summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jpegli/render.cc
blob: c550f9a575dddfe6aea7ab320cc892119f76cf38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jpegli/render.h"

#include <string.h>

#include <array>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <hwy/aligned_allocator.h>
#include <vector>

#include "lib/jpegli/color_quantize.h"
#include "lib/jpegli/color_transform.h"
#include "lib/jpegli/decode_internal.h"
#include "lib/jpegli/error.h"
#include "lib/jpegli/idct.h"
#include "lib/jpegli/upsample.h"
#include "lib/jxl/base/byte_order.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"

#ifdef MEMORY_SANITIZER
#define JXL_MEMORY_SANITIZER 1
#elif defined(__has_feature)
#if __has_feature(memory_sanitizer)
#define JXL_MEMORY_SANITIZER 1
#else
#define JXL_MEMORY_SANITIZER 0
#endif
#else
#define JXL_MEMORY_SANITIZER 0
#endif

#if JXL_MEMORY_SANITIZER
#include "sanitizer/msan_interface.h"
#endif

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jpegli/render.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

HWY_BEFORE_NAMESPACE();
namespace jpegli {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Clamp;
using hwy::HWY_NAMESPACE::Gt;
using hwy::HWY_NAMESPACE::IfThenElseZero;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::NearestInt;
using hwy::HWY_NAMESPACE::Or;
using hwy::HWY_NAMESPACE::Rebind;
using hwy::HWY_NAMESPACE::ShiftLeftSame;
using hwy::HWY_NAMESPACE::ShiftRightSame;
using hwy::HWY_NAMESPACE::Vec;
using D = HWY_FULL(float);
using DI = HWY_FULL(int32_t);
constexpr D d;
constexpr DI di;

void GatherBlockStats(const int16_t* JXL_RESTRICT coeffs,
                      const size_t coeffs_size, int32_t* JXL_RESTRICT nonzeros,
                      int32_t* JXL_RESTRICT sumabs) {
  for (size_t i = 0; i < coeffs_size; i += Lanes(d)) {
    size_t k = i % DCTSIZE2;
    const Rebind<int16_t, DI> di16;
    const Vec<DI> coeff = PromoteTo(di, Load(di16, coeffs + i));
    const auto abs_coeff = Abs(coeff);
    const auto not_0 = Gt(abs_coeff, Zero(di));
    const auto nzero = IfThenElseZero(not_0, Set(di, 1));
    Store(Add(nzero, Load(di, nonzeros + k)), di, nonzeros + k);
    Store(Add(abs_coeff, Load(di, sumabs + k)), di, sumabs + k);
  }
}

void DecenterRow(float* row, size_t xsize) {
  const HWY_CAPPED(float, 8) df;
  const auto c128 = Set(df, 128.0f / 255);
  for (size_t x = 0; x < xsize; x += Lanes(df)) {
    Store(Add(Load(df, row + x), c128), df, row + x);
  }
}

void DitherRow(j_decompress_ptr cinfo, float* row, int c, size_t y,
               size_t xsize) {
  jpeg_decomp_master* m = cinfo->master;
  if (!m->dither_[c]) return;
  const float* dither_row =
      &m->dither_[c][(y & m->dither_mask_) * m->dither_size_];
  for (size_t x = 0; x < xsize; ++x) {
    row[x] += dither_row[x & m->dither_mask_];
  }
}

