 bits precision.
static int BuildRGBColorIndex(const uint8_t* const image, int const num_pixels,
                              int* const count, uint8_t* const red,
                              uint8_t* const green, uint8_t* const blue) {
  // Impossible because rgb are in the low 24 bits, and the upper 8 bits is 0.
  const uint32_t impossible_pixel_value = 0x10000000;
  std::unordered_map<uint32_t, int, RGBPixelHasher> index_map(1 << 12);
  std::unordered_map<uint32_t, int, RGBPixelHasher>::iterator index_map_lookup;
  const uint8_t* imagep = &image[0];
  uint32_t prev_pixel = impossible_pixel_value;
  int index = 0;
  int n = 0;
  for (int i = 0; i < num_pixels; ++i) {
    uint8_t r = ((*imagep++) & 0xfc) + 2;
    uint8_t g = ((*imagep++) & 0xfc) + 2;
    uint8_t b = ((*imagep++) & 0xfc) + 2;
    uint32_t pixel = (b << 16) | (g << 8) | r;
    if (pixel != prev_pixel) {
      prev_pixel = pixel;
      index_map_lookup = index_map.find(pixel);
      if (index_map_lookup != index_map.end()) {
        index = index_map_lookup->second;
      } else {
        index_map[pixel] = index = n++;
        red[index] = r;
        green[index] = g;
        blue[index] = b;
      }
    }
    ++count[index];
  }
  return n;
}

}  // namespace

void ChooseColorMap2Pass(j_decompress_ptr cinfo) {
  if (cinfo->out_color_space != JCS_RGB) {
    JPEGLI_ERROR("Two-pass quantizer must use RGB output color space.");
  }
  jpeg_decomp_master* m = cinfo->master;
  const size_t num_pixels = cinfo->output_width * cinfo->output_height;
  const int max_color_count = std::max<size_t>(num_pixels, 1u << 18);
  const int max_palette_size = cinfo->desired_number_of_colors;
  std::unique_ptr<uint8_t[]> red(new uint8_t[max_color_count]);
  std::unique_ptr<uint8_t[]> green(new uint8_t[max_color_count]);
  std::unique_ptr<uint8_t[]> blue(new uint8_t[max_color_count]);
  std::vector<int> count(max_color_count, 0);
  // number of colors
  int n = BuildRGBColorIndex(m->pixels_, num_pixels, &count[0], &red[0],
                             &green[0], &blue[0]);

  std::vector<int> dist(n, std::numeric_limits<int>::max());
  std::vector<int> cluster(n);
  std::vector<bool> in_palette(n, false);
  int center[256];
  int k = 0;  // palette size
  const int count_threshold = (num_pixels * 4) / max_palette_size;
  static constexpr int kAveragePixelErrorThreshold = 1;
  const int64_t error_threshold = num_pixels * kAveragePixelErrorThreshold;
  int64_t error = 0;  // quantization error

  int max_count = 0;
  int winner = 0;
  for (int i = 0; i < n; ++i) {
    if (count[i] > max_count) {
      max_count = count[i];
      winner = i;
    }
    if (!in_palette[i] && count[i] > count_threshold) {
      AddToRGBPalette(&red[0], &green[0], &blue[0], &count[0], i, k++, n,
                      &dist[0], &cluster[0], &center[0], &error);
      in_palette[i] = true;
    }
  }
  if (k == 0) {
    AddToRGBPalette(&red[0], &green[0], &blue[0], &count[0], winner, k++, n,
                    &dist[0], &cluster[0], &center[0], &error);
    in_palette[winner] = true;
  }

  // Calculation of the multi-resolution density grid.
  std::vector<int> density(n * kMaxLevel);
  std::vector<int> radius(n * kMaxLevel);
  std::unordered_map<uint32_t, int, WangHasher> histogram[kMaxLevel];
  for (int level = 0; level < kMaxLevel; ++level) {
    // This value is never used because key = InterlaceBitsRGB(...) >> 6
  }

