summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jpegli/encode.cc
blob: 8a106e239a5deb4ae6fc388b4d61df25c3353337 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jpegli/encode.h"

#include <cmath>
#include <initializer_list>
#include <vector>

#include "lib/jpegli/adaptive_quantization.h"
#include "lib/jpegli/bit_writer.h"
#include "lib/jpegli/bitstream.h"
#include "lib/jpegli/color_transform.h"
#include "lib/jpegli/downsample.h"
#include "lib/jpegli/encode_finish.h"
#include "lib/jpegli/encode_internal.h"
#include "lib/jpegli/encode_streaming.h"
#include "lib/jpegli/entropy_coding.h"
#include "lib/jpegli/error.h"
#include "lib/jpegli/huffman.h"
#include "lib/jpegli/input.h"
#include "lib/jpegli/memory_manager.h"
#include "lib/jpegli/quant.h"

namespace jpegli {

constexpr size_t kMaxBytesInMarker = 65533;

void CheckState(j_compress_ptr cinfo, int state) {
  if (cinfo->global_state != state) {
    JPEGLI_ERROR("Unexpected global state %d [expected %d]",
                 cinfo->global_state, state);
  }
}

void CheckState(j_compress_ptr cinfo, int state1, int state2) {
  if (cinfo->global_state != state1 && cinfo->global_state != state2) {
    JPEGLI_ERROR("Unexpected global state %d [expected %d or %d]",
                 cinfo->global_state, state1, state2);
  }
}

//
// Parameter setup
//

// Initialize cinfo fields that are not dependent on input image. This is shared
// between jpegli_CreateCompress() and jpegli_set_defaults()
void InitializeCompressParams(j_compress_ptr cinfo) {
  cinfo->data_precision = 8;
  cinfo->num_scans = 0;
  cinfo->scan_info = nullptr;
  cinfo->raw_data_in = FALSE;
  cinfo->arith_code = FALSE;
  cinfo->optimize_coding = FALSE;
  cinfo->CCIR601_sampling = FALSE;
  cinfo->smoothing_factor = 0;
  cinfo->dct_method = JDCT_FLOAT;
  cinfo->restart_interval = 0;
  cinfo->restart_in_rows = 0;
  cinfo->write_JFIF_header = FALSE;
  cinfo->JFIF_major_version = 1;
  cinfo->JFIF_minor_version = 1;
  cinfo->density_unit = 0;
  cinfo->X_density = 1;
  cinfo->Y_density = 1;
#if JPEG_LIB_VERSION >= 70
  cinfo->scale_num = 1;
  cinfo->scale_denom = 1;
  cinfo->do_fancy_downsampling = FALSE;
  cinfo->min_DCT_h_scaled_size = DCTSIZE;
  cinfo->min_DCT_v_scaled_size = DCTSIZE;
#endif
  cinfo->master->psnr_target = 0.0f;
  cinfo->master->psnr_tolerance = 0.01f;
  cinfo->master->min_distance = 0.1f;
  cinfo->master->max_distance = 25.0f;
}

float LinearQualityToDistance(int scale_factor) {
  scale_factor = std::min(5000, std::max(0, scale_factor));
  int quality =
      scale_factor < 100 ? 100 - scale_factor / 2 : 5000 / scale_factor;
  return jpegli_quality_to_distance(quality);
}

template <typename T>
void SetSentTableFlag(T** table_ptrs, size_t num, boolean val) {
  for (size_t i = 0; i < num; ++i) {
    if (table_ptrs[i]) table_ptrs[i]->sent_table = val;
  }
}

//
// Compressor initialization
//

struct ProgressiveScan {
  int Ss, Se, Ah, Al;
  bool interleaved;
};

void SetDefaultScanScript(j_compress_ptr cinfo) {
  int level = cinfo->master->progressive_level;
  std::vector<ProgressiveScan> progressive_mode;
  bool interleave_dc =
      (cinfo->max_h_samp_factor == 1 && cinfo->max_v_samp_factor == 1);
  if (level == 0) {
    progressive_mode.push_back({0, 63, 0, 0, true});
  } else if (level == 1) {
    progressive_mode.push_back({0, 0, 0, 0, interleave_dc});
    progressive_mode.push_back({1, 63, 0, 1, false});
    progressive_mode.push_back({1, 63, 1, 0, false});
  } else {
    progressive_mode.push_back({0, 0, 0, 0, interleave_dc});
    progressive_mode.push_back({1, 2, 0, 0, false});
    progressive_mode.push_back({3, 63, 0, 2, false});
    progressive_mode.push_back({3, 63, 2, 1, false});
    progressive_mode.push_back({3, 63, 1, 0, false});
  }

  cinfo->script_space_size = 0;
  for (const auto& scan : progressive_mode) {
    int comps = scan.interleaved ? MAX_COMPS_IN_SCAN : 1;
    cinfo->script_space_size += DivCeil(cinfo->num_components, comps);
  }
  cinfo->script_space =
      Allocate<jpeg_scan_info>(cinfo, cinfo->script_space_size);

  jpeg_scan_info* next_scan = cinfo->script_space;
  for (const auto& scan : progressive_mode) {
    int comps = scan.interleaved ? MAX_COMPS_IN_SCAN : 1;
    for (int c = 0; c < cinfo->num_components; c += comps) {
      next_scan->Ss = scan.Ss;
      next_scan->Se = scan.Se;
      next_scan->Ah = scan.Ah;
      next_scan->Al = scan.Al;
      next_scan->comps_in_scan = std::min(comps, cinfo->num_components - c);
      for (int j = 0; j < next_scan->comps_in_scan; ++j) {
        next_scan->component_index[j] = c + j;
      }
      ++next_scan;
    }
  }
  JXL_ASSERT(next_scan - cinfo->script_space == cinfo->script_space_size);
  cinfo->scan_info = cinfo->script_space;
  cinfo->num_scans = cinfo->script_space_size;
}

void ValidateScanScript(j_compress_ptr cinfo) {
  // Mask of coefficient bits defined by the scan script, for each component
  // and coefficient index.
  uint16_t comp_mask[kMaxComponents][DCTSIZE2] = {};
  static constexpr int kMaxRefinementBit = 10;