template <typename T>
void StoreUnsignedRow(float* JXL_RESTRICT input[], size_t x0, size_t len,
                      size_t num_channels, float multiplier, T* output) {
  const HWY_CAPPED(float, 8) d;
  auto zero = Zero(d);
  auto mul = Set(d, multiplier);
  const Rebind<T, decltype(d)> du;
#if JXL_MEMORY_SANITIZER
  const size_t padding = hwy::RoundUpTo(len, Lanes(d)) - len;
  for (size_t c = 0; c < num_channels; ++c) {
    __msan_unpoison(input[c] + x0 + len, sizeof(input[c][0]) * padding);
  }
#endif
  if (num_channels == 1) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      auto v0 = Clamp(zero, Mul(LoadU(d, &input[0][x0 + i]), mul), mul);
      StoreU(DemoteTo(du, NearestInt(v0)), du, &output[i]);
    }
  } else if (num_channels == 2) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      auto v0 = Clamp(zero, Mul(LoadU(d, &input[0][x0 + i]), mul), mul);
      auto v1 = Clamp(zero, Mul(LoadU(d, &input[1][x0 + i]), mul), mul);
      StoreInterleaved2(DemoteTo(du, NearestInt(v0)),
                        DemoteTo(du, NearestInt(v1)), du, &output[2 * i]);
    }
  } else if (num_channels == 3) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      auto v0 = Clamp(zero, Mul(LoadU(d, &input[0][x0 + i]), mul), mul);
      auto v1 = Clamp(zero, Mul(LoadU(d, &input[1][x0 + i]), mul), mul);
      auto v2 = Clamp(zero, Mul(LoadU(d, &input[2][x0 + i]), mul), mul);
      StoreInterleaved3(DemoteTo(du, NearestInt(v0)),
                        DemoteTo(du, NearestInt(v1)),
                        DemoteTo(du, NearestInt(v2)), du, &output[3 * i]);
    }
  } else if (num_channels == 4) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      auto v0 = Clamp(zero, Mul(LoadU(d, &input[0][x0 + i]), mul), mul);
      auto v1 = Clamp(zero, Mul(LoadU(d, &input[1][x0 + i]), mul), mul);
      auto v2 = Clamp(zero, Mul(LoadU(d, &input[2][x0 + i]), mul), mul);
      auto v3 = Clamp(zero, Mul(LoadU(d, &input[3][x0 + i]), mul), mul);
      StoreInterleaved4(DemoteTo(du, NearestInt(v0)),
                        DemoteTo(du, NearestInt(v1)),
                        DemoteTo(du, NearestInt(v2)),
                        DemoteTo(du, NearestInt(v3)), du, &output[4 * i]);
    }
  }
#if JXL_MEMORY_SANITIZER
  __msan_poison(output + num_channels * len,
                sizeof(output[0]) * num_channels * padding);
#endif
}

void StoreFloatRow(float* JXL_RESTRICT input[3], size_t x0, size_t len,
                   size_t num_channels, float* output) {
  const HWY_CAPPED(float, 8) d;
  if (num_channels == 1) {
    memcpy(output, input[0] + x0, len * sizeof(output[0]));
  } else if (num_channels == 2) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      StoreInterleaved2(LoadU(d, &input[0][x0 + i]),
                        LoadU(d, &input[1][x0 + i]), d, &output[2 * i]);
    }
  } else if (num_channels == 3) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      StoreInterleaved3(LoadU(d, &input[0][x0 + i]),
                        LoadU(d, &input[1][x0 + i]),
                        LoadU(d, &input[2][x0 + i]), d, &output[3 * i]);
    }
  } else if (num_channels == 4) {
    for (size_t i = 0; i < len; i += Lanes(d)) {
      StoreInterleaved4(LoadU(d, &input[0][x0 + i]),
                        LoadU(d, &input[1][x0 + i]),
                        LoadU(d, &input[2][x0 + i]),
                        LoadU(d, &input[3][x0 + i]), d, &output[4 * i]);
    }
  }
}

static constexpr float kFSWeightMR = 7.0f / 16.0f;
static constexpr float kFSWeightBL = 3.0f / 16.0f;
static constexpr float kFSWeightBM = 5.0f / 16.0f;
static constexpr float kFSWeightBR = 1.0f / 16.0f;

float LimitError(float error) {
  float abserror = std::abs(error);
  if (abserror > 48.0f) {
    abserror = 32.0f;
  } else if (abserror > 16.0f) {
    abserror = 0.5f * abserror + 8.0f;
  }
  return error > 0.0f ? abserror : -abserror;
}