  for (int i = 0; i < n; ++i) {
    if (!in_palette[i]) {
      const int key = InterlaceBitsRGB(red[i], green[i], blue[i]) >> 6;
      for (int level = 0; level < kMaxLevel; ++level) {
        histogram[level][key >> (3 * level)] += count[i];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    if (!in_palette[i]) {
      for (int level = 0; level < kMaxLevel; ++level) {
        const int mask = (4 << level) - 1;
        const int rd = std::max(red[i] & mask, mask - (red[i] & mask));
        const int gd = std::max(green[i] & mask, mask - (green[i] & mask));
        const int bd = std::max(blue[i] & mask, mask - (blue[i] & mask));
        radius[i * kMaxLevel + level] =
            ScaleQuadDistanceRGB(ColorIntQuadDistanceRGB(0, 0, 0, rd, gd, bd));
      }
      const int key = InterlaceBitsRGB(red[i], green[i], blue[i]) >> 6;
      if (kMaxLevel > 0) {
        density[i * kMaxLevel] = histogram[0][key] - count[i];
      }
      for (int level = 1; level < kMaxLevel; ++level) {
        density[i * kMaxLevel + level] =
            (histogram[level][key >> (3 * level)] -
             histogram[level - 1][key >> (3 * level - 3)]);
      }
    }
  }

  // Calculate the initial error now that the palette has been initialized.
  error = 0;
  for (int i = 0; i < n; ++i) {
    error += static_cast<int64_t>(dist[i]) * static_cast<int64_t>(count[i]);
  }

  std::unique_ptr<std::vector<int>[]> bucket_array(
      new std::vector<int>[kMaxPriority]);
  int top_priority = -1;
  for (int i = 0; i < n; ++i) {
    if (!in_palette[i]) {
      int priority = Priority(ScaleQuadDistanceRGB(dist[i]), count[i],
                              &density[i * kMaxLevel], &radius[i * kMaxLevel]);
      bucket_array[priority].push_back(i);
      top_priority = std::max(priority, top_priority);
    }
  }
  double error_accum = 0;
  while (top_priority >= 0 && k < max_palette_size) {
    if (error < error_threshold) {
      error_accum += std::min(error_threshold, error_threshold - error);
      if (error_accum >= 10 * error_threshold) {
        break;
      }
    }
    int i = bucket_array[top_priority].back();
    int priority = Priority(ScaleQuadDistanceRGB(dist[i]), count[i],
                            &density[i * kMaxLevel], &radius[i * kMaxLevel]);
    if (priority < top_priority) {
      bucket_array[priority].push_back(i);
    } else {
      AddToRGBPalette(&red[0], &green[0], &blue[0], &count[0], i, k++, n,
                      &dist[0], &cluster[0], &center[0], &error);
    }
    bucket_array[top_priority].pop_back();
    while (top_priority >= 0 && bucket_array[top_priority].empty()) {
      --top_priority;
    }
  }

  cinfo->actual_number_of_colors = k;
  cinfo->colormap = (*cinfo->mem->alloc_sarray)(
      reinterpret_cast<j_common_ptr>(cinfo), JPOOL_IMAGE, k, 3);
  for (int i = 0; i < k; ++i) {
    int index = center[i];
    cinfo->colormap[0][i] = red[index];
    cinfo->colormap[1][i] = green[index];
    cinfo->colormap[2][i] = blue[index];
  }
}

namespace {

void FindCandidatesForCell(j_decompress_ptr cinfo, int ncomp, int cell[],
                           std::vector<uint8_t>* candidates) {
  int cell_min[kMaxComponents];
  int cell_max[kMaxComponents];
  int cell_center[kMaxComponents];
  for (int c = 0; c < ncomp; ++c) {
    cell_min[c] = cell[c] << (8 - kNumColorCellBits[c]);
    cell_max[c] = cell_min[c] + (1 << (8 - kNumColorCellBits[c])) - 1;
    cell_center[c] = (cell_min[c] + cell_max[c]) >> 1;
  }
  int min_maxdist = std::numeric_limits<int>::max();
  int mindist[256];
  for (int i = 0; i < cinfo->actual_number_of_colors; ++i) {
    int dmin = 0;
    int dmax = 0;
    for (int c = 0; c < ncomp; ++c) {
      int palette_c = cinfo->colormap[c][i];
      int dminc = 0, dmaxc;
      if (palette_c < cell_min[c]) {
        dminc = cell_min[c] - palette_c;
        dmaxc = cell_max[c] - palette_c;
      } else if (palette_c > cell_max[c]) {
        dminc = palette_c - cell_max[c];
        dmaxc = palette_c - cell_min[c];
      } else if (palette_c > cell_center[c]) {
        dmaxc = palette_c - cell_min[c];
      } else {
        dmaxc = cell_max[c] - palette_c;
      }
      dminc *= kCompW[c];
      dmaxc *= kCompW[c];
      dmin += dminc * dminc;
      dmax += dmaxc * dmaxc;
    }
    mindist[i] = dmin;
    min_maxdist = std::min(dmax, min_maxdist);
  }
  for (int i = 0; i < cinfo->actual_number_of_colors; ++i) {
    if (mindist[i] < min_maxdist) {
      candidates->push_back(i);
    }
  }
}