  for (int i = 0; i < cinfo->num_scans; ++i) {
    const jpeg_scan_info& si = cinfo->scan_info[i];
    if (si.comps_in_scan < 1 || si.comps_in_scan > MAX_COMPS_IN_SCAN) {
      JPEGLI_ERROR("Invalid number of components in scan %d", si.comps_in_scan);
    }
    int last_ci = -1;
    for (int j = 0; j < si.comps_in_scan; ++j) {
      int ci = si.component_index[j];
      if (ci < 0 || ci >= cinfo->num_components) {
        JPEGLI_ERROR("Invalid component index %d in scan", ci);
      } else if (ci == last_ci) {
        JPEGLI_ERROR("Duplicate component index %d in scan", ci);
      } else if (ci < last_ci) {
        JPEGLI_ERROR("Out of order component index %d in scan", ci);
      }
      last_ci = ci;
    }
    if (si.Ss < 0 || si.Se < si.Ss || si.Se >= DCTSIZE2) {
      JPEGLI_ERROR("Invalid spectral range %d .. %d in scan", si.Ss, si.Se);
    }
    if (si.Ah < 0 || si.Al < 0 || si.Al > kMaxRefinementBit) {
      JPEGLI_ERROR("Invalid refinement bits %d/%d", si.Ah, si.Al);
    }
    if (!cinfo->progressive_mode) {
      if (si.Ss != 0 || si.Se != DCTSIZE2 - 1 || si.Ah != 0 || si.Al != 0) {
        JPEGLI_ERROR("Invalid scan for sequential mode");
      }
    } else {
      if (si.Ss == 0 && si.Se != 0) {
        JPEGLI_ERROR("DC and AC together in progressive scan");
      }
    }
    if (si.Ss != 0 && si.comps_in_scan != 1) {
      JPEGLI_ERROR("Interleaved AC only scan.");
    }
    for (int j = 0; j < si.comps_in_scan; ++j) {
      int ci = si.component_index[j];
      if (si.Ss != 0 && comp_mask[ci][0] == 0) {
        JPEGLI_ERROR("AC before DC in component %d of scan", ci);
      }
      for (int k = si.Ss; k <= si.Se; ++k) {
        if (comp_mask[ci][k] == 0) {
          if (si.Ah != 0) {
            JPEGLI_ERROR("Invalid first scan refinement bit");
          }
          comp_mask[ci][k] = ((0xffff << si.Al) & 0xffff);
        } else {
          if (comp_mask[ci][k] != ((0xffff << si.Ah) & 0xffff) ||
              si.Al != si.Ah - 1) {
            JPEGLI_ERROR("Invalid refinement bit progression.");
          }
          comp_mask[ci][k] |= 1 << si.Al;
        }
      }
    }
    if (si.comps_in_scan > 1) {
      size_t mcu_size = 0;
      for (int j = 0; j < si.comps_in_scan; ++j) {
        int ci = si.component_index[j];
        jpeg_component_info* comp = &cinfo->comp_info[ci];
        mcu_size += comp->h_samp_factor * comp->v_samp_factor;
      }
      if (mcu_size > C_MAX_BLOCKS_IN_MCU) {
        JPEGLI_ERROR("MCU size too big");
      }
    }
  }
  for (int c = 0; c < cinfo->num_components; ++c) {
    for (int k = 0; k < DCTSIZE2; ++k) {
      if (comp_mask[c][k] != 0xffff) {
        JPEGLI_ERROR("Incomplete scan of component %d and frequency %d", c, k);
      }
    }
  }
}

void ProcessCompressionParams(j_compress_ptr cinfo) {
  if (cinfo->dest == nullptr) {
    JPEGLI_ERROR("Missing destination.");
  }
  if (cinfo->image_width < 1 || cinfo->image_height < 1 ||
      cinfo->input_components < 1) {
    JPEGLI_ERROR("Empty input image.");
  }
  if (cinfo->image_width > static_cast<int>(JPEG_MAX_DIMENSION) ||
      cinfo->image_height > static_cast<int>(JPEG_MAX_DIMENSION) ||
      cinfo->input_components > static_cast<int>(kMaxComponents)) {
    JPEGLI_ERROR("Input image too big.");
  }
  if (cinfo->num_components < 1 ||
      cinfo->num_components > static_cast<int>(kMaxComponents)) {
    JPEGLI_ERROR("Invalid number of components.");
  }
  if (cinfo->data_precision != kJpegPrecision) {
    JPEGLI_ERROR("Invalid data precision");
  }
  if (cinfo->arith_code) {
    JPEGLI_ERROR("Arithmetic coding is not implemented.");
  }
  if (cinfo->CCIR601_sampling) {
    JPEGLI_ERROR("CCIR601 sampling is not implemented.");
  }
  if (cinfo->restart_interval > 65535u) {
    JPEGLI_ERROR("Restart interval too big");
  }
  if (cinfo->smoothing_factor < 0 || cinfo->smoothing_factor > 100) {
    JPEGLI_ERROR("Invalid smoothing factor %d", cinfo->smoothing_factor);
  }
  jpeg_comp_master* m = cinfo->master;
  cinfo->max_h_samp_factor = cinfo->max_v_samp_factor = 1;
  for (int c = 0; c < cinfo->num_components; ++c) {
    jpeg_component_info* comp = &cinfo->comp_info[c];
    if (comp->component_index != c) {
      JPEGLI_ERROR("Invalid component index");
    }
    for (int j = 0; j < c; ++j) {
      if (cinfo->comp_info[j].component_id == comp->component_id) {
        JPEGLI_ERROR("Duplicate component id %d", comp->component_id);
      }
    }
    if (comp->h_samp_factor <= 0 || comp->v_samp_factor <= 0 ||
        comp->h_samp_factor > MAX_SAMP_FACTOR ||
        comp->v_samp_factor > MAX_SAMP_FACTOR) {
      JPEGLI_ERROR("Invalid sampling factor %d x %d", comp->h_samp_factor,
                   comp->v_samp_factor);
    }
    cinfo->max_h_samp_factor =
        std::max(comp->h_samp_factor, cinfo->max_h_samp_factor);
    cinfo->max_v_samp_factor =
        std::max(comp->v_samp_factor, cinfo->max_v_samp_factor);
  }
  if (cinfo->num_components == 1 &&
      (cinfo->max_h_samp_factor != 1 || cinfo->max_v_samp_factor != 1)) {
    JPEGLI_ERROR("Sampling is not supported for simgle component image.");
  }
  size_t iMCU_width = DCTSIZE * cinfo->max_h_samp_factor;
  size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
  size_t total_iMCU_cols = DivCeil(cinfo->image_width, iMCU_width);
  cinfo->total_iMCU_rows = DivCeil(cinfo->image_height, iMCU_height);
  m->xsize_blocks = total_iMCU_cols * cinfo->max_h_samp_factor;
  m->ysize_blocks = cinfo->total_iMCU_rows * cinfo->max_v_samp_factor;