void WriteToOutput(j_decompress_ptr cinfo, float* JXL_RESTRICT rows[],
                   size_t xoffset, size_t len, size_t num_channels,
                   uint8_t* JXL_RESTRICT output) {
  jpeg_decomp_master* m = cinfo->master;
  uint8_t* JXL_RESTRICT scratch_space = m->output_scratch_;
  if (cinfo->quantize_colors && m->quant_pass_ == 1) {
    float* error_row[kMaxComponents];
    float* next_error_row[kMaxComponents];
    J_DITHER_MODE dither_mode = cinfo->dither_mode;
    if (dither_mode == JDITHER_ORDERED) {
      for (size_t c = 0; c < num_channels; ++c) {
        DitherRow(cinfo, &rows[c][xoffset], c, cinfo->output_scanline,
                  cinfo->output_width);
      }
    } else if (dither_mode == JDITHER_FS) {
      for (size_t c = 0; c < num_channels; ++c) {
        if (cinfo->output_scanline % 2 == 0) {
          error_row[c] = m->error_row_[c];
          next_error_row[c] = m->error_row_[c + kMaxComponents];
        } else {
          error_row[c] = m->error_row_[c + kMaxComponents];
          next_error_row[c] = m->error_row_[c];
        }
        memset(next_error_row[c], 0.0, cinfo->output_width * sizeof(float));
      }
    }
    const float mul = 255.0f;
    if (dither_mode != JDITHER_FS) {
      StoreUnsignedRow(rows, xoffset, len, num_channels, mul, scratch_space);
    }
    for (size_t i = 0; i < len; ++i) {
      uint8_t* pixel = &scratch_space[num_channels * i];
      if (dither_mode == JDITHER_FS) {
        for (size_t c = 0; c < num_channels; ++c) {
          float val = rows[c][i] * mul + LimitError(error_row[c][i]);
          pixel[c] = std::round(std::min(255.0f, std::max(0.0f, val)));
        }
      }
      int index = LookupColorIndex(cinfo, pixel);
      output[i] = index;
      if (dither_mode == JDITHER_FS) {
        size_t prev_i = i > 0 ? i - 1 : 0;
        size_t next_i = i + 1 < len ? i + 1 : len - 1;
        for (size_t c = 0; c < num_channels; ++c) {
          float error = pixel[c] - cinfo->colormap[c][index];
          error_row[c][next_i] += kFSWeightMR * error;
          next_error_row[c][prev_i] += kFSWeightBL * error;
          next_error_row[c][i] += kFSWeightBM * error;
          next_error_row[c][next_i] += kFSWeightBR * error;
        }
      }
    }
  } else if (m->output_data_type_ == JPEGLI_TYPE_UINT8) {
    const float mul = 255.0;
    StoreUnsignedRow(rows, xoffset, len, num_channels, mul, scratch_space);
    memcpy(output, scratch_space, len * num_channels);
  } else if (m->output_data_type_ == JPEGLI_TYPE_UINT16) {
    const float mul = 65535.0;
    uint16_t* tmp = reinterpret_cast<uint16_t*>(scratch_space);
    StoreUnsignedRow(rows, xoffset, len, num_channels, mul, tmp);
    if (m->swap_endianness_) {
      const HWY_CAPPED(uint16_t, 8) du;
      size_t output_len = len * num_channels;
      for (size_t j = 0; j < output_len; j += Lanes(du)) {
        auto v = LoadU(du, tmp + j);
        auto vswap = Or(ShiftRightSame(v, 8), ShiftLeftSame(v, 8));
        StoreU(vswap, du, tmp + j);
      }
    }
    memcpy(output, tmp, len * num_channels * 2);
  } else if (m->output_data_type_ == JPEGLI_TYPE_FLOAT) {
    float* tmp = reinterpret_cast<float*>(scratch_space);
    StoreFloatRow(rows, xoffset, len, num_channels, tmp);
    if (m->swap_endianness_) {
      size_t output_len = len * num_channels;
      for (size_t j = 0; j < output_len; ++j) {
        tmp[j] = BSwapFloat(tmp[j]);
      }
    }
    memcpy(output, tmp, len * num_channels * 4);
  }
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jpegli
HWY_AFTER_NAMESPACE();

#if HWY_ONCE

namespace jpegli {

HWY_EXPORT(GatherBlockStats);
HWY_EXPORT(WriteToOutput);
HWY_EXPORT(DecenterRow);

void GatherBlockStats(const int16_t* JXL_RESTRICT coeffs,
                      const size_t coeffs_size, int32_t* JXL_RESTRICT nonzeros,
                      int32_t* JXL_RESTRICT sumabs) {
  HWY_DYNAMIC_DISPATCH(GatherBlockStats)(coeffs, coeffs_size, nonzeros, sumabs);
}

void WriteToOutput(j_decompress_ptr cinfo, float* JXL_RESTRICT rows[],
                   size_t xoffset, size_t len, size_t num_channels,
                   uint8_t* JXL_RESTRICT output) {
  HWY_DYNAMIC_DISPATCH(WriteToOutput)
  (cinfo, rows, xoffset, len, num_channels, output);
}

void DecenterRow(float* row, size_t xsize) {
  HWY_DYNAMIC_DISPATCH(DecenterRow)(row, xsize);
}

bool ShouldApplyDequantBiases(j_decompress_ptr cinfo, int ci) {
  const auto& compinfo = cinfo->comp_info[ci];
  return (compinfo.h_samp_factor == cinfo->max_h_samp_factor &&
          compinfo.v_samp_factor == cinfo->max_v_samp_factor);
}