}  // namespace

void CreateInverseColorMap(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  int ncomp = cinfo->out_color_components;
  int num_cells = 1;
  for (int c = 0; c < ncomp; ++c) {
    num_cells *= (1 << kNumColorCellBits[c]);
  }
  m->candidate_lists_.resize(num_cells);

  int next_cell[kMaxComponents] = {0};
  for (int i = 0; i < num_cells; ++i) {
    m->candidate_lists_[i].clear();
    FindCandidatesForCell(cinfo, ncomp, next_cell, &m->candidate_lists_[i]);
    int c = ncomp - 1;
    while (c > 0 && next_cell[c] + 1 == (1 << kNumColorCellBits[c])) {
      next_cell[c--] = 0;
    }
    ++next_cell[c];
  }
  m->regenerate_inverse_colormap_ = false;
}

int LookupColorIndex(j_decompress_ptr cinfo, JSAMPLE* pixel) {
  jpeg_decomp_master* m = cinfo->master;
  int num_channels = cinfo->out_color_components;
  int index = 0;
  if (m->quant_mode_ == 1) {
    for (int c = 0; c < num_channels; ++c) {
      index += m->colormap_lut_[c * 256 + pixel[c]];
    }
  } else {
    size_t cell_idx = 0;
    size_t stride = 1;
    for (int c = num_channels - 1; c >= 0; --c) {
      cell_idx += (pixel[c] >> (8 - kNumColorCellBits[c])) * stride;
      stride <<= kNumColorCellBits[c];
    }
    JXL_ASSERT(cell_idx < m->candidate_lists_.size());
    int mindist = std::numeric_limits<int>::max();
    const auto& candidates = m->candidate_lists_[cell_idx];
    for (uint8_t i : candidates) {
      int dist = 0;
      for (int c = 0; c < num_channels; ++c) {
        int d = (cinfo->colormap[c][i] - pixel[c]) * kCompW[c];
        dist += d * d;
      }
      if (dist < mindist) {
        mindist = dist;
        index = i;
      }
    }
  }
  JXL_ASSERT(index < cinfo->actual_number_of_colors);
  return index;
}

void CreateOrderedDitherTables(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  static constexpr size_t kDitherSize = 4;
  static constexpr size_t kDitherMask = kDitherSize - 1;
  static constexpr float kBaseDitherMatrix[] = {
      0,  8,  2,  10,  //
      12, 4,  14, 6,   //
      3,  11, 1,  9,   //
      15, 7,  13, 5,   //
  };
  m->dither_size_ = kDitherSize;
  m->dither_mask_ = kDitherMask;
  size_t ncells = m->dither_size_ * m->dither_size_;
  for (int c = 0; c < cinfo->out_color_components; ++c) {
    float spread = 1.0f / (m->num_colors_[c] - 1);
    float mul = spread / ncells;
    float offset = 0.5f * spread;
    if (m->dither_[c] == nullptr) {
      m->dither_[c] = Allocate<float>(cinfo, ncells, JPOOL_IMAGE_ALIGNED);
    }
    for (size_t idx = 0; idx < ncells; ++idx) {
      m->dither_[c][idx] = kBaseDitherMatrix[idx] * mul - offset;
    }
  }
}

void InitFSDitherState(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  for (int c = 0; c < cinfo->out_color_components; ++c) {
    if (m->error_row_[c] == nullptr) {
      m->error_row_[c] =
          Allocate<float>(cinfo, cinfo->output_width, JPOOL_IMAGE_ALIGNED);
      m->error_row_[c + kMaxComponents] =
          Allocate<float>(cinfo, cinfo->output_width, JPOOL_IMAGE_ALIGNED);
    }
    memset(m->error_row_[c], 0.0, cinfo->output_width * sizeof(float));
    memset(m->error_row_[c + kMaxComponents], 0.0,
           cinfo->output_width * sizeof(float));
  }
}

}  // namespace jpegli