  size_t blocks_per_iMCU = 0;
  for (int c = 0; c < cinfo->num_components; ++c) {
    jpeg_component_info* comp = &cinfo->comp_info[c];
    if (cinfo->max_h_samp_factor % comp->h_samp_factor != 0 ||
        cinfo->max_v_samp_factor % comp->v_samp_factor != 0) {
      JPEGLI_ERROR("Non-integral sampling ratios are not supported.");
    }
    m->h_factor[c] = cinfo->max_h_samp_factor / comp->h_samp_factor;
    m->v_factor[c] = cinfo->max_v_samp_factor / comp->v_samp_factor;
    comp->downsampled_width = DivCeil(cinfo->image_width, m->h_factor[c]);
    comp->downsampled_height = DivCeil(cinfo->image_height, m->v_factor[c]);
    comp->width_in_blocks = DivCeil(comp->downsampled_width, DCTSIZE);
    comp->height_in_blocks = DivCeil(comp->downsampled_height, DCTSIZE);
    blocks_per_iMCU += comp->h_samp_factor * comp->v_samp_factor;
  }
  m->blocks_per_iMCU_row = total_iMCU_cols * blocks_per_iMCU;
  // Disable adaptive quantization for subsampled luma channel.
  int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
  jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
  if (y_comp->h_samp_factor != cinfo->max_h_samp_factor ||
      y_comp->v_samp_factor != cinfo->max_v_samp_factor) {
    m->use_adaptive_quantization = false;
  }
  if (cinfo->scan_info == nullptr) {
    SetDefaultScanScript(cinfo);
  }
  cinfo->progressive_mode =
      cinfo->scan_info->Ss != 0 || cinfo->scan_info->Se != DCTSIZE2 - 1;
  ValidateScanScript(cinfo);
  m->scan_token_info =
      Allocate<ScanTokenInfo>(cinfo, cinfo->num_scans, JPOOL_IMAGE);
  memset(m->scan_token_info, 0, cinfo->num_scans * sizeof(ScanTokenInfo));
  m->ac_ctx_offset = Allocate<uint8_t>(cinfo, cinfo->num_scans, JPOOL_IMAGE);
  size_t num_ac_contexts = 0;
  for (int i = 0; i < cinfo->num_scans; ++i) {
    const jpeg_scan_info* scan_info = &cinfo->scan_info[i];
    m->ac_ctx_offset[i] = 4 + num_ac_contexts;
    if (scan_info->Se > 0) {
      num_ac_contexts += scan_info->comps_in_scan;
    }
    if (num_ac_contexts > 252) {
      JPEGLI_ERROR("Too many AC scans in image");
    }
    ScanTokenInfo* sti = &m->scan_token_info[i];
    if (scan_info->comps_in_scan == 1) {
      int comp_idx = scan_info->component_index[0];
      jpeg_component_info* comp = &cinfo->comp_info[comp_idx];
      sti->MCUs_per_row = comp->width_in_blocks;
      sti->MCU_rows_in_scan = comp->height_in_blocks;
      sti->blocks_in_MCU = 1;
    } else {
      sti->MCUs_per_row =
          DivCeil(cinfo->image_width, DCTSIZE * cinfo->max_h_samp_factor);
      sti->MCU_rows_in_scan =
          DivCeil(cinfo->image_height, DCTSIZE * cinfo->max_v_samp_factor);
      sti->blocks_in_MCU = 0;
      for (int j = 0; j < scan_info->comps_in_scan; ++j) {
        int comp_idx = scan_info->component_index[j];
        jpeg_component_info* comp = &cinfo->comp_info[comp_idx];
        sti->blocks_in_MCU += comp->h_samp_factor * comp->v_samp_factor;
      }
    }
    size_t num_MCUs = sti->MCU_rows_in_scan * sti->MCUs_per_row;
    sti->num_blocks = num_MCUs * sti->blocks_in_MCU;
    if (cinfo->restart_in_rows <= 0) {
      sti->restart_interval = cinfo->restart_interval;
    } else {
      sti->restart_interval =
          std::min<size_t>(sti->MCUs_per_row * cinfo->restart_in_rows, 65535u);
    }
    sti->num_restarts = sti->restart_interval > 0
                            ? DivCeil(num_MCUs, sti->restart_interval)
                            : 1;
    sti->restarts = Allocate<size_t>(cinfo, sti->num_restarts, JPOOL_IMAGE);
  }
  m->num_contexts = 4 + num_ac_contexts;
}

bool IsStreamingSupported(j_compress_ptr cinfo) {
  if (cinfo->global_state == kEncWriteCoeffs) {
    return false;
  }
  // TODO(szabadka) Remove this restriction.
  if (cinfo->restart_interval > 0 || cinfo->restart_in_rows > 0) {
    return false;
  }
  if (cinfo->num_scans > 1) {
    return false;
  }
  if (cinfo->master->psnr_target > 0) {
    return false;
  }
  return true;
}

void AllocateBuffers(j_compress_ptr cinfo) {
  jpeg_comp_master* m = cinfo->master;
  memset(m->last_dc_coeff, 0, sizeof(m->last_dc_coeff));
  if (!IsStreamingSupported(cinfo) || cinfo->optimize_coding) {
    int ysize_blocks = DivCeil(cinfo->image_height, DCTSIZE);
    int num_arrays = cinfo->num_scans * ysize_blocks;
    m->token_arrays = Allocate<TokenArray>(cinfo, num_arrays, JPOOL_IMAGE);
    m->cur_token_array = 0;
    memset(m->token_arrays, 0, num_arrays * sizeof(TokenArray));
    m->num_tokens = 0;
    m->total_num_tokens = 0;
  }
  if (cinfo->global_state == kEncWriteCoeffs) {
    return;
  }
  size_t iMCU_width = DCTSIZE * cinfo->max_h_samp_factor;
  size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
  size_t total_iMCU_cols = DivCeil(cinfo->image_width, iMCU_width);
  size_t xsize_full = total_iMCU_cols * iMCU_width;
  size_t ysize_full = 3 * iMCU_height;
  if (!cinfo->raw_data_in) {
    int num_all_components =
        std::max(cinfo->input_components, cinfo->num_components);
    for (int c = 0; c < num_all_components; ++c) {
      m->input_buffer[c].Allocate(cinfo, ysize_full, xsize_full);
    }
  }
  for (int c = 0; c < cinfo->num_components; ++c) {
    jpeg_component_info* comp = &cinfo->comp_info[c];
    size_t xsize = total_iMCU_cols * comp->h_samp_factor * DCTSIZE;
    size_t ysize = 3 * comp->v_samp_factor * DCTSIZE;
    if (cinfo->raw_data_in) {
      m->input_buffer[c].Allocate(cinfo, ysize, xsize);
    }
    m->smooth_input[c] = &m->input_buffer[c];
    if (!cinfo->raw_data_in && cinfo->smoothing_factor) {
      m->smooth_input[c] = Allocate<RowBuffer<float>>(cinfo, 1, JPOOL_IMAGE);
      m->smooth_input[c]->Allocate(cinfo, ysize_full, xsize_full);
    }
    m->raw_data[c] = m->smooth_input[c];
    if (!cinfo->raw_data_in && (m->h_factor[c] > 1 || m->v_factor[c] > 1)) {
      m->raw_data[c] = Allocate<RowBuffer<float>>(cinfo, 1, JPOOL_IMAGE);
      m->raw_data[c]->Allocate(cinfo, ysize, xsize);
    }
    m->quant_mul[c] = Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
  }
  m->dct_buffer = Allocate<float>(cinfo, 2 * DCTSIZE2, JPOOL_IMAGE_ALIGNED);
  m->block_tmp = Allocate<int32_t>(cinfo, DCTSIZE2 * 4, JPOOL_IMAGE_ALIGNED);
  if (!IsStreamingSupported(cinfo)) {
    m->coeff_buffers =
        Allocate<jvirt_barray_ptr>(cinfo, cinfo->num_components, JPOOL_IMAGE);
    for (int c = 0; c < cinfo->num_components; ++c) {
      jpeg_component_info* comp = &cinfo->comp_info[c];
      const size_t xsize_blocks = comp->width_in_blocks;
      const size_t ysize_blocks = comp->height_in_blocks;
      m->coeff_buffers[c] = (*cinfo->mem->request_virt_barray)(
          reinterpret_cast<j_common_ptr>(cinfo), JPOOL_IMAGE,
          /*pre_zero=*/false, xsize_blocks, ysize_blocks, comp->v_samp_factor);
    }
  }
  if (m->use_adaptive_quantization) {
    int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
    jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
    const size_t xsize_blocks = y_comp->width_in_blocks;
    const size_t vecsize = VectorSize();
    const size_t xsize_padded = DivCeil(2 * xsize_blocks, vecsize) * vecsize;
    m->diff_buffer =
        Allocate<float>(cinfo, xsize_blocks * DCTSIZE + 8, JPOOL_IMAGE_ALIGNED);
    m->fuzzy_erosion_tmp.Allocate(cinfo, 2, xsize_padded);
    m->pre_erosion.Allocate(cinfo, 6 * cinfo->max_v_samp_factor, xsize_padded);
    size_t qf_height = cinfo->max_v_samp_factor;
    if (m->psnr_target > 0) {
      qf_height *= cinfo->total_iMCU_rows;
    }
    m->quant_field.Allocate(cinfo, qf_height, xsize_blocks);
  } else {
    m->quant_field.Allocate(cinfo, 1, m->xsize_blocks);
    m->quant_field.FillRow(0, 0, m->xsize_blocks);
  }
  for (int c = 0; c < cinfo->num_components; ++c) {
    m->zero_bias_offset[c] =
        Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
    m->zero_bias_mul[c] = Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
    memset(m->zero_bias_mul[c], 0, DCTSIZE2 * sizeof(float));
    memset(m->zero_bias_offset[c], 0, DCTSIZE2 * sizeof(float));
  }
}