// See the following article for the details:
// J. R. Price and M. Rabbani, "Dequantization bias for JPEG decompression"
// Proceedings International Conference on Information Technology: Coding and
// Computing (Cat. No.PR00540), 2000, pp. 30-35, doi: 10.1109/ITCC.2000.844179.
void ComputeOptimalLaplacianBiases(const int num_blocks, const int* nonzeros,
                                   const int* sumabs, float* biases) {
  for (size_t k = 1; k < DCTSIZE2; ++k) {
    if (nonzeros[k] == 0) {
      biases[k] = 0.5f;
      continue;
    }
    // Notation adapted from the article
    float N = num_blocks;
    float N1 = nonzeros[k];
    float N0 = num_blocks - N1;
    float S = sumabs[k];
    // Compute gamma from N0, N1, N, S (eq. 11), with A and B being just
    // temporary grouping of terms.
    float A = 4.0 * S + 2.0 * N;
    float B = 4.0 * S - 2.0 * N1;
    float gamma = (-1.0 * N0 + std::sqrt(N0 * N0 * 1.0 + A * B)) / A;
    float gamma2 = gamma * gamma;
    // The bias is computed from gamma with (eq. 5), where the quantization
    // multiplier Q can be factored out and thus the bias can be applied
    // directly on the quantized coefficient.
    biases[k] =
        0.5 * (((1.0 + gamma2) / (1.0 - gamma2)) + 1.0 / std::log(gamma));
  }
}

constexpr std::array<int, SAVED_COEFS> Q_POS = {0, 1, 8,  16, 9,
                                                2, 3, 10, 17, 24};

bool is_nonzero_quantizers(const JQUANT_TBL* qtable) {
  return std::all_of(Q_POS.begin(), Q_POS.end(),
                     [&](int pos) { return qtable->quantval[pos] != 0; });
}

// Determine whether smoothing should be applied during decompression
bool do_smoothing(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  bool smoothing_useful = false;

  if (!cinfo->progressive_mode || cinfo->coef_bits == nullptr) {
    return false;
  }
  auto* coef_bits_latch = m->coef_bits_latch;
  auto* prev_coef_bits_latch = m->prev_coef_bits_latch;

  for (int ci = 0; ci < cinfo->num_components; ci++) {
    jpeg_component_info* compptr = &cinfo->comp_info[ci];
    JQUANT_TBL* qtable = compptr->quant_table;
    int* coef_bits = cinfo->coef_bits[ci];
    int* prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];

    // Return early if conditions for smoothing are not met
    if (qtable == nullptr || !is_nonzero_quantizers(qtable) ||
        coef_bits[0] < 0) {
      return false;
    }

    coef_bits_latch[ci][0] = coef_bits[0];

    for (int coefi = 1; coefi < SAVED_COEFS; coefi++) {
      prev_coef_bits_latch[ci][coefi] =
          cinfo->input_scan_number > 1 ? prev_coef_bits[coefi] : -1;
      if (coef_bits[coefi] != 0) {
        smoothing_useful = true;
      }
      coef_bits_latch[ci][coefi] = coef_bits[coefi];
    }
  }

  return smoothing_useful;
}

void PredictSmooth(j_decompress_ptr cinfo, JBLOCKARRAY blocks, int component,
                   size_t bx, int iy) {
  const size_t imcu_row = cinfo->output_iMCU_row;
  int16_t* scratch = cinfo->master->smoothing_scratch_;
  std::vector<int> Q_VAL(SAVED_COEFS);
  int* coef_bits;

  std::array<std::array<int, 5>, 5> dc_values;
  auto& compinfo = cinfo->comp_info[component];
  const size_t by0 = imcu_row * compinfo.v_samp_factor;
  const size_t by = by0 + iy;

  int prev_iy = by > 0 ? iy - 1 : 0;
  int prev_prev_iy = by > 1 ? iy - 2 : prev_iy;
  int next_iy = by + 1 < compinfo.height_in_blocks ? iy + 1 : iy;
  int next_next_iy = by + 2 < compinfo.height_in_blocks ? iy + 2 : next_iy;

  const int16_t* cur_row = blocks[iy][bx];
  const int16_t* prev_row = blocks[prev_iy][bx];
  const int16_t* prev_prev_row = blocks[prev_prev_iy][bx];
  const int16_t* next_row = blocks[next_iy][bx];
  const int16_t* next_next_row = blocks[next_next_iy][bx];

  int prev_block_ind = bx ? -DCTSIZE2 : 0;
  int prev_prev_block_ind = bx > 1 ? -2 * DCTSIZE2 : prev_block_ind;
  int next_block_ind = bx + 1 < compinfo.width_in_blocks ? DCTSIZE2 : 0;
  int next_next_block_ind =
      bx + 2 < compinfo.width_in_blocks ? DCTSIZE2 * 2 : next_block_ind;

  std::array<const int16_t*, 5> row_ptrs = {prev_prev_row, prev_row, cur_row,
                                            next_row, next_next_row};
  std::array<int, 5> block_inds = {prev_prev_block_ind, prev_block_ind, 0,
                                   next_block_ind, next_next_block_ind};

  memcpy(scratch, cur_row, DCTSIZE2 * sizeof(cur_row[0]));

  for (int r = 0; r < 5; ++r) {
    for (int c = 0; c < 5; ++c) {
      dc_values[r][c] = row_ptrs[r][block_inds[c]];
    }
  }
  // Get the correct coef_bits: In case of an incomplete scan, we use the
  // prev coeficients.
  if (cinfo->output_iMCU_row + 1 > cinfo->input_iMCU_row) {
    coef_bits = cinfo->master->prev_coef_bits_latch[component];
  } else {
    coef_bits = cinfo->master->coef_bits_latch[component];
  }

  bool change_dc = true;
  for (int i = 1; i < SAVED_COEFS; i++) {
    if (coef_bits[i] != -1) {
      change_dc = false;
      break;
    }
  }

  JQUANT_TBL* quanttbl = cinfo->quant_tbl_ptrs[compinfo.quant_tbl_no];
  for (size_t i = 0; i < 6; ++i) {
    Q_VAL[i] = quanttbl->quantval[Q_POS[i]];
  }
  if (change_dc) {
    for (size_t i = 6; i < SAVED_COEFS; ++i) {
      Q_VAL[i] = quanttbl->quantval[Q_POS[i]];
    }
  }
  auto calculate_dct_value = [&](int coef_index) {
    int64_t num = 0;
    int pred;
    int Al;
    // we use the symmetry of the smoothing matrices by transposing the 5x5 dc
    // matrix in that case.
    bool swap_indices = coef_index == 2 || coef_index == 5 || coef_index == 8 ||
                        coef_index == 9;
    auto dc = [&](int i, int j) {
      return swap_indices ? dc_values[j][i] : dc_values[i][j];
    };
    Al = coef_bits[coef_index];
    JXL_ASSERT(coef_index >= 0 && coef_index < 10);
    switch (coef_index) {
      case 0:
        // set the DC
        num = (-2 * dc(0, 0) - 6 * dc(0, 1) - 8 * dc(0, 2) - 6 * dc(0, 3) -
               2 * dc(0, 4) - 6 * dc(1, 0) + 6 * dc(1, 1) + 42 * dc(1, 2) +
               6 * dc(1, 3) - 6 * dc(1, 4) - 8 * dc(2, 0) + 42 * dc(2, 1) +
               152 * dc(2, 2) + 42 * dc(2, 3) - 8 * dc(2, 4) - 6 * dc(3, 0) +
               6 * dc(3, 1) + 42 * dc(3, 2) + 6 * dc(3, 3) - 6 * dc(3, 4) -
               2 * dc(4, 0) - 6 * dc(4, 1) - 8 * dc(4, 2) - 6 * dc(4, 3) -
               2 * dc(4, 4));
        // special case: for the DC the dequantization is different
        Al = 0;
        break;
      case 1:
      case 2:
        // set Q01 or Q10
        num = (change_dc ? (-dc(0, 0) - dc(0, 1) + dc(0, 3) + dc(0, 4) -
                            3 * dc(1, 0) + 13 * dc(1, 1) - 13 * dc(1, 3) +
                            3 * dc(1, 4) - 3 * dc(2, 0) + 38 * dc(2, 1) -
                            38 * dc(2, 3) + 3 * dc(2, 4) - 3 * dc(3, 0) +
                            13 * dc(3, 1) - 13 * dc(3, 3) + 3 * dc(3, 4) -
                            dc(4, 0) - dc(4, 1) + dc(4, 3) + dc(4, 4))
                         : (-7 * dc(2, 0) + 50 * dc(2, 1) - 50 * dc(2, 3) +
                            7 * dc(2, 4)));
        break;
      case 3:
      case 5:
        // set Q02 or Q20
        num = (change_dc
                   ? dc(0, 2) + 2 * dc(1, 1) + 7 * dc(1, 2) + 2 * dc(1, 3) -
                         5 * dc(2, 1) - 14 * dc(2, 2) - 5 * dc(2, 3) +
                         2 * dc(3, 1) + 7 * dc(3, 2) + 2 * dc(3, 3) + dc(4, 2)
                   : (-dc(0, 2) + 13 * dc(1, 2) - 24 * dc(2, 2) +
                      13 * dc(3, 2) - dc(4, 2)));
        break;
      case 4:
        // set Q11
        num =
            (change_dc ? -dc(0, 0) + dc(0, 4) + 9 * dc(1, 1) - 9 * dc(1, 3) -
                             9 * dc(3, 1) + 9 * dc(3, 3) + dc(4, 0) - dc(4, 4)
                       : (dc(1, 4) + dc(3, 0) - 10 * dc(3, 1) + 10 * dc(3, 3) -
                          dc(0, 1) - dc(3, 4) + dc(4, 1) - dc(4, 3) + dc(0, 3) -
                          dc(1, 0) + 10 * dc(1, 1) - 10 * dc(1, 3)));
        break;
      case 6:
      case 9:
        // set Q03 or Q30
        num = (dc(1, 1) - dc(1, 3) + 2 * dc(2, 1) - 2 * dc(2, 3) + dc(3, 1) -
               dc(3, 3));
        break;
      case 7:
      case 8:
      default:
        // set Q12 and Q21
        num = (dc(1, 1) - 3 * dc(1, 2) + dc(1, 3) - dc(3, 1) + 3 * dc(3, 2) -
               dc(3, 3));
        break;
    }
    num = Q_VAL[0] * num;
    if (num >= 0) {
      pred = ((Q_VAL[coef_index] << 7) + num) / (Q_VAL[coef_index] << 8);
      if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1;
    } else {
      pred = ((Q_VAL[coef_index] << 7) - num) / (Q_VAL[coef_index] << 8);
      if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1;
      pred = -pred;
    }
    return static_cast<int16_t>(pred);
  };