void InitProgressMonitor(j_compress_ptr cinfo) {
  if (cinfo->progress == nullptr) {
    return;
  }
  if (IsStreamingSupported(cinfo)) {
    // We have only one input pass.
    cinfo->progress->total_passes = 1;
  } else {
    // We have one input pass, a histogram pass for each scan, and an encode
    // pass for each scan.
    cinfo->progress->total_passes = 1 + 2 * cinfo->num_scans;
  }
}

// Common setup code between streaming and transcoding code paths. Called in
// both jpegli_start_compress() and jpegli_write_coefficients().
void InitCompress(j_compress_ptr cinfo, boolean write_all_tables) {
  jpeg_comp_master* m = cinfo->master;
  (*cinfo->err->reset_error_mgr)(reinterpret_cast<j_common_ptr>(cinfo));
  ProcessCompressionParams(cinfo);
  InitProgressMonitor(cinfo);
  AllocateBuffers(cinfo);
  if (cinfo->global_state != kEncWriteCoeffs) {
    ChooseInputMethod(cinfo);
    if (!cinfo->raw_data_in) {
      ChooseColorTransform(cinfo);
      ChooseDownsampleMethods(cinfo);
    }
    QuantPass pass = m->psnr_target > 0 ? QuantPass::SEARCH_FIRST_PASS
                                        : QuantPass::NO_SEARCH;
    InitQuantizer(cinfo, pass);
  }
  if (write_all_tables) {
    jpegli_suppress_tables(cinfo, FALSE);
  }
  if (!cinfo->optimize_coding && !cinfo->progressive_mode) {
    CopyHuffmanTables(cinfo);
    InitEntropyCoder(cinfo);
  }
  (*cinfo->dest->init_destination)(cinfo);
  WriteFileHeader(cinfo);
  JpegBitWriterInit(cinfo);
  m->next_iMCU_row = 0;
  m->last_restart_interval = 0;
  m->next_dht_index = 0;
}

//
// Input streaming
//

void ProgressMonitorInputPass(j_compress_ptr cinfo) {
  if (cinfo->progress == nullptr) {
    return;
  }
  cinfo->progress->completed_passes = 0;
  cinfo->progress->pass_counter = cinfo->next_scanline;
  cinfo->progress->pass_limit = cinfo->image_height;
  (*cinfo->progress->progress_monitor)(reinterpret_cast<j_common_ptr>(cinfo));
}

void ReadInputRow(j_compress_ptr cinfo, const uint8_t* scanline,
                  float* row[kMaxComponents]) {
  jpeg_comp_master* m = cinfo->master;
  int num_all_components =
      std::max(cinfo->input_components, cinfo->num_components);
  for (int c = 0; c < num_all_components; ++c) {
    row[c] = m->input_buffer[c].Row(m->next_input_row);
  }
  ++m->next_input_row;
  if (scanline == nullptr) {
    for (int c = 0; c < cinfo->input_components; ++c) {
      memset(row[c], 0, cinfo->image_width * sizeof(row[c][0]));
    }
    return;
  }
  (*m->input_method)(scanline, cinfo->image_width, row);
}

void PadInputBuffer(j_compress_ptr cinfo, float* row[kMaxComponents]) {
  jpeg_comp_master* m = cinfo->master;
  const size_t len0 = cinfo->image_width;
  const size_t len1 = m->xsize_blocks * DCTSIZE;
  for (int c = 0; c < cinfo->num_components; ++c) {
    // Pad row to a multiple of the iMCU width, plus create a border of 1
    // repeated pixel for adaptive quant field calculation.
    float last_val = row[c][len0 - 1];
    for (size_t x = len0; x <= len1; ++x) {
      row[c][x] = last_val;
    }
    row[c][-1] = row[c][0];
  }
  if (m->next_input_row == cinfo->image_height) {
    size_t num_rows = m->ysize_blocks * DCTSIZE - cinfo->image_height;
    for (size_t i = 0; i < num_rows; ++i) {
      for (int c = 0; c < cinfo->num_components; ++c) {
        float* dest = m->input_buffer[c].Row(m->next_input_row) - 1;
        memcpy(dest, row[c] - 1, (len1 + 2) * sizeof(dest[0]));
      }
      ++m->next_input_row;
    }
  }
}

void ProcessiMCURow(j_compress_ptr cinfo) {
  JXL_ASSERT(cinfo->master->next_iMCU_row < cinfo->total_iMCU_rows);
  if (!cinfo->raw_data_in) {
    ApplyInputSmoothing(cinfo);
    DownsampleInputBuffer(cinfo);
  }
  ComputeAdaptiveQuantField(cinfo);
  if (IsStreamingSupported(cinfo)) {
    if (cinfo->optimize_coding) {
      ComputeTokensForiMCURow(cinfo);
    } else {
      WriteiMCURow(cinfo);
    }
  } else {
    ComputeCoefficientsForiMCURow(cinfo);
  }
  ++cinfo->master->next_iMCU_row;
}

void ProcessiMCURows(j_compress_ptr cinfo) {
  jpeg_comp_master* m = cinfo->master;
  size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
  // To have context rows both above and below the current iMCU row, we delay
  // processing the first iMCU row and process two iMCU rows after we receive
  // the last input row.
  if (m->next_input_row % iMCU_height == 0 && m->next_input_row > iMCU_height) {
    ProcessiMCURow(cinfo);
  }
  if (m->next_input_row >= cinfo->image_height) {
    ProcessiMCURow(cinfo);
  }
}

//
// Non-streaming part
//

void ZigZagShuffleBlocks(j_compress_ptr cinfo) {
  JCOEF tmp[DCTSIZE2];
  for (int c = 0; c < cinfo->num_components; ++c) {
    jpeg_component_info* comp = &cinfo->comp_info[c];
    for (JDIMENSION by = 0; by < comp->height_in_blocks; ++by) {
      JBLOCKARRAY ba = GetBlockRow(cinfo, c, by);
      for (JDIMENSION bx = 0; bx < comp->width_in_blocks; ++bx) {
        JCOEF* block = &ba[0][bx][0];
        for (int k = 0; k < DCTSIZE2; ++k) {
          tmp[k] = block[kJPEGNaturalOrder[k]];
        }
        memcpy(block, tmp, sizeof(tmp));
      }
    }
  }
}

}  // namespace jpegli

//
// Parameter setup
//

void jpegli_CreateCompress(j_compress_ptr cinfo, int version,
                           size_t structsize) {
  cinfo->mem = nullptr;
  if (structsize != sizeof(*cinfo)) {
    JPEGLI_ERROR("jpegli_compress_struct has wrong size.");
  }
  jpegli::InitMemoryManager(reinterpret_cast<j_common_ptr>(cinfo));
  cinfo->progress = nullptr;
  cinfo->is_decompressor = FALSE;
  cinfo->global_state = jpegli::kEncStart;
  cinfo->dest = nullptr;
  cinfo->image_width = 0;
  cinfo->image_height = 0;
  cinfo->input_components = 0;
  cinfo->in_color_space = JCS_UNKNOWN;
  cinfo->input_gamma = 1.0f;
  cinfo->num_components = 0;
  cinfo->jpeg_color_space = JCS_UNKNOWN;
  cinfo->comp_info = nullptr;
  for (int i = 0; i < NUM_QUANT_TBLS; ++i) {
    cinfo->quant_tbl_ptrs[i] = nullptr;
  }
  for (int i = 0; i < NUM_HUFF_TBLS; ++i) {
    cinfo->dc_huff_tbl_ptrs[i] = nullptr;
    cinfo->ac_huff_tbl_ptrs[i] = nullptr;
  }
  memset(cinfo->arith_dc_L, 0, sizeof(cinfo->arith_dc_L));
  memset(cinfo->arith_dc_U, 0, sizeof(cinfo->arith_dc_U));
  memset(cinfo->arith_ac_K, 0, sizeof(cinfo->arith_ac_K));
  cinfo->write_Adobe_marker = false;
  cinfo->master = jpegli::Allocate<jpeg_comp_master>(cinfo, 1);
  jpegli::InitializeCompressParams(cinfo);
  cinfo->master->force_baseline = true;
  cinfo->master->xyb_mode = false;
  cinfo->master->cicp_transfer_function = 2;  // unknown transfer function code
  cinfo->master->use_std_tables = false;
  cinfo->master->use_adaptive_quantization = true;
  cinfo->master->progressive_level = jpegli::kDefaultProgressiveLevel;
  cinfo->master->data_type = JPEGLI_TYPE_UINT8;
  cinfo->master->endianness = JPEGLI_NATIVE_ENDIAN;
  cinfo->master->coeff_buffers = nullptr;
}

void jpegli_set_xyb_mode(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->xyb_mode = true;
}

void jpegli_set_cicp_transfer_function(j_compress_ptr cinfo, int code) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->cicp_transfer_function = code;
}

void jpegli_set_defaults(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  jpegli::InitializeCompressParams(cinfo);
  jpegli_default_colorspace(cinfo);
  jpegli_set_quality(cinfo, 90, TRUE);
  jpegli_set_progressive_level(cinfo, jpegli::kDefaultProgressiveLevel);
  jpegli::AddStandardHuffmanTables(reinterpret_cast<j_common_ptr>(cinfo),
                                   /*is_dc=*/false);
  jpegli::AddStandardHuffmanTables(reinterpret_cast<j_common_ptr>(cinfo),
                                   /*is_dc=*/true);
}

void jpegli_default_colorspace(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  switch (cinfo->in_color_space) {
    case JCS_GRAYSCALE:
      jpegli_set_colorspace(cinfo, JCS_GRAYSCALE);
      break;
    case JCS_RGB: {
      if (cinfo->master->xyb_mode) {
        jpegli_set_colorspace(cinfo, JCS_RGB);
      } else {
        jpegli_set_colorspace(cinfo, JCS_YCbCr);
      }
      break;
    }
    case JCS_YCbCr:
      jpegli_set_colorspace(cinfo, JCS_YCbCr);
      break;
    case JCS_CMYK:
      jpegli_set_colorspace(cinfo, JCS_CMYK);
      break;
    case JCS_YCCK:
      jpegli_set_colorspace(cinfo, JCS_YCCK);
      break;
    case JCS_UNKNOWN:
      jpegli_set_colorspace(cinfo, JCS_UNKNOWN);
      break;
    default:
      JPEGLI_ERROR("Unsupported input colorspace %d", cinfo->in_color_space);
  }
}