  int loop_end = change_dc ? SAVED_COEFS : 6;
  for (int i = 1; i < loop_end; ++i) {
    if (coef_bits[i] != 0 && scratch[Q_POS[i]] == 0) {
      scratch[Q_POS[i]] = calculate_dct_value(i);
    }
  }
  if (change_dc) {
    scratch[0] = calculate_dct_value(0);
  }
}

void PrepareForOutput(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  bool smoothing = do_smoothing(cinfo);
  m->apply_smoothing = smoothing && FROM_JXL_BOOL(cinfo->do_block_smoothing);
  size_t coeffs_per_block = cinfo->num_components * DCTSIZE2;
  memset(m->nonzeros_, 0, coeffs_per_block * sizeof(m->nonzeros_[0]));
  memset(m->sumabs_, 0, coeffs_per_block * sizeof(m->sumabs_[0]));
  memset(m->num_processed_blocks_, 0, sizeof(m->num_processed_blocks_));
  memset(m->biases_, 0, coeffs_per_block * sizeof(m->biases_[0]));
  cinfo->output_iMCU_row = 0;
  cinfo->output_scanline = 0;
  const float kDequantScale = 1.0f / (8 * 255);
  for (int c = 0; c < cinfo->num_components; c++) {
    const auto& comp = cinfo->comp_info[c];
    JQUANT_TBL* table = comp.quant_table;
    if (table == nullptr) continue;
    for (size_t k = 0; k < DCTSIZE2; ++k) {
      m->dequant_[c * DCTSIZE2 + k] = table->quantval[k] * kDequantScale;
    }
  }
  ChooseInverseTransform(cinfo);
  ChooseColorTransform(cinfo);
}

void DecodeCurrentiMCURow(j_decompress_ptr cinfo) {
  jpeg_decomp_master* m = cinfo->master;
  const size_t imcu_row = cinfo->output_iMCU_row;
  JBLOCKARRAY ba[kMaxComponents];
  for (int c = 0; c < cinfo->num_components; ++c) {
    const jpeg_component_info* comp = &cinfo->comp_info[c];
    int by0 = imcu_row * comp->v_samp_factor;
    int block_rows_left = comp->height_in_blocks - by0;
    int max_block_rows = std::min(comp->v_samp_factor, block_rows_left);
    int offset = m->streaming_mode_ ? 0 : by0;
    ba[c] = (*cinfo->mem->access_virt_barray)(
        reinterpret_cast<j_common_ptr>(cinfo), m->coef_arrays[c], offset,
        max_block_rows, FALSE);
  }
  for (int c = 0; c < cinfo->num_components; ++c) {
    size_t k0 = c * DCTSIZE2;
    auto& compinfo = cinfo->comp_info[c];
    size_t block_row = imcu_row * compinfo.v_samp_factor;
    if (ShouldApplyDequantBiases(cinfo, c)) {
      // Update statistics for this iMCU row.
      for (int iy = 0; iy < compinfo.v_samp_factor; ++iy) {
        size_t by = block_row + iy;
        if (by >= compinfo.height_in_blocks) {
          continue;
        }
        int16_t* JXL_RESTRICT coeffs = &ba[c][iy][0][0];
        size_t num = compinfo.width_in_blocks * DCTSIZE2;
        GatherBlockStats(coeffs, num, &m->nonzeros_[k0], &m->sumabs_[k0]);
        m->num_processed_blocks_[c] += compinfo.width_in_blocks;
      }
      if (imcu_row % 4 == 3) {
        // Re-compute optimal biases every few iMCU-rows.
        ComputeOptimalLaplacianBiases(m->num_processed_blocks_[c],
                                      &m->nonzeros_[k0], &m->sumabs_[k0],
                                      &m->biases_[k0]);
      }
    }
    RowBuffer<float>* raw_out = &m->raw_output_[c];
    for (int iy = 0; iy < compinfo.v_samp_factor; ++iy) {
      size_t by = block_row + iy;
      if (by >= compinfo.height_in_blocks) {
        continue;
      }
      size_t dctsize = m->scaled_dct_size[c];
      int16_t* JXL_RESTRICT row_in = &ba[c][iy][0][0];
      float* JXL_RESTRICT row_out = raw_out->Row(by * dctsize);
      for (size_t bx = 0; bx < compinfo.width_in_blocks; ++bx) {
        if (m->apply_smoothing) {
          PredictSmooth(cinfo, ba[c], c, bx, iy);
          (*m->inverse_transform[c])(m->smoothing_scratch_, &m->dequant_[k0],
                                     &m->biases_[k0], m->idct_scratch_,
                                     &row_out[bx * dctsize], raw_out->stride(),
                                     dctsize);
        } else {
          (*m->inverse_transform[c])(&row_in[bx * DCTSIZE2], &m->dequant_[k0],
                                     &m->biases_[k0], m->idct_scratch_,
                                     &row_out[bx * dctsize], raw_out->stride(),
                                     dctsize);
        }
      }
      if (m->streaming_mode_) {
        memset(row_in, 0, compinfo.width_in_blocks * sizeof(JBLOCK));
      }
    }
  }
}

void ProcessRawOutput(j_decompress_ptr cinfo, JSAMPIMAGE data) {
  jpegli::DecodeCurrentiMCURow(cinfo);
  jpeg_decomp_master* m = cinfo->master;
  for (int c = 0; c < cinfo->num_components; ++c) {
    const auto& compinfo = cinfo->comp_info[c];
    size_t comp_width = compinfo.width_in_blocks * DCTSIZE;
    size_t comp_height = compinfo.height_in_blocks * DCTSIZE;
    size_t comp_nrows = compinfo.v_samp_factor * DCTSIZE;
    size_t y0 = cinfo->output_iMCU_row * compinfo.v_samp_factor * DCTSIZE;
    size_t y1 = std::min(y0 + comp_nrows, comp_height);
    for (size_t y = y0; y < y1; ++y) {
      float* rows[1] = {m->raw_output_[c].Row(y)};
      uint8_t* output = data[c][y - y0];
      DecenterRow(rows[0], comp_width);
      WriteToOutput(cinfo, rows, 0, comp_width, 1, output);
    }
  }
  ++cinfo->output_iMCU_row;
  cinfo->output_scanline += cinfo->max_v_samp_factor * DCTSIZE;
  if (cinfo->output_scanline >= cinfo->output_height) {
    ++m->output_passes_done_;
  }
}