void jpegli_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->jpeg_color_space = colorspace;
  switch (colorspace) {
    case JCS_GRAYSCALE:
      cinfo->num_components = 1;
      break;
    case JCS_RGB:
    case JCS_YCbCr:
      cinfo->num_components = 3;
      break;
    case JCS_CMYK:
    case JCS_YCCK:
      cinfo->num_components = 4;
      break;
    case JCS_UNKNOWN:
      cinfo->num_components =
          std::min<int>(jpegli::kMaxComponents, cinfo->input_components);
      break;
    default:
      JPEGLI_ERROR("Unsupported jpeg colorspace %d", colorspace);
  }
  // Adobe marker is only needed to distinguish CMYK and YCCK JPEGs.
  cinfo->write_Adobe_marker = (cinfo->jpeg_color_space == JCS_YCCK);
  if (cinfo->comp_info == nullptr) {
    cinfo->comp_info =
        jpegli::Allocate<jpeg_component_info>(cinfo, MAX_COMPONENTS);
  }
  memset(cinfo->comp_info, 0,
         jpegli::kMaxComponents * sizeof(jpeg_component_info));
  for (int c = 0; c < cinfo->num_components; ++c) {
    jpeg_component_info* comp = &cinfo->comp_info[c];
    comp->component_index = c;
    comp->component_id = c + 1;
    comp->h_samp_factor = 1;
    comp->v_samp_factor = 1;
    comp->quant_tbl_no = 0;
    comp->dc_tbl_no = 0;
    comp->ac_tbl_no = 0;
  }
  if (colorspace == JCS_RGB) {
    cinfo->comp_info[0].component_id = 'R';
    cinfo->comp_info[1].component_id = 'G';
    cinfo->comp_info[2].component_id = 'B';
    if (cinfo->master->xyb_mode) {
      // Subsample blue channel.
      cinfo->comp_info[0].h_samp_factor = cinfo->comp_info[0].v_samp_factor = 2;
      cinfo->comp_info[1].h_samp_factor = cinfo->comp_info[1].v_samp_factor = 2;
      cinfo->comp_info[2].h_samp_factor = cinfo->comp_info[2].v_samp_factor = 1;
      // Use separate quantization tables for each component
      cinfo->comp_info[1].quant_tbl_no = 1;
      cinfo->comp_info[2].quant_tbl_no = 2;
    }
  } else if (colorspace == JCS_CMYK) {
    cinfo->comp_info[0].component_id = 'C';
    cinfo->comp_info[1].component_id = 'M';
    cinfo->comp_info[2].component_id = 'Y';
    cinfo->comp_info[3].component_id = 'K';
  } else if (colorspace == JCS_YCbCr || colorspace == JCS_YCCK) {
    // Use separate quantization and Huffman tables for luma and chroma
    cinfo->comp_info[1].quant_tbl_no = 1;
    cinfo->comp_info[2].quant_tbl_no = 1;
    cinfo->comp_info[1].dc_tbl_no = cinfo->comp_info[1].ac_tbl_no = 1;
    cinfo->comp_info[2].dc_tbl_no = cinfo->comp_info[2].ac_tbl_no = 1;
  }
}

void jpegli_set_distance(j_compress_ptr cinfo, float distance,
                         boolean force_baseline) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->force_baseline = force_baseline;
  float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
  jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/true);
}

float jpegli_quality_to_distance(int quality) {
  return (quality >= 100  ? 0.01f
          : quality >= 30 ? 0.1f + (100 - quality) * 0.09f
                          : 53.0f / 3000.0f * quality * quality -
                                23.0f / 20.0f * quality + 25.0f);
}

void jpegli_set_psnr(j_compress_ptr cinfo, float psnr, float tolerance,
                     float min_distance, float max_distance) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->psnr_target = psnr;
  cinfo->master->psnr_tolerance = tolerance;
  cinfo->master->min_distance = min_distance;
  cinfo->master->max_distance = max_distance;
}

void jpegli_set_quality(j_compress_ptr cinfo, int quality,
                        boolean force_baseline) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->force_baseline = force_baseline;
  float distance = jpegli_quality_to_distance(quality);
  float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
  jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}

void jpegli_set_linear_quality(j_compress_ptr cinfo, int scale_factor,
                               boolean force_baseline) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->force_baseline = force_baseline;
  float distance = jpegli::LinearQualityToDistance(scale_factor);
  float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
  jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}

#if JPEG_LIB_VERSION >= 70
void jpegli_default_qtables(j_compress_ptr cinfo, boolean force_baseline) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->force_baseline = force_baseline;
  float distances[NUM_QUANT_TBLS];
  for (int i = 0; i < NUM_QUANT_TBLS; ++i) {
    distances[i] = jpegli::LinearQualityToDistance(cinfo->q_scale_factor[i]);
  }
  jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}
#endif

int jpegli_quality_scaling(int quality) {
  quality = std::min(100, std::max(1, quality));
  return quality < 50 ? 5000 / quality : 200 - 2 * quality;
}

void jpegli_use_standard_quant_tables(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->use_std_tables = true;
}

void jpegli_add_quant_table(j_compress_ptr cinfo, int which_tbl,
                            const unsigned int* basic_table, int scale_factor,
                            boolean force_baseline) {
  CheckState(cinfo, jpegli::kEncStart);
  if (which_tbl < 0 || which_tbl > NUM_QUANT_TBLS) {
    JPEGLI_ERROR("Invalid quant table index %d", which_tbl);
  }
  if (cinfo->quant_tbl_ptrs[which_tbl] == nullptr) {
    cinfo->quant_tbl_ptrs[which_tbl] =
        jpegli_alloc_quant_table(reinterpret_cast<j_common_ptr>(cinfo));
  }
  int max_qval = force_baseline ? 255 : 32767U;
  JQUANT_TBL* quant_table = cinfo->quant_tbl_ptrs[which_tbl];
  for (int k = 0; k < DCTSIZE2; ++k) {
    int qval = (basic_table[k] * scale_factor + 50) / 100;
    qval = std::max(1, std::min(qval, max_qval));
    quant_table->quantval[k] = qval;
  }
  quant_table->sent_table = FALSE;
}

void jpegli_enable_adaptive_quantization(j_compress_ptr cinfo, boolean value) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->master->use_adaptive_quantization = value;
}

void jpegli_simple_progression(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  jpegli_set_progressive_level(cinfo, 2);
}

void jpegli_set_progressive_level(j_compress_ptr cinfo, int level) {
  CheckState(cinfo, jpegli::kEncStart);
  if (level < 0) {
    JPEGLI_ERROR("Invalid progressive level %d", level);
  }
  cinfo->master->progressive_level = level;
}

void jpegli_set_input_format(j_compress_ptr cinfo, JpegliDataType data_type,
                             JpegliEndianness endianness) {
  CheckState(cinfo, jpegli::kEncStart);
  switch (data_type) {
    case JPEGLI_TYPE_UINT8:
    case JPEGLI_TYPE_UINT16:
    case JPEGLI_TYPE_FLOAT:
      cinfo->master->data_type = data_type;
      break;
    default:
      JPEGLI_ERROR("Unsupported data type %d", data_type);
  }
  switch (endianness) {
    case JPEGLI_NATIVE_ENDIAN:
    case JPEGLI_LITTLE_ENDIAN:
    case JPEGLI_BIG_ENDIAN:
      cinfo->master->endianness = endianness;
      break;
    default:
      JPEGLI_ERROR("Unsupported endianness %d", endianness);
  }
}