void ProcessOutput(j_decompress_ptr cinfo, size_t* num_output_rows,
                   JSAMPARRAY scanlines, size_t max_output_rows) {
  jpeg_decomp_master* m = cinfo->master;
  const int vfactor = cinfo->max_v_samp_factor;
  const int hfactor = cinfo->max_h_samp_factor;
  const size_t context = m->need_context_rows_ ? 1 : 0;
  const size_t imcu_row = cinfo->output_iMCU_row;
  const size_t imcu_height = vfactor * m->min_scaled_dct_size;
  const size_t imcu_width = hfactor * m->min_scaled_dct_size;
  const size_t output_width = m->iMCU_cols_ * imcu_width;
  if (imcu_row == cinfo->total_iMCU_rows ||
      (imcu_row > context &&
       cinfo->output_scanline < (imcu_row - context) * imcu_height)) {
    // We are ready to output some scanlines.
    size_t ybegin = cinfo->output_scanline;
    size_t yend = (imcu_row == cinfo->total_iMCU_rows
                       ? cinfo->output_height
                       : (imcu_row - context) * imcu_height);
    yend = std::min<size_t>(yend, ybegin + max_output_rows - *num_output_rows);
    size_t yb = (ybegin / vfactor) * vfactor;
    size_t ye = DivCeil(yend, vfactor) * vfactor;
    for (size_t y = yb; y < ye; y += vfactor) {
      for (int c = 0; c < cinfo->num_components; ++c) {
        RowBuffer<float>* raw_out = &m->raw_output_[c];
        RowBuffer<float>* render_out = &m->render_output_[c];
        int line_groups = vfactor / m->v_factor[c];
        int downsampled_width = output_width / m->h_factor[c];
        size_t yc = y / m->v_factor[c];
        for (int dy = 0; dy < line_groups; ++dy) {
          size_t ymid = yc + dy;
          const float* JXL_RESTRICT row_mid = raw_out->Row(ymid);
          if (cinfo->do_fancy_upsampling && m->v_factor[c] == 2) {
            const float* JXL_RESTRICT row_top =
                ymid == 0 ? row_mid : raw_out->Row(ymid - 1);
            const float* JXL_RESTRICT row_bot = ymid + 1 == m->raw_height_[c]
                                                    ? row_mid
                                                    : raw_out->Row(ymid + 1);
            Upsample2Vertical(row_top, row_mid, row_bot,
                              render_out->Row(2 * dy),
                              render_out->Row(2 * dy + 1), downsampled_width);
          } else {
            for (int yix = 0; yix < m->v_factor[c]; ++yix) {
              memcpy(render_out->Row(m->v_factor[c] * dy + yix), row_mid,
                     downsampled_width * sizeof(float));
            }
          }
          if (m->h_factor[c] > 1) {
            for (int yix = 0; yix < m->v_factor[c]; ++yix) {
              int row_ix = m->v_factor[c] * dy + yix;
              float* JXL_RESTRICT row = render_out->Row(row_ix);
              float* JXL_RESTRICT tmp = m->upsample_scratch_;
              if (cinfo->do_fancy_upsampling && m->h_factor[c] == 2) {
                Upsample2Horizontal(row, tmp, output_width);
              } else {
                // TODO(szabadka) SIMDify this.
                for (size_t x = 0; x < output_width; ++x) {
                  tmp[x] = row[x / m->h_factor[c]];
                }
                memcpy(row, tmp, output_width * sizeof(tmp[0]));
              }
            }
          }
        }
      }
      for (int yix = 0; yix < vfactor; ++yix) {
        if (y + yix < ybegin || y + yix >= yend) continue;
        float* rows[kMaxComponents];
        int num_all_components =
            std::max(cinfo->out_color_components, cinfo->num_components);
        for (int c = 0; c < num_all_components; ++c) {
          rows[c] = m->render_output_[c].Row(yix);
        }
        (*m->color_transform)(rows, output_width);
        for (int c = 0; c < cinfo->out_color_components; ++c) {
          // Undo the centering of the sample values around zero.
          DecenterRow(rows[c], output_width);
        }
        if (scanlines) {
          uint8_t* output = scanlines[*num_output_rows];
          WriteToOutput(cinfo, rows, m->xoffset_, cinfo->output_width,
                        cinfo->out_color_components, output);
        }
        JXL_ASSERT(cinfo->output_scanline == y + yix);
        ++cinfo->output_scanline;
        ++(*num_output_rows);
        if (cinfo->output_scanline == cinfo->output_height) {
          ++m->output_passes_done_;
        }
      }
    }
  } else {
    DecodeCurrentiMCURow(cinfo);
    ++cinfo->output_iMCU_row;
  }
}

}  // namespace jpegli
#endif  // HWY_ONCE