#if JPEG_LIB_VERSION >= 70
void jpegli_calc_jpeg_dimensions(j_compress_ptr cinfo) {
  // Since input scaling is not supported, we just copy the image dimensions.
  cinfo->jpeg_width = cinfo->image_width;
  cinfo->jpeg_height = cinfo->image_height;
}
#endif

void jpegli_copy_critical_parameters(j_decompress_ptr srcinfo,
                                     j_compress_ptr dstinfo) {
  CheckState(dstinfo, jpegli::kEncStart);
  // Image parameters.
  dstinfo->image_width = srcinfo->image_width;
  dstinfo->image_height = srcinfo->image_height;
  dstinfo->input_components = srcinfo->num_components;
  dstinfo->in_color_space = srcinfo->jpeg_color_space;
  dstinfo->input_gamma = srcinfo->output_gamma;
  // Compression parameters.
  jpegli_set_defaults(dstinfo);
  jpegli_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
  if (dstinfo->num_components != srcinfo->num_components) {
    const auto& cinfo = dstinfo;
    return JPEGLI_ERROR("Mismatch between src colorspace and components");
  }
  dstinfo->data_precision = srcinfo->data_precision;
  dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
  dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
  dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
  dstinfo->density_unit = srcinfo->density_unit;
  dstinfo->X_density = srcinfo->X_density;
  dstinfo->Y_density = srcinfo->Y_density;
  for (int c = 0; c < dstinfo->num_components; ++c) {
    jpeg_component_info* srccomp = &srcinfo->comp_info[c];
    jpeg_component_info* dstcomp = &dstinfo->comp_info[c];
    dstcomp->component_id = srccomp->component_id;
    dstcomp->h_samp_factor = srccomp->h_samp_factor;
    dstcomp->v_samp_factor = srccomp->v_samp_factor;
    dstcomp->quant_tbl_no = srccomp->quant_tbl_no;
  }
  for (int i = 0; i < NUM_QUANT_TBLS; ++i) {
    if (!srcinfo->quant_tbl_ptrs[i]) continue;
    if (dstinfo->quant_tbl_ptrs[i] == nullptr) {
      dstinfo->quant_tbl_ptrs[i] = jpegli::Allocate<JQUANT_TBL>(dstinfo, 1);
    }
    memcpy(dstinfo->quant_tbl_ptrs[i], srcinfo->quant_tbl_ptrs[i],
           sizeof(JQUANT_TBL));
    dstinfo->quant_tbl_ptrs[i]->sent_table = FALSE;
  }
}

void jpegli_suppress_tables(j_compress_ptr cinfo, boolean suppress) {
  jpegli::SetSentTableFlag(cinfo->quant_tbl_ptrs, NUM_QUANT_TBLS, suppress);
  jpegli::SetSentTableFlag(cinfo->dc_huff_tbl_ptrs, NUM_HUFF_TBLS, suppress);
  jpegli::SetSentTableFlag(cinfo->ac_huff_tbl_ptrs, NUM_HUFF_TBLS, suppress);
}

//
// Compressor initialization
//

void jpegli_start_compress(j_compress_ptr cinfo, boolean write_all_tables) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->global_state = jpegli::kEncHeader;
  jpegli::InitCompress(cinfo, write_all_tables);
  cinfo->next_scanline = 0;
  cinfo->master->next_input_row = 0;
}

void jpegli_write_coefficients(j_compress_ptr cinfo,
                               jvirt_barray_ptr* coef_arrays) {
  CheckState(cinfo, jpegli::kEncStart);
  cinfo->global_state = jpegli::kEncWriteCoeffs;
  jpegli::InitCompress(cinfo, /*write_all_tables=*/true);
  cinfo->master->coeff_buffers = coef_arrays;
  cinfo->next_scanline = cinfo->image_height;
  cinfo->master->next_input_row = cinfo->image_height;
}

void jpegli_write_tables(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncStart);
  if (cinfo->dest == nullptr) {
    JPEGLI_ERROR("Missing destination.");
  }
  jpeg_comp_master* m = cinfo->master;
  (*cinfo->err->reset_error_mgr)(reinterpret_cast<j_common_ptr>(cinfo));
  (*cinfo->dest->init_destination)(cinfo);
  jpegli::WriteOutput(cinfo, {0xFF, 0xD8});  // SOI
  jpegli::EncodeDQT(cinfo, /*write_all_tables=*/true);
  jpegli::CopyHuffmanTables(cinfo);
  jpegli::EncodeDHT(cinfo, 0, m->num_huffman_tables);
  jpegli::WriteOutput(cinfo, {0xFF, 0xD9});  // EOI
  (*cinfo->dest->term_destination)(cinfo);
  jpegli_suppress_tables(cinfo, TRUE);
}

//
// Marker writing
//

void jpegli_write_m_header(j_compress_ptr cinfo, int marker,
                           unsigned int datalen) {
  CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncWriteCoeffs);
  if (datalen > jpegli::kMaxBytesInMarker) {
    JPEGLI_ERROR("Invalid marker length %u", datalen);
  }
  if (marker != 0xfe && (marker < 0xe0 || marker > 0xef)) {
    JPEGLI_ERROR(
        "jpegli_write_m_header: Only APP and COM markers are supported.");
  }
  std::vector<uint8_t> marker_data(4 + datalen);
  marker_data[0] = 0xff;
  marker_data[1] = marker;
  marker_data[2] = (datalen + 2) >> 8;
  marker_data[3] = (datalen + 2) & 0xff;
  jpegli::WriteOutput(cinfo, &marker_data[0], 4);
}

void jpegli_write_m_byte(j_compress_ptr cinfo, int val) {
  uint8_t data = val;
  jpegli::WriteOutput(cinfo, &data, 1);
}

void jpegli_write_marker(j_compress_ptr cinfo, int marker,
                         const JOCTET* dataptr, unsigned int datalen) {
  jpegli_write_m_header(cinfo, marker, datalen);
  jpegli::WriteOutput(cinfo, dataptr, datalen);
}

void jpegli_write_icc_profile(j_compress_ptr cinfo, const JOCTET* icc_data_ptr,
                              unsigned int icc_data_len) {
  constexpr size_t kMaxIccBytesInMarker =
      jpegli::kMaxBytesInMarker - sizeof jpegli::kICCSignature - 2;
  const int num_markers =
      static_cast<int>(jpegli::DivCeil(icc_data_len, kMaxIccBytesInMarker));
  size_t begin = 0;
  for (int current_marker = 0; current_marker < num_markers; ++current_marker) {
    const size_t length = std::min(kMaxIccBytesInMarker, icc_data_len - begin);
    jpegli_write_m_header(
        cinfo, jpegli::kICCMarker,
        static_cast<unsigned int>(length + sizeof jpegli::kICCSignature + 2));
    for (const unsigned char c : jpegli::kICCSignature) {
      jpegli_write_m_byte(cinfo, c);
    }
    jpegli_write_m_byte(cinfo, current_marker + 1);
    jpegli_write_m_byte(cinfo, num_markers);
    for (size_t i = 0; i < length; ++i) {
      jpegli_write_m_byte(cinfo, icc_data_ptr[begin]);
      ++begin;
    }
  }
}

//
// Input streaming
//

JDIMENSION jpegli_write_scanlines(j_compress_ptr cinfo, JSAMPARRAY scanlines,
                                  JDIMENSION num_lines) {
  CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncReadImage);
  if (cinfo->raw_data_in) {
    JPEGLI_ERROR("jpegli_write_raw_data() must be called for raw data mode.");
  }
  jpegli::ProgressMonitorInputPass(cinfo);
  if (cinfo->global_state == jpegli::kEncHeader &&
      jpegli::IsStreamingSupported(cinfo) && !cinfo->optimize_coding) {
    jpegli::WriteFrameHeader(cinfo);
    jpegli::WriteScanHeader(cinfo, 0);
  }
  cinfo->global_state = jpegli::kEncReadImage;
  jpeg_comp_master* m = cinfo->master;
  if (num_lines + cinfo->next_scanline > cinfo->image_height) {
    num_lines = cinfo->image_height - cinfo->next_scanline;
  }
  JDIMENSION prev_scanline = cinfo->next_scanline;
  size_t input_lag = (std::min<size_t>(cinfo->image_height, m->next_input_row) -
                      cinfo->next_scanline);
  if (input_lag > num_lines) {
    JPEGLI_ERROR("Need at least %u lines to continue", input_lag);
  }
  if (input_lag > 0) {
    if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
      return 0;
    }
    cinfo->next_scanline += input_lag;
  }
  float* rows[jpegli::kMaxComponents];
  for (size_t i = input_lag; i < num_lines; ++i) {
    jpegli::ReadInputRow(cinfo, scanlines[i], rows);
    (*m->color_transform)(rows, cinfo->image_width);
    jpegli::PadInputBuffer(cinfo, rows);
    jpegli::ProcessiMCURows(cinfo);
    if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
      break;
    }
    ++cinfo->next_scanline;
  }
  return cinfo->next_scanline - prev_scanline;
}

JDIMENSION jpegli_write_raw_data(j_compress_ptr cinfo, JSAMPIMAGE data,
                                 JDIMENSION num_lines) {
  CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncReadImage);
  if (!cinfo->raw_data_in) {
    JPEGLI_ERROR("jpegli_write_raw_data(): raw data mode was not set");
  }
  jpegli::ProgressMonitorInputPass(cinfo);
  if (cinfo->global_state == jpegli::kEncHeader &&
      jpegli::IsStreamingSupported(cinfo) && !cinfo->optimize_coding) {
    jpegli::WriteFrameHeader(cinfo);
    jpegli::WriteScanHeader(cinfo, 0);
  }
  cinfo->global_state = jpegli::kEncReadImage;
  jpeg_comp_master* m = cinfo->master;
  if (cinfo->next_scanline >= cinfo->image_height) {
    return 0;
  }
  size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
  if (num_lines < iMCU_height) {
    JPEGLI_ERROR("Missing input lines, minimum is %u", iMCU_height);
  }
  if (cinfo->next_scanline < m->next_input_row) {
    JXL_ASSERT(m->next_input_row - cinfo->next_scanline == iMCU_height);
    if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
      return 0;
    }
    cinfo->next_scanline = m->next_input_row;
    return iMCU_height;
  }
  size_t iMCU_y = m->next_input_row / iMCU_height;
  float* rows[jpegli::kMaxComponents];
  for (int c = 0; c < cinfo->num_components; ++c) {
    JSAMPARRAY plane = data[c];
    jpeg_component_info* comp = &cinfo->comp_info[c];
    size_t xsize = comp->width_in_blocks * DCTSIZE;
    size_t ysize = comp->v_samp_factor * DCTSIZE;
    size_t y0 = iMCU_y * ysize;
    auto& buffer = m->input_buffer[c];
    for (size_t i = 0; i < ysize; ++i) {
      rows[0] = buffer.Row(y0 + i);
      if (plane[i] == nullptr) {
        memset(rows[0], 0, xsize * sizeof(rows[0][0]));
      } else {
        (*m->input_method)(plane[i], xsize, rows);
      }
      // We need a border of 1 repeated pixel for adaptive quant field.
      buffer.PadRow(y0 + i, xsize, /*border=*/1);
    }
  }
  m->next_input_row += iMCU_height;
  jpegli::ProcessiMCURows(cinfo);
  if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
    return 0;
  }
  cinfo->next_scanline += iMCU_height;
  return iMCU_height;
}

//
// Non-streaming part
//

void jpegli_finish_compress(j_compress_ptr cinfo) {
  CheckState(cinfo, jpegli::kEncReadImage, jpegli::kEncWriteCoeffs);
  jpeg_comp_master* m = cinfo->master;
  if (cinfo->next_scanline < cinfo->image_height) {
    JPEGLI_ERROR("Incomplete image, expected %d rows, got %d",
                 cinfo->image_height, cinfo->next_scanline);
  }

  if (cinfo->global_state == jpegli::kEncWriteCoeffs) {
    // Zig-zag shuffle all the blocks. For non-transcoding case it was already
    // done in EncodeiMCURow().
    jpegli::ZigZagShuffleBlocks(cinfo);
  }

  if (m->psnr_target > 0) {
    jpegli::QuantizetoPSNR(cinfo);
  }

  const bool tokens_done = jpegli::IsStreamingSupported(cinfo);
  const bool bitstream_done = tokens_done && !cinfo->optimize_coding;

  if (!tokens_done) {
    jpegli::TokenizeJpeg(cinfo);
  }

  if (cinfo->optimize_coding || cinfo->progressive_mode) {
    jpegli::OptimizeHuffmanCodes(cinfo);
    jpegli::InitEntropyCoder(cinfo);
  }

  if (!bitstream_done) {
    jpegli::WriteFrameHeader(cinfo);
    for (int i = 0; i < cinfo->num_scans; ++i) {
      jpegli::WriteScanHeader(cinfo, i);
      jpegli::WriteScanData(cinfo, i);
    }
  } else {
    JumpToByteBoundary(&m->bw);
    if (!EmptyBitWriterBuffer(&m->bw)) {
      JPEGLI_ERROR("Output suspension is not supported in finish_compress");
    }
  }

  jpegli::WriteOutput(cinfo, {0xFF, 0xD9});  // EOI
  (*cinfo->dest->term_destination)(cinfo);

  // Release memory and reset global state.
  jpegli_abort_compress(cinfo);
}

void jpegli_abort_compress(j_compress_ptr cinfo) {
  jpegli_abort(reinterpret_cast<j_common_ptr>(cinfo));
}

void jpegli_destroy_compress(j_compress_ptr cinfo) {
  jpegli_destroy(reinterpret_cast<j_common_ptr>(cinfo));
}